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Foreword

Todate, numerous phenomena andprocesses observable on amacroscopic scale have
been studied in condensed matter. However, to explain them properly, quantum con-
cepts about the microstructure of the medium are required. The interconnection and
mutual complementation of different fields of knowledge is one of the noteworthy fea-
tures of the current state of science. All themonographs, on the one hand, are devoted
to special problems of condensedmatter physics. They give a deep and complete expo-
sition, for example, of the physics of semiconductors, superconductivity, or quantum
optics intended for experienced specialists in a narrow area of solid state physics. The
purpose of other publications is to draw readers’ attention to the fundamental prob-
lems of quantummacrophysics and its numerous technological applications. The lack
of discussionabout constructive aspects of the theory, arisingdifficulties, andpossible
ways to overcome them is a disadvantage ofmost works on this theme. To successfully
resolve the problems of quantummacrophysics in practice, it is necessary to overview
a huge amount ofmaterial as quickly and thoroughly as possible, which requires great
effort. There is an acute shortcoming in the scientific literature and methodical tech-
niques on quantum macrophysics for students, graduate students, and researchers.

A distinctive feature of this book is that it covers not only selected issues deemed
to be a necessary part of the education of a scientific researcher, but it also discusses
the ways of a gradual approach to solving the problems considered, i.e., what usually
remains behind the scenes. The discussion of specific issues is brought about through
complementary levels of theoretical description, quantum, semiclassical, and phe-
nomenological approaches. This makes it possible to more fully address the multi-
faceted nature of macroscopic quantum effects and, ultimately, come closer to the
problems of the current state of science within this field.

This book is based on a course of lectures the author has been delivering for a
number of years to students of the Theoretical Physics and Applied Mathematics De-
partment of the Faculty of Physics and Technology at Ural Federal University. The
specifics of the existing education system is that third year students (future engineers
or scientists) who seek a bachelor’s degree should have the knowledge of condensed
matter physics. It is this connecting role that is played by the course “QuantumMacro-
physics”. The exercises are chosen, not only for educational purposes, but also in or-
der to supplement the main material.

This book was first published in the scientific and educational series, Condensed
Matter Physics, initiated and edited by V.V. Ustinov, a Member of the Academy of Sci-
ence and a director of the Institute of Metal Physics of the Ural Branch of the Russian
Academy of Sciences. The present edition is intentionally supplemented with a new
chapter: Dislocations and Martensitic Transitions. It includes analysis of dislocation
systems, solutionsof the stronglynonlinear andnonlocal Peierlsmodel for dislocation
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cores, and the discussion of the soliton mechanism of anomalous acoustic emission
near themartensitic phase transition point. The author is very grateful to the adminis-
tration of the Institute of Metal Physics for creating favorable conditions for work and
to D.V. Dolgikh and A.A. Raskovalov for technical assistance in preparing the book.
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Prefactory Notes

1. The Concept of Quasiparticles as Collective Perturbations
of a Medium

Quantummacrophysics establishes a relationship between the quantumproperties of
individual atoms and molecules, as well as the properties of giant associations con-
sisting of different combinations of atoms or molecules. Regularly ordered systems as
crystals, including molecular crystals, can serve as an example of these associations.

Macroscopic quantum effects take place not only in crystals. Based on quantum
concepts, we have the ability to theoretically describe such macroscopic properties
of biological objects as the spread of localized excitations in deoxyribonucleic acid
(DNA) andproteinmolecules, self-trapping in globular proteins, and the spread ofmo-
tor signals along nerve fibers. Quantum concepts underlie macrophysics of autocat-
alytic chemical reactions, of the propagation of waves and oscillations in solutions of
chemical agents, such as flame propagation, etc. There are numerous other examples
of phenomena and processes observable on macroscopic scales. However, for these
to be explained, the quantum concepts about the microstructure of medium are re-
quired. To highlight their features and red flag the field of knowledge, alternative to
classical physics of continuous medium, the term “quantummacrophysics” has been
introduced.

Many condensed matter properties observable in reality are inexplicable from the
standpoint of classical physics. Nevertheless, they can be described in terms of the
quantum theory of manyparticle systems through the notion of so called collective ex-
citations of amedium [1–16]. It is curious that, in their parameters, the elementary col-
lective excitations of amediumbears a strong resemblance tomicroparticles. As such,
they are often called quasiparticles. The prefix “quasi” means “as if” or “almost”. It
should be emphasized that the concept of quasiparticles works well only under weak
external influences on the medium.

Quasiparticles obey the lawsof quantummechanics. Themaindifferencebetween
quasiparticles and material points of classical physics is that identical quasiparticles
are principally impossible to distinguish from each other, whereas identical material
points can be enumerated and thoroughly followed along their trajectories. In quan-
tummechanics,microparticles and quasiparticles are described bywave packets. The
squaremodulusof the totalwave functionof a systemofparticles determines the prob-
ability of detecting the latter in space. When separated in space, the wave packets as-
sociated with identical microparticles can be enumerated and watched individually.
However, once the wave packets have overlapped, we will no longer be able to tell the
microparticles apart. Themeaning of the wave function of the particle system implies
that there is an equal probability of being any two microparticles in the region of the

https://doi.org/10.1515/9783110586183-202
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two overlapping wave packets. That is to say, it is impossible to ascertain which of
these microparticles was the first to fall in the region, and which was the second.

According to the laws of quantummechanics, the total wave function of a system
of identical quasiparticles can be either symmetric or antisymmetric depending on
the rearrangement of quantum numbers of any two particles. Micro- and quasiparti-
cles with half integer spin have an antisymmetric wave function. Such particles are
called fermions (e.g., an electron has a spin equal to 1/2). Symmetric wave functions
describe identical microparticles with integer spin. Such particles are called bosons
(e.g., quantums of electromagnetic field as photons have a spin equal to one). This
rule is a generalization of the experimental data and is the core of one of the postu-
lates of quantummechanics.

Even if there is no interaction between identical fermions at all, the antisymme-
try property of their total wave function, nevertheless, leads to certain consistency
(correlations) in the motion of individual particles. This property manifests itself in
the energy distribution of fermions, which is very specific and unusual for classical
physics. Namely, for noninteracting fermions, the Pauli principle holds: every quan-
tummechanical state can be occupied by only one fermion. Fermions are “individual-
ists” and this circumstance conditions the macroscopic properties of Fermi systems.
For example, the properties of Fermi quasiparticles govern the heat capacity of metals
at low temperatures and the conductivity of metals and semiconductors.

Similarly, when bosons do not interact with each other, the symmetry property of
the total wave function of a system of the bosons manifests itself in the peculiarities
of motion of the bosons and their energy distribution. In this case, the macroscopic
properties of the system of bosons are very different when compared to the system of
fermions. Identical bosons can simultaneously be in the same quantum mechanical
state. Bosons are “collectivists.” At the macro level, this feature of bosons exhibits it-
self, for example, as the self-induced coherent radiation of medium (in lasers), the
superconductivity in some metals at low temperatures, and also explains the temper-
ature dependence of the lattice heat capacity of solids.

Our goal is to become familiar with methods for theoretical description of quan-
tummacrosystems and to explain their behavior, at least on a qualitative level. Theun-
derstanding of the issues involved requires using the results of many areas of physics
such as analytical mechanics, field theory, quantum mechanics, thermodynamics,
statistical mechanics, and electrodynamics of continuous media. For completeness of
the discussion, we shall perform brief mathematical digressions to furnish the reader
with information needed for further analysis. However, the subject matter is impossi-
ble to expose rigorously. Therefore, in writing the book, we had to find a compromise
between the description of the features of analytical apparatus and qualitative expla-
nations of macroscopic quantumphenomena and effects. The next section is explores
aforementioned mathematical digressions.
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2. The Energy Distribution of Particles:
Ideal Fermi and Bose Gases

In classical physics, an ideal gas is a system of N material points whose interaction
can be ignored.

Let the gas be enclosed in a container of volume V and placed in an external force
field and let the potential energy of interaction between k-th material particle and
the external field depend only on the particle coordinates: U( ⃗rk). Then each particle
moves in accordance with Newton’s second law:

m ̈⃗rs = − ∂
∂ ⃗rs U( ⃗rs) ,

where s = 1 . . . N. The corresponding particle energy is:

εs = m ̇⃗r2s
2

+ U( ⃗rs) .
In the frame of classical physics, we can trace in detail the motion of each of the

material points of an ideal gas by solving the system of equations ofmotionwith given
initial conditions. However, this process involves serious computational difficulties.
Fortunately, it is not absolutely necessary to follow this process. When the number of
particles in the system is large, experimentally observable parameters can be ascer-
tained, not through intricate paths of the individual particles, but as a result of their
collective action. Collective properties do not depend on the initial conditions of the
particle motion, and are well described in terms of averages and probabilities.

The course of classical statistical physics shows that if particles of a thermally
equilibrium ideal gas, being in an external potential field, are in a state with the en-
ergy εs, their average number can be determined by the Boltzmann distribution:

fs = exp(μ − εs
kB

) , (1)

where kB is the Boltzmann constant and T and εs are the gas temperature and the en-
ergy of a single particle, respectively. The parameter μ is called the chemical potential
and is determined by the normalization condition. The latter expresses the conserva-
tion of the total number of particles N in the system:

∑
s
fs = N .

Herewe note an important point. The definition of an ideal gas neglects the poten-
tial energy of interaction between its particles. At the same time, the equilibrium dis-
tribution of particles of an ideal gas in energy (the Boltzmann distribution) is caused
by the interaction of the gas particles with the thermostat walls and their collisions
with each other.
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The above conception has impelled scientists to use statistical methods for de-
scribing quantum mechanical systems of identical particles, which has led to the
emergence of classical statistical physics. When the initial wave function of a sys-
tem consisting of N identical particles is known, the system’s evolution is possible to
watch by solving the Schrödinger equation:

iℎ ∂
∂tΨ = Ĥ (̂⃗p1, ̂⃗q1, . . . , ̂⃗pN , ̂⃗qN)Ψ ,

where t is time, Ψ is the wave function of the system, and ̂⃗pi , ̂⃗qi is the coordinate and
momentum operators of the i-th particle. Unlike classical physics, we are currently
unable to follow the trajectories of the particles. However, in principle, by solving the
Schrödinger equationwith the initial wave function, we can detect the particle system
at any time.

Nonetheless, the above procedure is rarely feasible, even when the number of the
particles is small. This is due to not knowing the initial conditions with the desired
accuracy. In the case of a large number of the particles, any attempts to estimate the
multiparticle wave function are doomed to failure as, for example, 1 cm3 of a typical
metal (Cu, Ag, Al) contains 1023 electrons.

Instead, it is useful to turn to the statistical properties of an ensemble of identical
particle systems differing from each other only in the initial conditions of motion of
these particles. In doing so,we should employ the ergodic hypothesis. The statistics of
the ensemble is assumed to allow themean time behavior of the given particle system
to be predicted as the latter is in a state of thermal equilibrium with its surroundings
(we replace averaging over time by the averaging over the ensemble).

Consider a quantummechanical system consisting of N weakly interacting parti-
cles enclosed in a volume V. The physical nature of the particles is of no interest to
us, even if the particles were quanta of electromagnetic field (photons). Suppose the
density of the particles are small enough, with good approximation, we can regard the
system energy as the sum of the energies of the individual particles.

Under the conditions formulated above, the laws of quantum statistical physics
give only two of the most probable distributions of particle in energies.

1. For N identical particles with half integer spin, the average number of the par-
ticles with the energy εs (and a given spin projection if εs is spin independent) at a
given temperature T is determined by the Fermi–Dirac distribution:

fs = 1
exp ( εs−μkBT ) + 1 . (2)

Just as in classical physics, the chemical potential μ can be found from the nor-
malization condition: ∑

s
fs = N .



XIV | Prefactory Notes

It is important that the summation is over all admissible quantum mechanical states
of the system, including spin ones. In particular, when spin is 1/2, the energy εs does
not depend on the spin and each summand is present in the sum twice.

2. An ideal gas of N particles with integer spin. At thermal equilibrium, the aver-
age number of bosons with the energy εs (and a given spin projection, if εs does not
depend on the spin) is determined by the distribution of the Bose–Einstein:

fs = 1
exp ( εs−μkBT ) − 1 . (3)

The latter differs from the Fermi–Dirac distribution only in the sign before unity in the
denominator.

The total number of particles in an ideal Bose gas is given by:

∑
s
fs = N .

The above formula is responsible for the chemical potential μ. The summation is also
over all admissible quantum mechanical states, including spin ones.

Through the course of statistical physics, we can see that the chemical potential μ
formally introduced by us is related to the second law of thermodynamics. Namely,
for systems with a variable number of particles, the second law of thermodynamics is
written in the following form:

TdS = dE + pdV − μdN , (4)

where T, S, E, p, V, μ, N is the temperature, entropy, internal energy, pressure, vol-
ume, chemical potential, and the number of particles in the system, respectively. Re-
call that the amount of heat δQ = TdS and the work δA = pdV are not total differen-
tials in themathematical sense of theword. These are a function of the systemprocess.
For the system of particles, according to the laws of thermodynamics, the total differ-
entials are but the increment of entropy dS and internal energy dE. The term μdN
in equation (4) allows for the change in the internal energy of the system due to the
change in the number of particles in the system.

Using the second law of thermodynamics (4), it is easy to check that, for given T
and V, we have:

μ = ( ∂F
∂N )

T,V=const
,

where F = E − TS is a function called the free energy of the system.
Interestingly, in the limit:

exp ( εs − μ
kBT

) ≫ 1 ,

the quantum Fermi–Dirac and Bose–Einstein distributions merge into the classical
Boltzmann distribution:

fs = exp(μ − εs
kBT

) .
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Here, we can see the correspondence principle between more general quantum
physics and classical physics limited in their ability.

It is known that the classical Boltzmann distribution is often not acceptable to
describe quasiparticles at real temperatures and energies. Ideal gases of quasiparti-
cles obey quantum statistics. This causes the exhibiting of their unusual macroscopic
properties (from the point of view of experience of everyday life). It should be empha-
sized that the case refers to systems of micro- or quasiparticles whose mutual interac-
tion can be neglected.

Our next goal is to understand why the approximation of ideal Fermi and Bose
gases describes observablemacroscopic properties of condensedmatters surprisingly
well, consisting of a large number of strongly interacting electrons and ions.

At the first sections of the book we tell about the electronic properties of metals
and semiconductors. And only after that we examine the dynamics of a crystal lattice.
In our view, such a sequence of exposition allows one to explain the fruitfulness of the
concept of quasiparticles and the necessity of utilizing specialmethods to set forth pe-
riodic structures. In doing so,wewill resort to relatively simple examples. A distinctive
feature of this book is that the author not only selected issues required for the educa-
tion of a scientist, but also considered gradual approaches for solving the problems at
hand. In other words, the author discloses what usually remains “behind the scenes.”
Most of the problems of quantum macrophysics begins with the application of quali-
tative methods being the most attractive and beautiful trait of this science. It is about
building simple models, which correctly take into account the main interactions and
peculiarities of the problems, but at the same time, despite their simplicity, provide
exact solutions. The author cannot help touching various estimation techniques, the
study of the limiting cases when the smallness of a parameter can be used, and the
extraction of corollaries from the symmetry properties of amedium, etc. This book dis-
cusses the particular issues throughmutually complementary levels of the theoretical
description such as quantum, quasiclassical, and phenomenological approaches. All
of the foregoing topics make it possible to investigate macroscopic quantum effects
more thoroughly, pictorially illustrating the universality and equivalency of the theo-
retical approaches (in the general area of applicability), and, ultimately, come closer
to exploring the problems of the current state of modern science.





1 Electrons and Holes in Metals and Semiconductors

1.1 Electrons in Crystalline Solids: The Formulation of a
Simplified Single Particle Model

In condensed matters, the outer shells of atoms overlap. Therefore, the valence elec-
trons of the atoms can move from one atom to another. Such an overlapping explains
the high bond energy of crystalline solids and their specific mechanical properties.
The inner electron shells of atoms in crystals overlap slightly; they are almost the same
as isolated atoms.

It is important to note that inner shell electrons, and even almost free (valence)
electrons, interact strongly with each other and with ions of the crystal lattice. The
potential energy of the interactions is in the order of the kinetic energy of the electrons.
In this case, the theory of crystalline solids, at first glance, seems quite impossible to
construct. However, there is currently quite a rigorous description ofmost phenomena
in crystals. The reasons for this success can be explained as follows:

I. It turns out that the theoretical description of a system of strongly interacting
electrons and ionsmay often be reduced to the analysis of a simpler problem. Namely,
the analysis of the behavior of noninteracting quasiparticles as being fermions in a
weak external field needs to be accomplished. The latter represents the average field
of the lattice and the other electrons.

There are two main reasons why the strong interaction of the valence electrons
between both themselves and the lattice ions leads to the resultant effect, describable
by the weak potential:

a) In the permitted zone, due to their mobility in a crystal, the valence elec-
trons diminish the total potential by acting on an individual electron. Firstly, they
can screen the positive charge of ions, thereby reducing the total potential. Secondly,
the screening of the electron-electron interaction occurs. Due to Coulomb repulsion,
every electron pushes the rest of the other electrons away from itself. Therefore, a re-
gion that contains the positive uncompensated charge of fixed lattice ions surrounds
such an electron. The cloud of the positive charge moves along with it. Every electron
“sees” not only the other electrons but the time dependent polarization cloud created
by them. As a result, the effective interaction between the electrons is dynamically
screened.

Ultimately, it appears that the valence electrons in a crystal have nothing to do
with free electrons in a vacuum. They turn into quasiparticles: fermions. The latter
differ in mass from electrons in a vacuum and almost do not interact with each other
at distances of interatomic order.

b) The second reason ismore compelling and associatedwith the Pauli principle.
The interaction between electrons and ions is strongest at small distances. However,
the Pauli principle forbids valence electrons from being near the ions, as this area

https://doi.org/10.1515/9783110586183-001



2 | 1 Electrons and Holes in Metals and Semiconductors

is already occupied by electrons of the ion core. The Pauli principle also limits the
number of collisionsbetweenconduction electrons. As a consequence, the conduction
electrons rarely suffer scattering by each other.

Given the importance of these reasons, we shall return later to discuss them.
II. Analysis of the behavior of electrons in a crystal is simplified by employing a

single particle model. If one picks up a quasiparticle weakly interacting with its sur-
roundings, an electron from thewhole system, then describes the effect of all the other
particles on it through an effective potential energy, the initial many particle problem
is reduced to a system of a single particle Schrödinger equation:

− ℎ2
2m

∆Ψ + U( ⃗r)Ψ = εΨ ,

wherem is the mass of the quasiparticle, correlated to the electron, Ψ being a station-
ary wave function of the quasiparticle, and ε being the energy.

It turns out that most observable macroscopic properties and the most important
phenomena in solids can be explained by the rational choice of the effective poten-
tial U( ⃗r) for a single electron in the Schrödinger equation. Many implications follow
from the fact that the average field of the ions and other electrons possess the symme-
try properties of the crystal lattice; periodicity, in particular.

So, theperiodic potential is assumed tomodel an impact of theperiodic field of the
crystal ions on the selected electron, as well as periodic effects caused by the action
of the rest of the electrons on the given electron.

It should be emphasized that perfect periodicity of U( ⃗r) is an idealization. Real
solids are never absolutely pure. They contain impurities and, in the neighborhood
of the impurity atoms, the solid is not the same as elsewhere in the crystal. The real
crystals have various types of defects. The ions, in fact, continually undergo thermal
vibrations around their equilibrium positions. All the disturbances of the periodicity
must be taken into account. For example, based on these disturbances, we can explain
why the conductivity of a metal is not infinite. However, to construct the theory, the
problem is artificially divided in two parts:
1. At the outset, we should consider a hypothetical perfect crystal with absolute pe-

riodicity.
2. Furthermore, we should investigate the effect of all possible deviations from the

periodicity, treated as small perturbations, on the properties of the crystal. This is
necessary in order to describe the real macroscopic properties of crystal bodies.

III. The periodicity of the potential U( ⃗r) is one of the reasons why the electrons ex-
perience no scattering by the lattice of a crystal. In a perfect periodic crystal, the free
motion of the electron can be described through the electronic wave function. This is
because any linear wave in any periodic structure propagates freely and faces the peri-
odic structure only in special cases. In the last case, reflection/scattering takes place.
This will be discussed in more detail later.
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The behavior of electrons in the periodic potential can be examined not only in
metals. Most of our general conclusions also refer to dielectrics and semiconductors.

To go further in the analysis of the properties of a gas of noninteracting quasipar-
ticles, fermions in the periodic potential, we should get familiar with methods of the
theoretical description of the crystal lattices in solids.

1.2 The Theoretical Description of the Periodic Structure of
Crystals

The existence of a periodic ion lattice is of fundamental significance for modern solid-
state physics. The periodical ion lattice underlies all analytical constructions. If such a
lattice did not exist, the theory of crystalswould hardly reach serious success. Because
of the lack of the periodic arrangement of ions, the theory of amorphous solids is still
in its infancy. Achievements in the theory of liquids are also poor, although these two
forms of matter have a density close to the density of crystalline solids.

To describe infinite crystal structures, a special symbolic language was created.
An ideal crystal can be built up in the space by periodically repeating identical struc-
tural units. The simplest crystals have a structural unit consisting of a single atom.
In crystals of more complex substances, the structural unit may contain a few atoms
or molecules. We will describe the crystal structure in terms of a crystal lattice unit
cell periodically recurring in space. It is known as an elementary cell, which binds a
certain group of atoms. This group of atoms is called a basis; the basis is repeated in
space and forms the crystalline structure.

A Bravais Lattice and a Lattice with a Basis

Although the crystal structure is formed by the repetition of real physical objects (a
certain group of atoms or ions), for a theoretical description of the periodic structure
of a crystal, the abstract concept of a Bravais lattice is used. The latter, in principle,
may have no atoms in its nodes. The Bravais lattice concept reflects only geometry of
a regularly distributed array of crystal elements whatever these in fact are.

We give two equivalent definitions of the Bravais lattice.
A Bravais lattice (two-dimensional or three-dimensional) is an infinite periodic

structure formedbydiscretemathematical points andhas the exact same spatial order
and orientation when viewed from any lattice point [1]).

A Bravais lattice (two-dimensional or three-dimensional) is a set of mathematical
points with the radius vectors of the form:

R⃗n = n1 a⃗1 + n2 a⃗2 + n3 a⃗3 (for a three-dimensional space) ,

R⃗n = n1 a⃗1 + n2 a⃗2 (for a plane) ,
(1.1)
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c1

c2

a1

a2

Q

P R

Fig. 1.1: A two-dimensional crystal, formed by atoms located at the ver-
tices of hexagonal “honeycombs”.

where a⃗i are any linearly independent vectors and ni are arbitrary integers. The vec-
tors a⃗i are called basis vectors of the Bravais lattice.

To better understand the difference between a real crystal formed by physical ob-
jects, atoms, and a Bravais lattice, a two-dimensional crystal rather than a three-di-
mensional one is easier to start with. For example, the simplest two-dimensional crys-
tal is a layer of atoms adsorbed on the crystal face – a substrate.

Let us consider a two-dimensional crystal formed by atoms located at the vertices
of hexagonal “honeycombs” (Figure 1.1). This structure seems to be the same if one
looks at it from the points P andQ.However, the views from the point R and the point P
differ in a 180 degree turn. It means that, by the first definition, the vertices of the
honeycombs do not form the Bravais lattice.

On the other hand, it is easy to check that no two linearly independent vectors
connecting the atoms of the crystal, such as c⃗1 and c⃗2 (Figure 1.1), generate the Bra-
vais lattice. Therefore, by the second definition, the vertices of the two-dimensional
honeycombs do not form the Bravais lattice.

In this case, the Bravais lattice is generated by the vectors a⃗1 and a⃗2 not connect-
ing any real atoms. In Figure 1.1, the asterisks mark the Bravais lattice points and the
bold dots indicate real atoms. This example demonstrates the difference between the
Bravais lattice whose nodes, in general, contain abstractmathematical points and the
natural crystal, the nodes of which are always occupied with atoms or ions.

The term “a Bravais lattice” can be used not only to refer to a set of the points,
but also to denote the set of vectors, connecting any of these points with the rest. Any
vector R⃗n of (1.1) defines a translation (shift) when the entire aggregation of the sys-
tem’s elements moves as a whole in space at a distance Rn towards the vector R⃗n. The
translation vectors of the crystal lattice bind different points of the Bravais lattice. In
practice, from the problem situation, it is always clear whether there are either points
or vectors or translations.

If, being subjected to all translations of the form:

R⃗n = n1 a⃗1 + n2 a⃗2 + n3 a⃗3 (for a three-dimensional Bravais lattice) ,

R⃗n = n1 a⃗1 + n2 a⃗2 (for a two-dimensional Bravais lattice) ,

a volume of space fills up the entire space/plane, never overlaps with itself and leaves
no voids, it is referred to as a primitive (elementary) unit cell.
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a1

a2

b2

b1

Fig. 1.2: The elementary unit cell of the two-dimensional crystal shown in
Figure 1.1; b⃗2 = 2b⃗1, a⃗1 + a⃗2 = 3b⃗1, |a⃗1| = |a⃗2|, the angle between the
vectors a⃗1 and a⃗2 is 60∘.

A parallelepiped (parallelogram) built on the vectors a⃗1, a⃗2, a⃗3 (a⃗1, a⃗2) is always a
primitive cell in the three-dimensional space/in the plane. However, such a choice is
not the only one possible or the most convenient. We will elaborate on this statement
later, but now let us come back to the two-dimensional crystal in the shape of honey-
combs.

In this case, such a single unit cell (a parallelogram formed by the vectors a⃗1
and a⃗2) contains two atoms. The position of any atom in the honeycomb lattice can be
written as:

b⃗α + R⃗n ,

where b⃗α are vectors depicted in Figure 1.2, α = 1.2, R⃗n = n1 a⃗1 + n2 a⃗2, n1, n2 being
integers.

This example shows that a physical crystal can be described by giving its under-
lying Bravais lattice and specifying the arrangement of atoms, molecules, and ions,
etc., within a separate primitive unit cell. In order to emphasize the difference between
the abstract understanding of points forming the Bravais lattice and the real physical
crystal possessing such a lattice, a special term is used: crystal structure. When one
primitive cell contains several atoms, the crystal structure is always described by the
Bravais latticewith abasis. Thehoneycombsare characterizedbya latticewith abasis.
The basis atoms of the primitive cell correspond to points with the radius vectors b⃗1
and b⃗2.

When the primitive cell contains one atom, it can be merged with a node of the
Bravais lattice. As a consequence, the situation is simplified due to the merging of the
Bravais lattice points and real atom positions.

However, the lattices with a basis should also be used for describing crystal struc-
tures whose atoms or ions are located at the points of the Bravais lattice without full
translational symmetry. The latter is violated because more than one kind of atom or
ion is present. A simple example of that is a NaCl crystal, which is composed of equal
numbers of sodium and chlorine ions. These are placed at alternate points of a simple
cubic lattice so that each ion of one type is surrounded by six different ions of another
type as its nearest neighbors.

An example of a two-dimensional Bravais lattice (Figure 1.3) shows that there is
no unique choice of the basis vectors, as well as the primitive cell. This is because the
primitive cell can always be built using the basis vectors of the Bravais lattice. If the
surface of the primitive cell comprises lattice points (Figure 1.3), all the points except
one can be assigned to adjacent cells.
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Fig. 1.3: Example of a two-dimensional Bravais lattices without a basis
(the lattice nodes are atoms).

In general, each primitive cell has only one point of the Bravais lattice. Therefore, if n
is the density of the mathematical points of the Bravais lattice, and Va is the volume
of the unit cell, the following formula holds:

Van = 1 or Va = 1
n . (1.2)

Hence an important conclusion suggests itself. Due to the result (1.2) being valid for
any primitive cell, the unit cell volume is independent on the choice of the cell.

It also follows from the definition of a primitive cell, that for two primitive cells of
arbitrary shape one of them can be always cut into pieces, which after shifting by the
appropriate lattice vectors are join together into another primitive cell.

The Primitive Wigner–Seitz Cell

There are many possible ways of choosing a primitive cell. Choosing a primitive cell
in the shape of a parallelepiped has its drawback. The latter is that it does not reflect
the full symmetry of the Bravais lattice. We can always choose a primitive cell so that
it would possess the symmetry of the Bravais lattice. An example of such a choice is
the Wigner–Seitz cell.

TheWigner–Seitz cell, centered at somepoint (amathematical point of theBravais
lattice), is the region of space that lies closer to that point than to any of the other
lattice points.

When being subjected to translations through all lattice vectors, theWigner–Seitz
cell fills up the entire space without any overlapping, i.e., the Wigner–Seitz cell is a
primitive cell.

The following simplemethodoffers the constructionof theWigner–Seitz cell. Here
are a few steps to do it [6].
1. Choose any point of the Bravais lattice.
2. From the chosen center (the Bravais lattice point is centered), we draw the trans-

lation vectors to the nearest lattice nodes.
3. Draw planes perpendicular to these vectors, passing through their centers.

The resulting cell that takes the smallest volume containing the given point bounded
by the built planes is the primitive Wigner–Seitz cell.

Note that not all nearest lattice points can be used to construct the Wigner–Seitz
cell (Figure 1.4).
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Fig. 1.4: The Wigner–Seitz cell of a two-
dimensional Bravais lattice.

All points being equivalent, the Bravais lattice must be infinite in extent. Clearly,
actual crystals have finite dimensions. However, if they are large enough, most of the
points are so far from the surface as to be unaffected by its existence. The sample is
often treated as the finite lattice with N nodes to be the set of points:

R⃗n = n1 a⃗1 + n2 a⃗2 + n3 a⃗3 ,

where 0 ≤ n1 ≤ N1, 0 ≤ n2 ≤ N2, 0 ≤ n3 ≤ N3 and N = N1N2N3. Further in this Chap-
ter, we shall justify such a choice of the finite size of the crystal and related boundary
conditions.

1.3 A Reciprocal Lattice and the First Brillouin Zone

Let R⃗n = n1 a⃗1 + n2 a⃗2 + n3 a⃗3 be the set of points composing the Bravais lattice. Then
the set of points corresponding to the wave vectors K⃗, for which:

exp (iK⃗ ⋅ R⃗n) = 1 , (1.3)

forms a reciprocal lattice.
The reciprocal lattice is defined with respect to a particular Bravais lattice. A Bra-

vais lattice, corresponding to the given reciprocal lattice is called a direct lattice. If
one considers a lattice with a basis, we should apply the reciprocal lattice defined
only with regard to the Bravais lattice, leaving the basis vectors aside.

Note that if K⃗1 and K⃗2 satisfy the relation (1.3), then any sum or difference also
meets this relation. Consequently, the reciprocal lattice is itself a Bravais lattice (re-
ciprocal lattice points form a Bravais lattice).

A direct verification shows that the following vectors:

b⃗1 = 2π [a⃗2 × a⃗3]
Va

, b⃗2 = 2π [a⃗3 × a⃗1]
Va

, b⃗3 = 2π [a⃗1 × a⃗2]
Va

, (1.4)

where Va = a⃗1 ⋅ [a⃗2 × a⃗3] is the volume of the elementary unit cell of the direct lattice,
generate the three-dimensional crystal reciprocal lattice. In particular, the relation:

b⃗i ⋅ a⃗j = 2πδij ,



8 | 1 Electrons and Holes in Metals and Semiconductors

where δij is the Kronecker symbol, holds true.
Therefore, any reciprocal lattice vector can be represented as:

K⃗ = n1 b⃗1 + n2 b⃗2 + n3 b⃗3 , (1.5)

where ni are integers.
It is also not hard to show that if Va is the volume of the direct lattice cell, the

primitive unit cell in reciprocal space has the volume:

Vb = b⃗1 ⋅ [b⃗2 × b⃗3] = (2π)3/Va . (1.6)

The elementary (primitive)Wigner–Seitz cell for the reciprocal lattice is called the
first Brillouin zone (see Fig. 1.5–1.8). As the name implies, it can be specified as the fol-
lowing Brillouin zones, which are the elementary cells of a different kind. Higher Bril-
louin zones appear in the theory of electron energy levels in a periodic potential. The
terms “theWigner–Seitz cell” and “the first Brillouin zone” are attributed to the same
geometric constructions. The last term is used only to refer to a cell in the reciprocal
space.

0

a

x
Fig. 1.5: A one-dimensional direct lattice
(a chain of atoms).

0 k

a
π2

The first Brillouin zone Fig. 1.6: A one-dimensional reciprocal lattice.

0

a

a
x

y

Fig. 1.7: A square direct lattice (atoms are located in the crystal face –
a substrate).

0 xk

yk

a
π2

a
π2

The first

Brillouin zone

Fig. 1.8: A square reciprocal lattice.
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Atomic Planes

There is a close relationship between the vectors of the reciprocal lattice and atomic
planes of the direct lattice. A plane passing through mathematical points of a direct
Bravais lattice is called an atomic plane. A family of atomic planes of a lattice is the
set of equally spaced parallel atomic planes. We will demonstrate that the reciprocal
lattice makes it very easy to classify all possible families of the atomic planes. To do
this, we first explain the geometrical meaning of the reciprocal lattice vectors. Let vec-
tors of the form R⃗m = a⃗1m1 + a⃗2m2 + a⃗3m3 generate a direct Bravais lattice, mi are
integers; a⃗1, a⃗2, a⃗3 being vectors of the basic translations. K⃗ = b⃗1n1 + b⃗2n2 + b⃗3n3 is
a fixed vector of the reciprocal lattice, where b⃗i are vectors of the basic translations in
reciprocal space. Next, we are interested in only the direction given by the vector K⃗.
Therefore, from all vectors parallel to K⃗, we choose only that for which the numbers
n1, n2, n3 contain no common divisors and give the smallest length of the vector K⃗.

The vectors {R⃗N} define a set of points of the direct lattice, which are solutions of
the equation:

R⃗N ⋅ K⃗ = 2π(m1n1 + m2n2 + m3n3) = 2πN = const , (1.7)

where N is an integer. For given N and K⃗, the number mi runs a certain set of values.
From analytic geometry it is known that equation (1.7) defines a plane perpendicular
to the vector K⃗. In our case, this equation is that of the atomic plane passing through
the nodes of the direct lattice with a normal line parallel to the vector K⃗.

Taking into account that:

A⃗ ⋅ B⃗ = 󵄨󵄨󵄨󵄨󵄨A⃗󵄨󵄨󵄨󵄨󵄨 󵄨󵄨󵄨󵄨󵄨B⃗󵄨󵄨󵄨󵄨󵄨 cos(A⃗B⃗) = 󵄨󵄨󵄨󵄨󵄨A⃗󵄨󵄨󵄨󵄨󵄨 (PrB⃗ ̂⃗A) = 󵄨󵄨󵄨󵄨󵄨B⃗󵄨󵄨󵄨󵄨󵄨 (PrA⃗ ̂⃗B) ,

the atomic plane equation can be rewritten as:

(PrK⃗ R⃗N) 󵄨󵄨󵄨󵄨󵄨K⃗󵄨󵄨󵄨󵄨󵄨 = 2πN , (1.8)

where N is an integer and PrK⃗ R⃗N is the projection of the vector R⃗N onto the direction
of the vector K⃗. The nearest integer to N is either (N + 1) or (N − 1). For the same K⃗,
the equation R⃗N+1 ⋅ K⃗ = 2π(N + 1) determines the atomic plane in the direct lattice.
The atomic plane is parallel to the original plane and is at a minimum distance from
it. The equation of this plane can be written as:

(PrK⃗ R⃗N+1) 󵄨󵄨󵄨󵄨󵄨K⃗󵄨󵄨󵄨󵄨󵄨 = 2π(N + 1) . (1.9)

Let us find the distance between the nearest atomic planes perpendicular to the
vector K⃗ (Figure 1.9):

d = PrK⃗ R⃗N+1 − PrK⃗ R⃗N = 2π/ 󵄨󵄨󵄨󵄨󵄨K⃗󵄨󵄨󵄨󵄨󵄨 . (1.10)
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Fig. 1.9: Atomic lines of a two-dimensional lattice.

General Conclusions

1. Any vector K⃗ of the reciprocal lattice defines a family of atomic planes perpendic-
ular to it.

2. Theminimum length of the vectors parallel to the vector K⃗ is the distance between
the nearest planes of the appropriate family of atomic planes (1.10).

The correspondence between the reciprocal lattice vectors and the families of atomic
planes gives a convenientway to specify the orientation of the atomic plane. The plane
orientation is given by the normal vector to the plane. It is natural to choose the re-
ciprocal lattice vector K⃗ as a normal to the atomic plane. Out of all vectors parallel to
vector K⃗, the shortest vector should be selected. By doing so, the Miller indices of the
plane can be estimated.

Coordinates of the shortest reciprocal lattice vector, perpendicular to the family
of atomic planes of the direct lattice in the coordinate system specified by the basic
vectors of the reciprocal lattice, are called theMiller indices.

If K⃗ = b⃗1n1 + b⃗2n2 + b⃗3n3 is the shortest vector, then n1, n2, n3 are the Miller
indices. Therefore, the Miller indices definedmust be integers. This is because any re-
ciprocal lattice vector is a linear combination of three basic vectors taken with integer
coefficients. The Miller indices depend on the choice of the basic vectors. The set of
the indices (n1, n2, n3) can mean a single plane or a family of parallel planes.

1.4 Energy Levels of an Electron in a Periodic Potential and
Bloch’s Theorem

Consider an infinite crystal periodically translated by vectors of the form R⃗l = a⃗1 l1 +
a⃗2 l2 + a⃗3 l3, where li are integers and a⃗i are the vectors of the basic translations
(i = 1, 2, 3).
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Bloch’s Theorem (a First Formulation)

If V( ⃗r + R⃗l) = V( ⃗r) is the periodic potential for all R⃗l of the Bravais lattice, then the
eigenstates of the Schrödinger equation

[− ℎ2
2m ∆ + V( ⃗r)]Ψ = εΨ

may be selected so that the wave functions should have the form of the plane wave
exp(ik⃗ ⋅ ⃗r), multiplied by a function with periodicity of the Bravais lattice:

Ψnk⃗( ⃗r) = unk⃗( ⃗r) exp (ik⃗ ⋅ ⃗r) . (1.11)

Here
unk⃗ ( ⃗r + R⃗l) = unk⃗( ⃗r) (1.12)

for any R⃗l belonging to the Bravais lattice, n is a natural number, with the energy
eigenvalues being ε = εn(k⃗).

The relations (1.11) and (1.12) can be written as follows:

Ψnk⃗ ( ⃗r + R⃗l) = Ψnk⃗( ⃗r) exp (ik⃗ ⋅ R⃗l) . (1.13)

Therefore, the Bloch theorem can be formulated in an alternative way.

Bloch’s Theorem (a Second Formulation)

The eigenstates of the operator

Ĥ = − ℎ2
2m ∆ + V( ⃗r)

can be chosen in such a way that each of them should be associated with a wave vec-
tor k⃗, and for any R⃗l of the Bravais lattice, the equality should be fulfilled:

Ψnk⃗ ( ⃗r + R⃗l) = Ψnk⃗( ⃗r) exp (ik⃗ ⋅ R⃗l) .

Let us explain this further. The theorem states that, although the potential in the
single particle Schrödinger equation is periodic, the eigenwave functions, generally
speaking, are not periodic. However, they have an interesting structure: they are sim-
ilar to the plane wave exp(ik⃗ ⋅ ⃗r) describing a free particle with the wave vector k⃗.
General Conclusions

1. Bloch’s theorem introduces a wave vector k⃗, which is an analogue of the wave
vector of the free microparticle in the general problem of motion in a periodic
potential.
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Fig. 1.10: Schematic depiction of the permitted energy values εn(k).

2. The periodic function unk⃗( ⃗r) with the index n modulates any wave exp(ik⃗ ⋅ ⃗r). As
will be shown below, the Schrödinger equation has a set of discrete solutions for
each fixed k⃗. The index n enumerates these states and is said to be a band number.
The name is due to the fact that for a fixed n the particle’s eigenenergies εn(k), de-
pending on k⃗, are densely clustered along the energy axis. In doing so, they form
a band separated from an n+1 neighboring band by the forbidden energy region;
an energy gap (Figure 1.10). Therefore, the eigenwave functions and eigenvalues
of the particle’s energies in a periodic potential have two indices. One of those is
the particle’s wave vector k⃗, another is the number n of the energy band.

The Proof of the Bloch Theorem

In this example, T̂rRl is the translation operator for each vector belonging to a Bravais
lattice; which shifts the argument of any function f( ⃗r) by R⃗l:

T̂R⃗l f( ⃗r) = f ( ⃗r + R⃗l) . (1.14)

Here, we show how the operators T̂R⃗l and Ĥ = −ℎ2/(2m)∆ + V( ⃗r) commute. By
virtue of the periodicity of the Hamiltonian system, we have:

T̂R⃗l (ĤΨ) = Ĥ ( ⃗r + R⃗l)Ψ ( ⃗r + R⃗l) = Ĥ( ⃗r)Ψ ( ⃗r + R⃗l) = Ĥ( ⃗r)T̂R⃗lΨ( ⃗r) . (1.15)

Since the equation (1.15) is satisfied identically for each function Ψ, the following op-
erator identity holds true:

T̂R⃗l Ĥ = ĤT̂R⃗l . (1.16)

Furthermore, we note that the result of two successive translations never depends
on the order of their application, since for any function Ψ( ⃗r), we have:

T̂R⃗ ⃗l󸀠 T̂R⃗lΨ = T̂R⃗l T̂R⃗ ⃗l󸀠Ψ = Ψ ( ⃗r + R⃗l + R⃗ ⃗l󸀠) = T̂R⃗l+R⃗ ⃗l󸀠Ψ . (1.17)

Therefore, we obtain:
T̂R⃗ ⃗l󸀠 T̂R⃗l = T̂R⃗l T̂R⃗ ⃗l󸀠 = T̂R⃗l+R⃗ ⃗l󸀠 . (1.18)
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The relations (1.16) and (1.18) show that the Hamiltonian Ĥ and the operators T̂R⃗
for all Bravais lattice vectors R⃗ form a set of commuting operators. According to the
commuting operator theorem, the operators Ĥ and T̂R⃗ have a common system of the
eigenfunctions:

ĤΨ = εΨ , T̂R⃗Ψ = c(R⃗)Ψ . (1.19)

From (1.18) (1.19), we have:

T̂R⃗l (T̂R⃗ ⃗l󸀠Ψ) = T̂R⃗l (c(R⃗ ⃗l󸀠 )Ψ) = c(R⃗ ⃗l󸀠 )T̂R⃗lΨ = c(R⃗ ⃗l󸀠 )c(R⃗l)Ψ = c (R⃗l + R⃗ ⃗l󸀠)Ψ . (1.20)

Consequently, for the translation operator eigenvalues, the equality must be fulfilled:

c (R⃗l + R⃗ ⃗l󸀠) = c(R⃗ ⃗l󸀠 )c(R⃗l) . (1.21)

where R⃗l , R⃗ ⃗l󸀠 are arbitrary vectors belonging to the Bravais lattice.
As a translation vector, we take an arbitrary s-th basic vector of the direct Bravais

lattice. Then, we can always write c(a⃗s) as:
c(a⃗s) = exp (2πixs) , (1.22)

choosing the values of xs (s = 1, 2, 3) in an appropriate way.
By substituting the expression for the Bravais lattice translation vector R⃗l = a⃗1 l1+

a⃗2 l2 + a⃗3 l3 into the formula for c(R⃗l), we come up with: c(R⃗l) = c(a⃗1 l1 + a⃗2 l2 + a⃗3 l3).
Applying formula (1.21) to the above expression, we find:

c(R⃗l) = [c(a⃗1)]l1 [c(a⃗2)]l2 [c(a⃗3)]l3 ,

or taking the presentation (1.22) into account:

c(R⃗l) = exp [2πi(x1 l1 + x2 l2 + x3l3)] ≡ exp (ik⃗ ⋅ R⃗l) . (1.23)

Here k⃗ = x1 b⃗1+ x2b⃗2+ x3 b⃗3, R⃗l = a⃗1 l1 + a⃗2l2 + a⃗3l3. In writing formula (1.23), we have
used the fact that for the vectors of the direct and inverse lattices satisfy the orthogo-
nality condition:

a⃗s ⋅ b⃗p = 2πδsp .

Thus we have shown that the eigenwave functions Ψ of the Hamiltonian Ĥ may
be selected so that the equality

T̂R⃗lΨ(r) = Ψ( ⃗r + R⃗l) = c(R⃗l)Ψ( ⃗r) = exp (ik⃗ ⋅ R⃗l)Ψ( ⃗r) (1.24)

should be performed for each vector R⃗l of theBravais lattice. This is theBloch theorem.
The wave function must remain bounded under arbitrary translations in the infi-

nite crystal, so the vector k⃗ of the representation (1.24) must be real.
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Born–Karman Boundary Conditions

By imposing appropriate boundary conditions on the wave functions, we can show
that the wave vector k⃗ must be real in a finite sample as well. For a sample of large
size, its innerphysical properties are assumed to be independent neither on the shape
nor the boundary conditions at its surface. Therefore, for the convenience of calcula-
tions, the sample (crystal) should be chosen in the form of a parallelepiped built on
the vectors N1a⃗1, N2 a⃗2, N3 a⃗3. As with boundary conditions, the simplest ones need
to be used. Born and Karman were first to propose them:

Ψnk⃗ ( ⃗r + Nsa⃗s) = Ψnk⃗( ⃗r) , (1.25)

where a⃗s is the trio of the basis vectors of the crystal’s Bravais lattice, Ns are positive
integers,(Ns ≫ 1), s = 1, 2, 3, N = N1N2N3 is the total number of elementary unit
cells in the crystal. In this section, there is no summation over twice repeated indices.

According to the Born–Karman boundary conditions, an electron reaches the
boundary of the sample without reflecting but “disappears” and, at the same time,
reenters the opposite face of the crystal.

We demonstrate that the boundary conditions (1.25) are consistent with the Bloch
theorem. We apply the Bloch theorem (1.13) to the boundary condition (1.25):

Ψnk⃗( ⃗r + Nsa⃗s) = exp (iNsa⃗s ⋅ k⃗)Ψnk⃗( ⃗r) = Ψnk⃗( ⃗r) . (1.26)

Then we have:
exp (iNsa⃗s ⋅ k⃗) = 1 . (1.27)

Given k⃗ = x1 b⃗1 + x2 b⃗2 + x3 b⃗3, a⃗s ⋅ b⃗p = 2πδsp, from (1.27), we obtain:

exp [2πiNsxs] = 1 .

So, the conditions must be met:
xs = ms

Ns
.

Here,ms are arbitrary integers. Therefore, the allowed Blochwave vectors are real and
have the form:

k⃗ = 3∑
i=1

mi
Ni

b⃗i . (1.28)

From (1.28) it follows that any k⃗-space volume corresponding to each allowed
wave vector k⃗ is equal to the volume of a small parallelepiped with the edges b⃗i/Ni:

δVk⃗ = b⃗1
N1

⋅ [ b⃗2N2
× b⃗3
N3

] = Vb
N

. (1.29)

Since Vb = b⃗1 ⋅ (b⃗2 × b⃗3) is the volume of the elementary unit cell of the reciprocal
lattice, formula (1.29) means that the amounts of allowedwave vectors in one unit cell
and of cells in the crystal (N) are equal.
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In the direct and reciprocal lattices, the volumes of the unit cells are related by:

Vb = (2π)3
Va

. (1.30)

Therefore, formula (1.29) can be rewritten as:

δVk⃗ = Vb
N

= (2π)3
VaN

= (2π)3
V

, (1.31)

where V = NVa is the volume of the crystal.
Thus, thegreater the volumeof the crystalV is, the closer theallowedwavevectors

in k-space are to each other.

General Remarks about Bloch’s Theorem

1. We have shown that the stationary Schrödinger equation with the periodic poten-
tial V( ⃗r):

− ℎ2
2m ∆Ψ + V( ⃗r)Ψ = εΨ (1.32)

has the solution:
Ψnk⃗( ⃗r) = unk⃗( ⃗r) exp (ik⃗ ⋅ ⃗r) ,

where unk⃗( ⃗r + R⃗) = unk⃗( ⃗r), R⃗ is the vector of the crystal’s Bravais lattice.
Now we can also write the nonstationary Schrödinger equation:

− ℎ2
2m ∆Ψ + V( ⃗r)Ψ = iℎ∂Ψ∂t (1.33)

the solution of which is:

Ψ( ⃗r, t) = ∑⃗
k󸀠
g(k⃗󸀠)unk⃗󸀠( ⃗r) exp [ik⃗󸀠 ⋅ ⃗r − iℎ εn(k⃗󸀠)t] . (1.34)

Each electron is described by a superposition of the wave functions (1.34) which
form the wave packet:

Ψ( ⃗r, t) = ∑⃗
k󸀠
g(k⃗󸀠)unk⃗󸀠( ⃗r) exp [ik⃗󸀠 ⋅ ⃗r − iℎ εn(k⃗󸀠)t] . (1.35)

In formula (1.35), all the allowed wave vectors k⃗󸀠 reside near the average value of k⃗:

g(k⃗󸀠) ≈ 0 if 󵄨󵄨󵄨󵄨󵄨k⃗󸀠 − k⃗󵄨󵄨󵄨󵄨󵄨 ≥ ∆k .

It is known from quantummechanics that, when localized in k-space in a region with
a characteristic size of the order ∆k, a wave packet is localized in a normal coordinate
space in a region size of:

∆R ∼ 1
∆k

. (1.36)
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This regionmoves as awholewith a groupvelocity,which is calculatedby the formula:

V⃗ = 1ℎ ∂εn(k⃗)∂k⃗
. (1.37)

The velocity (1.37) is given by the gradient εn(k⃗) of the dispersion relation at the point
with the radius vector k⃗. This is because the harmonic components of the wave packet
have the wave vectors close to the vector k⃗.

We have come up with an interesting outcome. It turns out that, in the periodic
crystal, the electron has a steady state of being in which it moves with a constant ve-
locity without changing its energy. Also, we cannot regard collisions between elec-
trons and fixed ions as a mechanism for governing the change in the electron’s ve-
locity, since equation (1.33) (the solution of which is the function (1.34)) completely
takes into account the electron-lattice interaction. Such a result is incompatible with
classical ideas; it is a consequence of the wave nature of electrons.

In the periodic lattice of scattering centers, the wave propagates without damping
due to the interference of scattered waves. Since the resultant wave (1.35) correspond-
ing to the electron in the crystal does not decay, the conductivity of an ideal crystal
should be infinite. The cause of electrical resistance of metals is crystal lattice defects
or impurities or lattice ion vibrations. All of them disrupt the periodicity of the poten-
tial energy of the electron.

2. Bloch’s theorem introduces the wave vector k⃗ into theory. The quantity ℎk⃗ is of-
ten called the quasimomentum of an electron. For a free electron, the quasimomentum
and momentum are related: p⃗ = ℎk⃗. However, this formula does not hold for an elec-
tron in a crystal: p⃗ ̸= ℎk⃗. This is clear from the following considerations. The existence
of the connections ε = εn(k⃗), p⃗ = ℎk⃗ would mean that the energy and momentum
of the electron can be measured simultaneously. In other words, the energy and mo-
mentum operators, corresponding to these values commute: [Ĥ, ̂⃗p] = 0. In turn, the
condition [Ĥ, ̂⃗p] = 0 would mean that the momentum of the electron is an integral
of motion. This is impossible, since the momentum is related to the invariance of the
electron Hamiltonian Ĥ with respect to arbitrary translations. Under the discontinu-
ous periodic potential, the electron Hamiltonian Ĥ does not possess full translational
invariance, despite the preservation of its invariance with respect to discrete transla-
tions, reflecting the symmetry of the crystal lattice. We have arrived at a contradiction
because our initial assumption of the connection p⃗ = ℎk⃗ is incorrect. For an electron
in a crystal this connection is p⃗ ̸= ℎk⃗.

By direct verification, we can see that, for the electron in an inhomogeneous crys-
tal field, the following stands: p⃗ ̸= ℎk⃗. We act by the momentum operator ̂⃗p = −iℎ∇⃗ on
the Bloch electron wave function:

Ψnk⃗ = unk⃗( ⃗r) exp (ik⃗ ⋅ ⃗r) .

As a result, we get: ̂⃗pΨnk⃗ = ℎk⃗Ψnk⃗ − iℎ exp (ik⃗ ⋅ ⃗r) ∇⃗unk⃗ ̸= ℎk⃗Ψnk⃗ .
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This means that the quasimomentum of the electron in a crystal has nothing in com-
mon with its momentum: p⃗ ̸= ℎk⃗.

To comprehend themeaning of the term “quasimomentum,” the reaction of Bloch
electrons to anexternal electromagnetic field shouldbe considered.Wewill comeback
to this issue later.

3. We can always choose the wave vector k⃗ of the Bloch function so that it should
lie within the first Brillouin zone. If the wave vector k⃗󸀠 does not fall into the first Bril-
louin zone, it can always be represented as the sum of the wave vector k⃗ of the first
Brillouin zone and any reciprocal lattice vector K⃗:

k⃗󸀠 = k⃗ + K⃗ ,

where K⃗ = b⃗1n1 + b⃗2n2 + b⃗3n3.
As an example, consider a square lattice. In Figure 1.11, the vector k⃗󸀠 lies outside

the first Brillouin zone. The vector k⃗󸀠 can be paired with the vector k⃗ being inside the
first Brillouin zone if one subtracts the reciprocal lattice vector K⃗ from k⃗󸀠. The wave
vector of the point A at the zone boundary can be translated to the point A󸀠 on the
opposite edge of the same zone by adding some vector K⃗. Then the question arises of
whether we can think that both points A and A󸀠 belong to the first zone? The answer
is that they are said to be identical, so we consider only one of them.

Suppose we have the Bloch function with the wave vector k⃗󸀠 outside the first Bril-
louin zone:

Ψnk⃗󸀠( ⃗r) = unk⃗󸀠( ⃗r) exp (ik⃗󸀠 ⋅ ⃗r) . (1.38)

We replace k⃗󸀠 by (k⃗ + K⃗) and rewrite formula (1.38) in the following form:

Ψnk⃗󸀠 ( ⃗r) = unk⃗󸀠( ⃗r) exp (ik⃗󸀠 ⋅ ⃗r) = exp (ik⃗ ⋅ ⃗r) [exp (iK⃗ ⋅ ⃗r) unk⃗󸀠( ⃗r)] = exp (ik⃗ ⋅ ⃗r) unk⃗( ⃗r) .
(1.39)

Here we have introduced the designation unk⃗( ⃗r) = unk⃗󸀠( ⃗r) exp(iK⃗ ⋅ ⃗r).
By virtue of the relation K⃗ ⋅ R⃗ = 2πm (m is an integer), the function exp(iK⃗ ⋅ ⃗r) as

well as unk⃗󸀠(r) is a periodic function in the Bravais lattice. So, unk⃗(r) is periodic too:
unk⃗( ⃗r + R⃗) = unk⃗( ⃗r) .

A' A

kx

ky

K
k'k

K

π
a

π
a

π
a

π
a

Fig. 1.11: The first Brillouin zone for a plane square lattice.
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Instead of the original Bloch function with the wave vector k⃗󸀠, we have obtained an
equivalent function with the wave vector k⃗ in the first Brillouin zone:

Ψnk⃗ = unk⃗( ⃗r) exp (ik⃗ ⋅ ⃗r) , unk⃗( ⃗r + R⃗) = unk⃗( ⃗r) .
4. Now we answer the question why is the zone number discrete?
The solution of the Schrödinger equation (1.32) needs to be sought in the form of

Bloch’s wave:
Ψk⃗( ⃗r) = uk⃗( ⃗r) exp (ik⃗ ⋅ ⃗r) .

Substitute the expression directly into equation (1.32) and we find that the func-
tion uk⃗( ⃗r) is a solution to the eigenvalue problem:

Ĥk⃗uk⃗ ≡ [ ℎ2
2m (−i∇⃗ + k⃗)2 + V( ⃗r)] uk⃗( ⃗r) = εk⃗uk⃗( ⃗r) , (1.40)

with the boundary condition:

uk⃗( ⃗r + R⃗) = uk⃗( ⃗r) .
The operator Ĥk⃗ in (1.40) is Hermitian: Ĥ+

k⃗
= Ĥk⃗ . The superscript “+” indicates the

Hermitian conjugate operation.
Due to the periodic boundary conditions, equation (1.40) can be solved within a

single elementary unit cell of the direct lattice. Thus, we have the eigenvalue problem
for a fixed finite volume. Any such problems have a discrete spectrum. This explains
the origin of the index n of the function εn(k⃗) and unk⃗( ⃗r) (n = 1, 2, . . . ).

With the operator Ĥk⃗ being Hermitian, its eigenvalues ε = εn(k⃗) are real. The
eigenvalue problem (1.40) contains thewave vector k⃗ only as a parameter. So, the func-
tion εn(k⃗) is assumed to depend continuously on k⃗. Recall that the wave vectors of the
type k⃗ = ∑3

i=1mi/Nib⃗i can take different values under the Born–Karman boundary
conditions if the size of the crystal changes. In the limit of the infinite crystal, these
values involve a dense set in the k⃗- space.

5. Since the vectors k⃗ and (k⃗+ K⃗) are physically equivalent, the energy εn(k⃗)must
be a periodic function in reciprocal space:

εn(k⃗ + K⃗) = εn(k⃗) ,
with the periods b⃗1, b⃗2, b⃗3 of the basic translations. Recall that any reciprocal lattice
vector has the form K⃗ = n1 b⃗1 + n2 b⃗2 + n3 b⃗3, where n1, n2, n3 are integers.

Thus, we come to the description of the energy levels of the electron through a
family of the continuous functions of εn(k⃗), each of which has a periodicity of the
reciprocal lattice. These functions determine the band structure of solids.

Each function of εn(k⃗) is periodic and continuous in k⃗. Consequently, it has upper
and lower limits and, therefore, all the energy levels of εn(k⃗) for a given n lie between
these two limits. Zones with different values of n can be separated by energy gaps but
may overlap.
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6. The Bloch function:

Ψnk⃗( ⃗r) = unk⃗( ⃗r) exp (ik⃗ ⋅ ⃗r)
is the solution of the Schrödinger equation:

ĤΨnk⃗ = εn(k⃗)Ψnk⃗ , Ĥ = − ℎ2
2m

∇ + V( ⃗r) . (1.41)

Since the eigenvalues of εn (ε∗n = εn) and the operator Ĥ are real (Ĥ∗ = Ĥ), from (1.41)
we have:

ĤΨ∗
nk⃗

= εn(k⃗)Ψ∗nk⃗ .
Hereinafter, the symbol “∗” denotes the operation of complex conjugation. The Bloch
function determines the wave vector k⃗:

Ψnk⃗( ⃗r) = unk⃗( ⃗r) exp (ik⃗ ⋅ ⃗r) .

Let us examine the complex conjugate of this function:

Ψ∗
nk⃗

= u∗
nk⃗
exp (−ik⃗ ⋅ ⃗r) .

It is clear that, to the wave function Ψ∗
nk⃗
, there corresponds the wave vector (−k⃗).

Therefore, the following chain of equalities holds true:

ĤΨ∗
nk⃗

= εn(k⃗)Ψ∗nk⃗ = εn(−k⃗)Ψ∗nk⃗ .
Consequently, the eigenvalues of the electron energy operator are invariant under the
replacement k⃗ → −k⃗:

εn(k⃗) = εn(−k⃗) .
7. Crystalline lattices of metals have considerable symmetry, owing to which ex-

tremes of the functions εn(k⃗) are at the boundaries of the Brillouin zone. For lattices
of special symmetry there is also an additional extremum at the center of the Brillouin
zone. We can make sure of this on particular examples.

The Fermi Surface

The ground state of a system of Bloch electrons in a crystal can be constructed accord-
ing to the following principles:
1. The principle of minimum energy (electrons fill up allowed energy levels succes-

sively, starting with the lower available level).
2. The Pauli Principle.

Single-electron energy levels of εn(k⃗) depend on two quantum numbers n and k⃗ and
meet the condition: εn(k⃗) = εn(k⃗ + K⃗). Wave vectors that differ by a reciprocal lattice
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ε

εg

Empty bands

Energy gap

Fig. 1.12: The distribution of the available elec-
trons among energy levels. The bands, empty
and fully filled up with the electrons, are depicted
here. The electrons are denoted by bold dots.

vector are physically equivalent and correspond to the same energy value. Therefore,
when taking each energy level into account only once, wemust restrict the values k⃗ to
the first Brillouin zone. In addition, the Pauli exclusion principle reads that no more
than two electrons may occupy the same energy level of εn(k⃗) simultaneously. To oc-
cupy the same energy level, two electrons with quantum numbers n, k⃗ must have op-
posite spins. Consequently, this stands for different quantum states.

By virtue of the above principles, the electrons distributed in the energy levels can
form the following configurations:

1. Some bands may appear to be completely filled with electrons and the remain-
ing may appear to be empty. (Figure 1.12). The energy difference εg between the “top”
of the highest occupied band and the “bottom” of the lowest empty band is referred
to as a forbidden band or an energy gap.

A solid satisfying the condition εg ≫ kBT is an insulator. However, if εg ≈ kBT, it
is an intrinsic semiconductor.

The number of levels in the band is equal to the number of elementary cells (N)
in a crystal. Every level has two electrons. Consequently, the maximum number of
energetic states in every band is 2N. To obtain a semiconductor or an insulator, it is
necessary that the number of electrons per unit cell should be even. Otherwise, not all
quantummechanical states will be filled up with electrons in the upper of the bands.
This is a necessary condition for semiconductors and dielectrics to be formed, how-
ever, it is not sufficient due to possible overlapping of the bands.

2. Some bands may appear to be partially filled (Figure 1.13). Such crystalline
solids are metals.

A crystal with an even number of valence electrons per unit cell should be re-
garded as having both overlapping and nonoverlapping energy zones. Each case
needs to be considered separately. If the zones overlap, we may obtain two or more
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ε

Fig. 1.13: The distribution of electrons among energy levels. There are par-
tially filled zones.

partially filled ones instead of a full band, inherent in a dielectric. This results in
exhibiting the metal properties by the crystal.

The energy of the highest occupied level is called the Fermi energy εF. In three-di-
mensional crystals, the Fermi energy range can cover some zones. For every partially
filled band in the k-space there is a surface which separates occupied states from un-
occupied states. Such a surface is called the Fermi surface.

Analytically, the Fermi surface is evaluated by the equation:

εn(k⃗) = εF . (1.42)

The Fermi surface is not necessarily 1-connected; it can exist in the form of indi-
vidual sections, having different values of the index n in formula (1.42). In this case,
the number of such sections lying around the partially filled zones is always small.

The shape of the Fermi surface is responsible for most of the electronic properties
of metals as an electric current occurs by changing the number of occupied electron
states near the Fermi surface.

Because εn(k⃗) is a periodic function in reciprocal space, the solution of (1.42),
which defines the Fermi surface, has the same property. The Fermi surface is periodic
with the periods b⃗1, b⃗2, b⃗3 in the k-space.

There are differentways to depict the Fermi surface geometrically. If one draws the
Fermi surface for all admissible vectors k⃗, a periodic surface will be produced. This
is called the repetitive band method. For clarity, one can illustrate a periodic Fermi
surface within the first Brillouin zone. In this case, each physically different energy
electron level is represented by only one point at the Fermi surface; no level will be
lost or counted twice. Such a representation of the Fermi surface is characteristic for
the so called reduced zone scheme.

Analogously, any periodic function can be represented, such as sin x, either on
the real axis (the repetitive zone scheme) or within one of the periods (the reduced
zone scheme). We will return to this subject later.
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1.5 Electrons in a Weak Periodic Field

Let us consider the problem of the motion of a single electron in a crystal in the pres-
ence of a weak periodic potential. In this case, the electron motion is almost free. As
such, we can gain a complete understanding of the energy spectrum of the electron
and the Fermi surface through the perturbation theory. Metals of groups I-IV in the
periodic table have s and p valence electrons, and their inner atomic orbitals are com-
pletely filled up with electrons. Therefore, suchmetals are well suited for building the
nearly free electronmodel to qualitatively explain the behavior of the electrons within
them.

A metallic state is one of the most important states of matter. Chemical elements
clearly prefer to be in the metallic state: more than two-thirds of them are metals.
Therefore, in spite of being more applicable to metals than to semiconductors, it is
difficult to overestimate the significance of the nearly free electron model.

Before proceeding to the basic subject matter, we will take a little mathematical
excursus.

Periodic Function Expansion into Plane Waves for Multiple Measurement Cases

Any function possessing the periodicity property can be expanded into plane waves,
which in turn form a complete set of functions. In a one-dimensional space, a func-
tion f(x)with the above property f(x) = f(x+ L) can be represented as a Fourier series:

f(x) = ∑
K
fK exp (iKx) ,

where K = 2πn/L, n is an integer:
fK = 1

L

L∫
0

exp (−iKx) f(x)dx .
The situation is similar in the three-dimensional case. If the function f( ⃗r) has the

same periodicity as the Bravais lattice:

f( ⃗r + R⃗) = f( ⃗r) ,
where the vectors R⃗ = n1 a⃗1 + n2 a⃗2 + n3 a⃗3 define points of the Bravais lattice, it can
be written down in the form of expansion:

f( ⃗r) = ∑⃗
K

fK⃗ exp (iK⃗ ⋅ ⃗r) , (1.43)

Here, K⃗ = b⃗1m1 + b⃗2m2 + b⃗3m3, with b⃗1, b⃗2, b⃗3 being the reciprocal lattice vectors;

fK⃗ = 1
Va

∫
Va

d3 ⃗r exp (−iK⃗ ⋅ ⃗r) f( ⃗r) . (1.44)
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The integration in (1.44) is carried out over a volume Va of each elementary cell of the
direct lattice. Strictly speaking, the choice of the cell is of no consequence because the
integrand in (1.44) is periodic. The integral of the periodic function of the elementary
cell is cell independent. In fact, anyprimitive cell canbe split into parts. By translating
the latter by the Bravais lattice vectors, we can obtain other primitive cells. Moreover,
when translated, the periodic function exp(iK⃗ ⋅ ⃗r)f( ⃗r) remains unchanged.

At this point it would be appropriate to prove the identity:

1
Va

∫
Va

d3 ⃗r exp [i(K⃗ − K⃗󸀠) ⋅ ⃗r] = δK⃗,K⃗󸀠 . (1.45)

The expression under the integral sign in (1.45) has the same periodicity as the Bravais
lattice. Therefore, a shift of the integration region by an arbitrary vector d⃗ does not
change the integral. By integrating exp[i(K⃗ − K⃗󸀠) ⋅ ⃗r] over a mixed cell of Va󸀠 , we can
arrive at an integral over the original cell of Va of exp[i(K⃗ − K⃗󸀠) ⋅ ( ⃗r + d⃗)]:

∫
Va󸀠

d3 ⃗r exp [i(K⃗ − K⃗󸀠) ⋅ ⃗r] = ∫
Va

d3 ⃗r exp [i(K⃗ − K⃗󸀠) ⋅ ( ⃗r + d⃗)] . (1.46)

As long as the result is cell independent, Va󸀠 can be replaced by Va in formula (1.46)
and rewritten in the form of the equality:

(exp [i(K⃗ − K⃗󸀠) ⋅ d⃗] − 1) ∫
Va

d3 ⃗r exp [i(K⃗ − K⃗󸀠) ⋅ ⃗r] = 0 .

This expression must be satisfied by any d⃗, however, it is also correct for K⃗ ̸= K⃗󸀠 pro-
vided that the integral vanishes:

∫
Va

d3 ⃗r exp [i(K⃗ − K⃗󸀠) ⋅ ⃗r] = 0 . (1.47)

Thus,wehaveproved that the identity (1.45) holds true for K⃗ ̸= K⃗󸀠.Moreover, it remains
valid for K⃗ = K⃗󸀠 as well, because (1/Va) ∫Va

d3 ⃗r = 1.
Using (1.45), it is easy to verify the validity of the representation (1.44) for the co-

efficients fK⃗ in the expansion (1.43). To this end, we should multiply the equality (1.43)
by exp(−iK⃗󸀠 ⋅ ⃗r) and integrate the result obtained over ⃗r within the unit cell of Va.

Perturbation Theory in the Case of a Weak Periodic Potential

1. In the Schrödinger equation for an electron in a crystal:

− ℎ2
2m

∆Ψ + U( ⃗r)Ψ = εΨ , (1.48)
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the potential energy has the periodicity of the Bravais lattice: U( ⃗r + R⃗) = U( ⃗r), so we
represent the function U( ⃗r) in the form of a Fourier series:

U( ⃗r) = ∑
K
UK⃗ exp (iK⃗ ⋅ ⃗r) , (1.49)

where K⃗ is the reciprocal lattice vector. The Fourier coefficients UK⃗ are related to U( ⃗r)
by:

UK⃗ = 1
Va

∫
Va

d3 ⃗r exp (−iK⃗ ⋅ ⃗r)U( ⃗r) . (1.50)

In formula (1.50), the integration is over the elementary unit cell Vα of the crystal’s
Bravais lattice.

2. Wecan always replace the potential energy by an additive constant value. Then
we choose the value so that the mean value of the potential U0, taken for one elemen-
tary unit cell, should vanish:

UK⃗=0 = 1
Va

∫
Va

d3 ⃗rU( ⃗r) = 0 . (1.51)

3. The potential energy is a real function, so the equality:

U−K⃗ = U∗K⃗ , (1.52)

holds true.
4. When a crystal has a central symmetry, a suitable choice of the coordinate sys-

tem yields: U( ⃗r) = U(− ⃗r). Then (1.50) and (1.52) imply the chain of equalities:

UK⃗ = U−K⃗ = U∗K⃗ . (1.53)

Thus, for crystals with an inversion center, UK⃗ is the real quantity. Note that the one-
dimensional lattice always has a center of inversion (see Figure 1.15).

Imagine that the sample is in the shape of a parallelepiped (Figure 1.14), built on
the vectors L⃗i = Nia⃗i. Here i = 1, 2, 3. It isworth pointing out that there is no summation

N1 a1

N2 a2

N3 a3

Fig. 1.14: A parallelepiped shaped
crystal.

a

L=Na

Fig. 1.15: The chain of N atoms is a one-
dimensional crystal.
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over the twice repeated index i. Ni are positive integers that define the lengths of the
sides of the parallelepiped.

For U( ⃗r) = 0 and the periodic Born–Karman conditions:

Ψ ( ⃗r + L⃗i) = Ψ( ⃗r) , (1.54)

the solution of the Schrödinger equation (1.48) is trivial:

Ψk⃗ = 1√V exp (ik⃗ ⋅ ⃗r) , εn(k⃗) = ℎ2 k⃗2
2m .

Here V = L⃗1 ⋅ [L⃗2 × L⃗3] is the volume of the crystal; the allowed values of the wave
vector have the form:

k⃗ = 3∑
i=1

mi
Ni

b⃗i , (1.55)

where mi are arbitrary integers. For the sample’s large sizes (for large Ni), the wave
vectors (1.55) completely fill the entire k-space.

Our goal is to use perturbation theory to calculate changes of wave functions and
energy levels of an electron in a weak periodic field U( ⃗r) ̸= 0. Calculations and final
results for three-dimensional and one-dimensional crystals are close. Certainly, the
one-dimensional case is atypical inmany respects; it differs from the two-dimensional
and three-dimensional ones. For example, the one-dimensional case does not imply
the introduction of the Fermi surface – there are no overlapping bands. However, this
problem makes complex geometric concepts more pictorial. Therefore, we give cal-
culations and figures for the one-dimensional crystal. And then we come back to the
three-dimensional problem and discuss a real situation.

A one-dimensional crystal is a chain of N atoms of length L = Na, where a is the
distance between neighboring atoms (Figure 1.15).

The normalized wave function Ψk and levels of the energy ε0(k) of a free electron
in the one-dimensional crystal can be written as:

Ψk(x) = 1√L exp (ikx) ,
ε0(k) = ℎ2k2

2m , k ≡ ks = s
N
2π
a .

(1.56)

The function (1.56) satisfies the Born–Karman boundary condition Ψ(x + L) = Ψ(x)
if s is an arbitrary integer.

The energy of a free particle as a function of the wave number has the form of
a parabola (Figure 1.16). The dots in the parabola are the allowed values of the elec-
tron energy. For large N, the distances ∆k between adjacent points along the axis k
decrease; ∆k = (2π)/(Na) → 0 as N → ∞. Therefore, when it comes to the electron
energy, wewill often draw continuous curves, ignoring the fact that the curves are sets
of closely spaced discrete points.
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O k

ε(k)

Fig. 1.16: The energy of a free electron.

The periodicity condition for the one-dimensional crystal has a simple form:

U(x + na) = U(x) ,
where n is an arbitrary integer. For the wave vectors of the reciprocal lattice: K ≡ Ks =
2πs/a, s is the integer.

Next, we expand the potential U(x) in a Fourier series in a fashion that facilitates
the further passage from the one-dimensional to three-dimensional case:

U(x) = ∑
K
UK exp (iKx) = ∑

n
UKn exp (i 2πa nx) ,

UK = 1
a

a∫
0

dx exp (−iKx)U(x) .
To make allowances for the energy ε0(k) of the free electron due to the periodic

potential U(x), we need to use quantum mechanical perturbation theory for the sta-
tionary Schrödinger equation:

− ℎ2
2m

d2Ψ
dx2

+ U(x)Ψ = εΨ .

Considering the weak potential U(x) as a perturbation, in accordance with the pertur-
bation theory we have:

ε(k) = ε0(k) + ⟨Ψk
󵄨󵄨󵄨󵄨󵄨Û󵄨󵄨󵄨󵄨󵄨Ψk⟩ + ∑

k󸀠 ,k󸀠 ̸=k

󵄨󵄨󵄨󵄨󵄨⟨Ψk
󵄨󵄨󵄨󵄨󵄨Û󵄨󵄨󵄨󵄨󵄨Ψk󸀠⟩󵄨󵄨󵄨󵄨󵄨2

ε0(k) − ε0(k󸀠) + ⋅ ⋅ ⋅ , (1.57)

where |Ψk⟩ are the vectors of a free electron state.
Let us estimate the matrix elements ⟨Ψk|Û|Ψk󸀠⟩ for the one-dimensional crystal

(k ≡ ks , k󸀠 ≡ ks󸀠):

⟨Ψk
󵄨󵄨󵄨󵄨󵄨Û󵄨󵄨󵄨󵄨󵄨Ψk󸀠⟩ = L=Na∫

0

dxΨ∗ks U(x)Ψks󸀠
=

= 1
L

L=Na∫
0

dx exp [2πixNa
(s󸀠 − s)]∑

n
UKn exp(2πina x) =

= 1
L ∑

n
( L=Na∫

0

dx exp [2πixNa (s󸀠 − s + nN)])UKn . (1.58)
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The problem reduces to the calculation of the integral:

1
L

L=Na∫
0

dx exp [2πixNa
(s󸀠 − s + nN)] = {{{

0 , if s󸀠 − s + nN ̸= 0
1 , if s󸀠 − s + nN = 0 .

Since the condition s󸀠 − s + nN = 0 is equivalent to the equality ks󸀠 − ks + Kn = 0,
we write the final result in the form:

⟨Ψk
󵄨󵄨󵄨󵄨󵄨Û󵄨󵄨󵄨󵄨󵄨Ψk󸀠⟩ = ∑

K
δ(k−k󸀠),KUK . (1.59)

A similar outcome holds in the three-dimensional case. The passage to the three-
dimensional crystal corresponds to the formal replacement: k → k⃗, k󸀠 → k⃗󸀠, K → K⃗
in (1.59).

Wehave chosen the point of reference for the potential energy of the crystal so that
the matrix element ⟨Ψk |Û|Ψk⟩ = U0 vanishes (1.51). Therefore, the first nonzero cor-
rection to the energy of the free electron due to the periodicity of the potential energy
appears as:

∑
k󸀠 ,k󸀠 ̸=k

󵄨󵄨󵄨󵄨󵄨⟨Ψk
󵄨󵄨󵄨󵄨󵄨Û󵄨󵄨󵄨󵄨󵄨Ψk󸀠⟩󵄨󵄨󵄨󵄨󵄨2

ε0(k) − ε0(k󸀠) = ∑
K ̸=0

|UK |2
ε0(k) − ε0(k − K) .

Finally, the electron energy in the periodic crystal is:

ε(k) = ε0(k) + ∑
K ̸=0

|UK |2
ε0(k) − ε0(k − K) . (1.60)

The perturbation theory has a right to exist when each subsequent term of the expan-
sion is less than the previous one. In this given case, this requirement is not met in
the region of the point k = K/2 because ε0(K/2) = ε0(−K/2) and the denominator in
the second summand in (1.60) becomes small for k ≈ K/2. For such values of k, the
perturbation theory is inapplicable and in need of modification.

For the three-dimensional case, calculations anda result are analogous to theone-
dimensional case:

ε(k⃗) = ε0(k⃗) + ∑⃗
K ̸=0

󵄨󵄨󵄨󵄨UK⃗
󵄨󵄨󵄨󵄨2

ε0(k⃗) − ε0(k⃗ − K⃗) .
The perturbation theory is not applicable to values of the wave vector:

ε0(k⃗) = ε0(k⃗ − K⃗) . (1.61)

The three-dimensional case differs from the one-dimensional one in that k⃗ is a vector
rather than a number. Hence, the condition (1.61) gives a constraint not only to the
magnitude but also to the direction of the wave vector.

To analyze the condition (1.61), we need to write it explicitly:

ℎ2k⃗2
2m

= ℎ2
2m

(k⃗ − K⃗)2 .
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A plane in k-space 

Fig. 1.17: Geometric ratios for the plane (1.62) in k-space.

This yields two equations:

a) |k⃗| = |k⃗ − K⃗| , b) k⃗ ⋅ K⃗ = K2

2 . (1.62)

It is known from analytical geometry that, for a fixed K⃗, a plane perpendicular to the
vector K⃗ in k-space corresponds to equation (1.62) b. In the reciprocal space, the wave
vector k⃗ of an electron ties the starting point O to any other point of this plane. From
equation (1.62) a, it follows that the plane is not only orthogonal to the vector K⃗ but it
also accurately divides it in half. It is easy to see that the last assertion is true by using
the hypotenuse leg theorem (theorem of the equality of right-angled triangles with the
same cathetus and hypotenuse) (Figure 1.17).

Recall that K⃗ is a vector of the reciprocal crystal lattice. Suppose K⃗ is the shortest
in a discrete set of parallel vectors of the reciprocal crystal lattice. This would make
a plane passing through its middle the first Brillouin zone boundary. As a result, the
perturbation theory is inapplicable, for example, near the boundaries of the Brillouin
zone.

Inside the first Brillouin zone ε0(k⃗) ̸= ε0(k⃗ − K⃗/2), the perturbation theory consid-
ered here is valid. The energy levels of the electron in the weak potential differ little
from the energy levels of a free electron. This is one of the reasons why the first Bril-
louin zone is the most convenient primitive unit cell in reciprocal space to determine
the electron wave vector.

When lengths of the vectors K⃗ in reciprocal space are arbitrary, there are, except
for the of the first Brillouin zone boundaries, other planes of the type:

k⃗ ⋅ K⃗ = K2/2 . (1.63)

The theory of perturbations can also be utilized for them. Let us elucidate the physical
meaning of the condition (1.63).

It would be appropriate at this point to recall that the electron wave vector is re-
lated to the de Broglie wavelength, correlated to the electron: |k⃗| = 2π/λ. Let K⃗min be



1.5 Electrons in a Weak Periodic Field | 29
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θ θ d
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Fig. 1.18: Bragg reflection of x rays from a family of atomic planes
separated by a distance d.

the shortest vector, parallel to the vector K⃗. Then |K⃗| = n|K⃗min|, where n is a natural
number. Earlier, we have shown that |K⃗min| = 2π/d, where d is the distance between
successive atomic planes of the direct lattice, with these being orthogonal to the vec-
tor K⃗. From this it follows that |K⃗min| = 2πn/d. We denote the angle between the vec-
tors k⃗ and K⃗ by (π/2−θ). Next, we transform the condition (1.63), taking the comments
made into account:

󵄨󵄨󵄨󵄨󵄨k⃗󵄨󵄨󵄨󵄨󵄨 󵄨󵄨󵄨󵄨󵄨K⃗󵄨󵄨󵄨󵄨󵄨 cos (π2 − θ) = 󵄨󵄨󵄨󵄨󵄨K⃗󵄨󵄨󵄨󵄨󵄨2 /2 ⇒ 2π
λ sin θ = 1

2
2π
d n ⇒ 2d sin θ = nλ .

The condition of inapplicability of the perturbation theory in this case has turned
out to be exactly equivalent to theWulff–Bragg formula:

2d sin θ = nλ . (1.64)

The above formula specifies the conditions of x ray diffraction in the crystal (Fig-
ure 1.18).

Formula (1.64) is the maximum condition for the x ray beams N1 and N2 to inter-
fere. The path difference of these beams is equal to 2d sin θ. In x ray crystallography,
the incidence angle θ from the reflection plane is measured rather than the comple-
mentary angle (π/2 − θ) (as in optics). Vector k⃗ defines the direction of the incident
electron beam. The vector K⃗ is directed along a normal plane to the atomic planes,
which are the reflection planes. In 1921–1923 Davisson and Germer were the first to
observe the diffraction of electrons in crystals by the same laws as for x ray beams.

Overall Conclusions

1. This version of perturbation theory is valid only for electron wave vectors lying
inside the first Brillouin zone. When the wave vectors lie near the Brillouin zone
boundaries, there is a coherent reflection from the atomic planes of the complex
wave, matched to the motion of the electron. In general, the perturbation theory is in-
applicable when the Wulff–Bragg condition is met. Under this condition, an electron
moving in the lattice intensively reflects from the crystalline planes. Its wave function
undergoes significant changes.
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2. In the vicinity of the Bragg planes, defined by the condition k⃗ ⋅ K⃗ = K⃗2/2, an
electron has two close energies. It is this circumstance that makes the traditional per-
turbation theory unsuitable. Consequently, to describe the behavior of the electron
with suchwave vectors, it is necessary to exploit other versions of perturbation theory
(in the presence of degeneracy).

We have found out that there are “dangerous” planes in the reciprocal space, i.e.,
planes, near which the electron energy varies greatly. The question arises of what hap-
pens to the energy of the electron when its wave vector is close to these planes? To
reach an answer, we should seek a solution of the Schrödinger equation (1.48) in a
combination of two wave functions with close energies ε(k) ≈ ε(k − K):

Ψ = A1Ψk + A2Ψk−K . (1.65)

Here, A1, A2 are constants. Substituting (1.65) into the Schrödinger equation:

[− ℎ2
2m

d2

dx2
+ U(x)]Ψ = εΨ ,

we get:

A1[ε0(k) − ε]Ψk + A2[ε0(k − K) − ε]Ψk−K + U[A1Ψk + A2Ψk−K] = 0 . (1.66)

Then, we successively multiply equation (1.66) by Ψ∗k and Ψ∗k−K and integrate it
over xwithin the limits 0 ≤ x ≤ L = Na. Next, using the condition of orthogonality and
normalization of the wave functions, as well as the matrix elements calculated earlier
for the operator U(x), we arrive at a linear homogeneous systemwhich determines the
coefficients: {{{

A1(ε0(k) − ε) + UKA2 = 0
U∗k A1 + A2[ε0(k − K) − ε] = 0 .

(1.67)

The fact that the determinant of the system is equal to zero (the condition of the exis-
tence of a nontrivial solution) gives a quadratic equation to calculate the eigenvalues
of the energy of an electron near the Bragg planes:

ε(k) = 1
2 [ε0(k) + ε0(k − K)] ± √[ε0(k) − ε0(k − K)]2 /4 + |UK |2 . (1.68)

The expression (1.68) takes a particularly simple form for the electron wave vectors
lying directly in the Bragg plane:

ε (K/2) = ε0 (K/2) ± |UK | . (1.69)

We see that formula (1.68) is correct enough, as it contains no specifics. The perturba-
tion theory modified by us is applicable whenever |Uk | ≪ ε0(K/2).

Formula (1.69) shows that there are two possible values of the quasiparticle’s en-
ergy in the Bragg plane. One of them is greater and another is less than the energy
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of a free electron. To select a proper solution, it is necessary that the electron energy
should be close to ε0(k) and far away from the so called “dangerous” planes. Given the
quasicontinuity of the function ε(k) near the value k = K/2, we should take the minus
sign when k < K/2 and the plus signwhen k > K/2 to make allowances. As a result, in
the “dangerous” planes the electron energy abruptly rises, and any arbitrarily small
potential forms a gap.

For the three-dimensional crystal, we obtain the same expression for the electron
energy (1.68) by replacing the wave number k by the wave vector k⃗ and the number K
by the reciprocal lattice vector K⃗. To simplify calculations for the three-dimensional
crystal, we choose a coordinate system in reciprocal space so that the projection kz of
the electron wave vector should be directed along the vector K⃗. To do so, we introduce
a new variable:

kn = kz − K/2 .

We express the energy of a free electron in the three-dimensional crystal in a con-
venient form for further analysis:

ε0(k⃗) = ℎ2
2m [k2⊥ + k2n + K2/4 + Kkn] ,

ε0(k⃗ − K⃗) = ℎ2
2m [k2⊥ + k2n + K2/4 − Kkn] ,

where k⃗⊥ is the projection of the electron wave vector on the plane with the normal K⃗.
Having transformed formula (1.68), we come to an expression for the electron energy
near the Bragg plane:

ε(k⃗) = ℎ2
2m [k2⊥ + k2n + (K2 )

2] ± √( ℎ2
2mKkn)2 + 󵄨󵄨󵄨󵄨UK⃗

󵄨󵄨󵄨󵄨2 .
It is easy to see that (∂ε)/(∂kn)|kn=0 = 0, i.e., the function ε(k⃗) has extrema at the

Brillouin zone boundaries. Nowwe calculate the secondderivative of the function ε( ⃗k)
at the extremum:

∂2ε
∂k2n

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨kn=0 =
ℎ2
m

± ℎ2
m

⋅ 2ε0(K⃗/2)|UK⃗ | ≈ ±ℎ2
m

⋅ 2ε0(K⃗/2)|UK⃗ | ̸= 0 .

In doing so, we have taken into account that |Uk| ≪ ε0(K/2).
Consequently, the quasicontinuous function ε(k⃗) has either localmaxima or local

minimaat the boundaries along directions perpendicular to the Brillouin zone bound-
aries (Figure 1.19).

Since the velocity of the electron is V⃗ = (1/ℎ)(∂ε/∂k⃗), the foregoing assumes dif-
ferent meaning. The electron velocity component perpendicular to the Brillouin zone
boundary vanishes at the same boundary.

Let us turn to the one-dimensional model. The function ε(k) illustrated in Fig-
ure 1.20 takes into account changes in the electron energy at all Bragg planes. This
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Fig. 1.19: The surface ε(k⃗) = const intersects the plane kn = 0 in
k-space.
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Fig. 1.20: The energy spectrum of an electron in a one-dimensional crystal in the extended zone
scheme.

method of representing electron energy levels is called the extended zone scheme. In
the extended zone scheme, the energy spectrum of the electron in the crystal bears a
strong resemblance to the spectrum of a free electron (compare Figures 1.16 and 1.20).

Figure 1.20 shows a parabola, although ε(k) is a periodic function with the pe-
riod 2π/a. Translations along the axis k by 2πn/a (n is an integer) superpose the re-
maining parabolas and that depicted in Figure 1.20. Therefore, all of these parabolas
are equivalent to each other.

Suppose the electronenergy levels are givenmore preferably bymeansof thewave
numbers k of the first Brillouin zone. Thenwe can translate the segments of the curves
in Figure 1.20 by shifting along the reciprocal lattice vectors. In doing so, we enumer-
ate all the allowed energy levels without labeling them twice. Figure 1.21 is the result
of the above translations. Such a representation of the energy spectrum of the electron
is referred to as the reduced zone scheme.

Note that the appearance of the extrema in the center of the Brillouin zone, as in
Figure 1.21, is due to the symmetry of a one-dimensional lattice: U(x) = U(−x) (a one-
dimensional crystal formed by atoms of one kind always has a center of inversion).

It should be emphasized that the electron energy in the k-space is periodic. For
this purpose, we continue Figure 1.21 periodically throughout the entire k-space. The
resulting Figure 1.22 clearly displays that each level with a given k can also be de-
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Fig. 1.21: The image of the electron energy levels in the
reduced zone scheme.
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Fig. 1.22: The image of the allowed values of the electron energy in a crystal in the repeated zone
scheme.

scribed by other wave vectors, which differ from k by any reciprocal lattice vectors.
This type of representation of the energy of an electron in a crystal is known as the
repeated zone scheme. The repeated zone scheme is the most general representation,
but a description in this fashion, in contrast to the reduced-zone scheme, is redun-
dant. Each energy level for all physically equivalent wave numbers is shown many
times in Figure 1.22: ε(k) = ε(k + 2πn/a), where n is an integer.

We have shown that the weak periodic potential acts mainly on levels of free elec-
trons whose wave vectors lie near the Bragg planes. The periodic potential causes en-
ergy gaps in the electron spectrum to emerge. Let us come back to the algebraic sys-
tem (1.67) that determines the coefficients A1 and A2 to analyze the view of the wave
function of an electron near the Bragg planes:

Ψ = A1Ψk + A2Ψk−K . (1.70)

Because of the linear dependence of the equations, it suffices to take one of them, for
example, below:

A1(ε0(k) − ε) + UKA2 = 0 . (1.71)

For k = K/2 we have ε = ε0(K/2) ± |Uk|, therefore, from (1.71) we find:

A1 = ± UK⃗󵄨󵄨󵄨󵄨UK⃗
󵄨󵄨󵄨󵄨A2 .

By formally replacing K → K⃗ such a form can be generalized to a three-dimensional
crystal.
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Fig. 1.23: Changes in the potential energy of an electron in a one-dimensional crystal. The bold dots
mark centers of the ion cores.

For crystals with a center of inversion, the Fourier component of the potential UK⃗ is
real, so:

A1 = ± signUK⃗A2 . (1.72)

At the same time, it should be kept in mind that a one-dimensional crystal, which is
distinct from a three-dimensional one, always has a center of inversion. Therefore, in
the one-dimensional case, formula (1.72) is always true.

For the one-dimensionalmodel, the change in the potential energy of the electron
in the field of ionic cores is shown in Figure 1.23. Near the ion cores, the potential
energy must be negative, since it reduces to the Coulomb interaction energy between
electric charges of the opposite sign. Outside the ionic cores, the electron behaves as
free, and therefore the potential energy is U ≈ 0.

Suppose that UK < 0 in formula (1.72), then we have A1 = ±A2. As a consequence,
the relation (1.70) yields two wave functions, one of which corresponds to the upper
edge of the energy gap and another to the lower edge:

|Ψ+|2 ∼ 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨sin 1
2Kx

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
2

for ε = ε0 (K2 ) + |UK | ,
|Ψ−|2 ∼ 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨cos 12Kx

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
2

for ε = ε0 (K2 ) − |UK | .

x

a

|Ψ|
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+

Fig. 1.24: Probability densities of finding an electron in a crystal under the Wulff–Bragg condition.
The solid curve shows |Ψ+|2, the dashed line is |Ψ−|2. The bold dots indicate centers of the ion core.
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General Conclusions

1. When theWulff–Bragg conditions aremet, the traveling de Broglie wavesmapped
to the electron cannot propagate through the lattice. Their reflection from the
Bragg planes and then their interference in the crystal lead to arising the standing
de Broglie waves.

2. Recall that the square of the modulus of the wave function determines the prob-
ability density of finding an electron in coordinate space. The function |Ψ−|2 has
antinodes at places where ions arrange themselves. The probability of finding the
electron is higher near the ions. Due to this, the Coulomb electron-ion interaction
energy diminishes. Hence the total energy of the electron in the crystal also de-
creases. By contrast, the function |Ψ+|2 has both antinodes far away from the ion
cores and nodes at places where the ions are. Thus, a state which is described by
the function corresponds to higher electron energy.

The scheme set forth here is the key to understanding the origin of energy gaps in the
electron energy spectrum in a crystal [2, 3].

1.6 The Fermi Energy, Surface, Temperature, and Thermal Layer
for a Gas of Free Electrons

To introduce a number of new terms and simplify further geometric constructions, it
is useful to ignore periodicity of potential energy of an electron in a crystal for a while.
The next step considers the formal problem of a gas of noninteracting quasiparticles
correlated to electrons. That is to say, we should look upon a gas of free fermions in a
box with the Born–Karman periodic boundary conditions.

Comments on the Simplified Model

1. Even within this model, we can understand why the Fermi surface can be entered
only for two- and three-dimensional crystals. In the one-dimensional case, this
cannot be done.

2. Knowing the Fermi surface of free electrons in the box, we can construct the Fermi
surface for real electrons in a metal, taking into account the influence of a weak
periodic potential on the electron.

3. The results of the free electron model help numerically estimate parameters char-
acterizing the properties of metals.

4. Even so, such a model can explain why many parameters of metals are weakly
temperature dependent and have the same values as T = 0K.
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Fig. 1.25: Potential well: (a) The original form; (b) the transformed view, with the well bottom being
at the zero level.

Imagine an ideal gas of quasiparticles, electrons, in a potential box with the Born–
Karman boundary conditions. The box will partially simulate the interaction between
the electrons and positive ions of the crystal lattice. Although the potential energy of
a single electron in this model is constant outside and inside the crystal, the constant
values are different. Outside the crystal, the potential energy is U = 0, and inside it
is U = −U0 < 0 due to the electron-positive ion interaction. To lift the electron to
the crystal surface, we must performwork against the attraction forces of the positive
ions.

Within the quantum mechanical problem, it is usually more convenient to mea-
sure the electron’s energy from the bottom of a potential well, so we will treat the well
bottom as a zero level (Figure 1.25). This transformation is quite admissible because
the potential is defined up to a constant. Then the energy of the free electrons are:

ε(k⃗) = ℎ2 k⃗2
2m

. (1.73)

By virtue of the Born–Karman boundary conditions, the values of the wave vec-
tor k⃗ vary discretely. A reciprocal space volume per one allowedwave vector k⃗ is equal
to (2π)3/V. In an infinite crystal of volume V, allowedwave vectors quasicontinuously
fill up the entire reciprocal space.

If d3k⃗ is the volume element in the reciprocal space, we find the number of al-
lowed vectors in the volume by dividing d3 k⃗ by the infinitesimal volume containing
one vector:

d3k⃗ : (2π)3V = Vd3 k⃗(2π)3 . (1.74)

For free electrons, their energy and thewavevector ⃗k are relatedby equation (1.73).
Each energy state can be occupied with two electrons differing in spin projection val-
ues. Therefore, the allowed energy values in the volume d3k⃗ are double the permitted
values of k⃗:

dnk⃗ = 2Vd3 k⃗(2π)3 . (1.75)

Here dnk⃗ is the number of allowed energy states of the electron in the volume d3k⃗.
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However, by the laws of quantum mechanics, electrons cannot fill up some al-
lowed energy levels. In the case of thermodynamic equilibrium, the number of elec-
trons with a given spin projection value and energy ε(k⃗) is determined by the Fermi–
Dirac distribution:

f = 1
exp [(ε(k⃗) − μ) /kBT] + 1 . (1.76)

The quantity f shows how many electrons with a given spin projection value are in
the state with the energy ε(k⃗) at a temperature T. With the volume d3 k⃗ being small,
all energies are identical within it. Suppose that the electrons are in thermodynamic
equilibrium and fill the quantum mechanical states in the volume d3k⃗. As a result,
the total number of electrons dN can be computed as the product of the number of
electrons in a given energy state f and the number of states dnk⃗:

dN = fdnk⃗ = 2Vfd3 k⃗(2π)3 . (1.77)

Consequently, we get the total number of electrons N in a crystal by integrating the
expression (1.77) over the entire k⃗-space:

N = 2V(2π)3 ∫d3k⃗f . (1.78)

As a matter of fact, this is the normalization condition for calculating the chemical
potential μ as a function of crystal temperature and electron density n = N/V, with
the function being independent of the crystal volume, i.e., μ = μ(T, n).

For a Fermi gas, the function f(ε) is a fuzzy step ∼kBT centered around the
value ε = μ.

If ε < μ − kBT , then f (ε) ≈ 1 .
If ε > μ − kBT , then f (ε) ≈ 0 .

It is interesting that for any T > 0 as ε = μ, we have f(ε = μ) = 1/2.
As T → 0, the graph of the function f(ε) is transformed into a rectangular step

(Figure 1.27).
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Fig. 1.26: The Fermi–Dirac distribution func-
tion.
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Fig. 1.27: The form of the Fermi–Dirac distribu-
tion function as T → 0.
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Thismeans that, in accordancewith the Pauli principle, the electrons fill all of the en-
ergy levels in the crystal ground state at T = 0K. One electron occupies each quantum
mechanical state up to the Fermi energy.

Notes
1. Figure 1.28 shows the energy levels filled with electrons in the potential well (in a
crystal). The energy required to remove an electron from the crystal is ∆ε = U0 − εF
(the depth of the well minus the energy of the most energetically capable electron). It
can be seen that the quantum problem differs from the outcome of classical physics,
where the energy to remove one of noninteracting particles from the potential well
is U0 at T = 0K.

U

0 x

U0

εF

Fig. 1.28: Potential well energy levels filled with electrons.

2. As we will soon show, the chemical potential of metals is weakly temperature de-
pendent and, therefore, even at room temperature it is:

μ(T) ≈ εF .

Yet, under accurate calculations one should not equate the chemical potential and the
Fermi energy as this can lead to errors.

Suppose N is the number of noninteracting electrons in the ground state of a sys-
tem at T = 0K. Then, the allowed energy levels of the electrons are located inside a
sphere:

ε(k) = ℎ2k2
2m ≤ εF . (1.79)

The surface of the sphere is the Fermi surface of radius:

kF = 1ℎ√2mεF . (1.80)

If T = 0K, the kF and εF values can be calculated. In the formula for the electron
density in the crystal:

n = N
V = 2(2π)3 ∫d3k⃗f , (1.81)

we replace the function f by the rectangular step. In doing so, the range of integration
over k⃗-space will be restricted:

n = 2(2π)3 ∫
|k|≤kF

d3 k⃗ = 1
4π3

⋅ 4
3
πk3F = 1

3π2
k3F . (1.82)
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The expression (1.82) solves for the radius kF of the Fermi sphere as a function of the
electron density:

kF = (3π2n)1/3 . (1.83)

For almost all metals, the electron density is n ∼ 1/a3, where a is a lattice con-
stant. The interatomic distances in crystals are a ∼ 10−8 cm. To calculate the radius kF,
the estimate kF ∼ π/a is often used and therefore the radius is kF ∼ π ⋅ 108 cm−1.

Knowing the connection between kF and εF, the Fermi energy can be expressed
in terms of the concentration and the mass of the electrons:

εF = ℎ2
2m (3π2n)2/3 . (1.84)

For concentrations of metals, the Fermi energy lies in the range: εF ∼ 1.5 ÷ 15 eV.
Now, we introduce the notion of the Fermi velocity:

VF = ℎkF
m ∼ 108 cm/s .

This is a fairly high speed; it is 1% of the speed of light. From the point of view of
classical physics, the result is impossible to understand. This is because at T = 0K
the electron must completely stop moving. According to the laws of classical physics,
even at room temperature, the speed of the thermal motion of the electron is:

V ∼ √3kBT
m ∼ 107 cm/s .

In order to estimate the width of the thermal smearing of the Fermi step (Fig-
ure 1.26), the Fermi temperature should be introduced:

TF ≡ εF
kB

∼ (104 ÷ 105) K .

Given the room temperature is about 300K, the relation kBT/εF = T/TF yields:
kBT ∼ (10−2 ÷ 10−3)εF ≪ εF .

The region of the thermal smearing is far less than εF. Therefore, only a small
portion of all electrons in a metal can change their quantum mechanical states un-
der the influence of temperature and external fields. This portion amounts to kBT/εF.
However, it is these electrons which govern the conductivity, specific heat, thermal
conductivity, and other properties of metals. The foregoing macroscopic properties of
metals cannot be explained by classical physics.

Since the change in the number of occupied energy states occurs near the Fermi
surface, most of the properties of metals are determined by its shape. Therefore, it is
important to know what shape of the Fermi surface real metals have.
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The Bragg plane
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kF

Fig. 1.29: The Fermi surface intersects the
Bragg plane.

The Bragg plane

Fig. 1.30: The Fermi surface, deformed
near the Bragg plane.

1.7 Method of Constructing the Fermi Surface of a Weak Potential:
The Second and Subsequent Brillouin Zones

Let us get familiar with the method of constructing the Fermi surface in a three-di-
mensional (or two-dimensional) crystal within the nearly free electron model. It is as
follows.
1. At the outset, we construct the Fermi surface for free electrons. It is a sphere cen-

tered at the point k⃗ = 0 in reciprocal space. The Bragg planes cross the sphere.
They are perpendicular to the reciprocal lattice vectors K⃗ and pass through their
middles (Figure 1.29).

2. It should be taken into account that whenever the sphere intersects the Bragg
plane, it becomes deformable in a certain manner. In this case, each Bragg plane
forms energy gaps and local extrema (Figure 1.30).
When we consider the influence of all the Bragg planes, we get an image of the
Fermi surface in the extended zone scheme.

3. In order to obtain the above image in the reduced zone scheme, the separate parts
of the Fermi surface should be translated by the reciprocal lattice vectors. There-
fore, we move them into the first Brillouin zone.

The procedure set forth previously needs systematization. For this purpose, we should
introduce the concept of higher Brillouin zones whose boundaries meet the Wulff–
Bragg condition:

k⃗ ⋅ K⃗ = K⃗2/2 . (1.85)

Here, it is worth recalling that this formula is satisfied by the vectors k⃗. Their ends lie
in the plane perpendicular to the vector K⃗ and dividing the latter in half. This is not
necessarily the first Brillouin zone boundary. The vector K⃗ is an arbitrary reciprocal
lattice vector:

K⃗ = n1 b⃗1 + n2 b⃗2 + n3 b⃗3 . (1.86)

Now we can give a new definition of the first Brillouin zone.
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K 1

Fig. 1.31: The first Brillouin zone for a two-dimensional lattice
(shaded area).

One of the points in the reciprocal lattice should be designated as the origin. The
first Brillouin zone is a set of points which can be reached from the starting point with-
out crossing any Bragg plane.

Let us explain constructing the first Brillouin zone by using the example of a two-
dimensional square lattice in k-space. The first Brillouin zone is constructed by taking
the shortest length of the vector K⃗1 and three other vectors of the same length (Fig-
ure 1.31). Theabovevectors, being reciprocal lattice vectors, connect the originpoint to
their nearest neighbors. The next step is to draw straight lines perpendicular to these
vectors and passing through their middles. The region bounded by the straight lines
is the first Brillouin zone. In a three-dimensional crystal, they are the Bragg planes. As
can be seen, the new definition of the first Brillouin zone is equivalent to the previous
one.

The second Brillouin zone is a set of pointswhich canbe reached from thefirst zone
by crossingonly oneBraggplane. Tooutline sucha zone, it is necessary, alongwith the
vector K⃗1 and vectors equivalent to it in length, to use the vector K⃗2, which is greater
in length, and the same long vectors (Figure 1.32). Furthermore, we draw new straight
lines through the middles of all the vectors. These lines intersect with each other and
the lines used for the construction of the first Brillouin zone. At the intersection of the
lines, one needs to take only those areas that can be reached from the first Brillouin
zone by crossing only one of the lines. These areas are the second Brillouin zone.

It is important to note that each Brillouin zone is a primitive unit cell of the recip-
rocal lattice. Therefore, all of the Brillouin zones have the same volume and can be
combined with each other by translating their separate segments by reciprocal lattice
vectors.

K2

Fig. 1.32: The second Brillouin zone.
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Fig. 1.33: The reduction of the second Bril-
louin zone to the first one.

Fig. 1.34: The third Brillouin zone.

As an example, Figure 1.33 presents the reduction of the second Brillouin zone to the
first one.

Generally, the n-th Brillouin zone is a set of reciprocal lattice points that lie outside
the (n−1)-th zone, andwhich canbe reached from (n−1)-th zoneby crossingoneBragg
plane. It is in such a way that the third (Fig. 1.34) and other orders can be constructed.

Let us consider an example where the Fermi surface (sphere) touches the bound-
aries of the second Brillouin zone (Figure 1.35). The first zone is completely filled with
electrons. The second zone does not have enough electrons.

Now, the segments of the second zone, filled with electrons, should be reduced
to the first one (Figure 1.36). Figure 1.36 displays shaded and unshaded regions; the
boundary between them is the Fermi surface (in a two-dimensional case, it is a line)
in the reduced zone scheme.

Fig. 1.35: The Fermi surface touches the second Brillouin zone
boundaries.

Fig. 1.36: The reduction of the segments of the second zone, filled with electrons, to the first
Brillouin zone.
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Fig. 1.37: The Fermi surface of nearly free electrons in the reduced zone scheme.

To go over from the Fermi surface for free electrons to the Fermi surface for nearly
free electrons, we should take into account the following:
1. The interaction of the electrons with the periodic potential of a crystal makes en-

ergy gaps appear at the zone boundaries.
2. The Fermi surface crosses the Brillouin zone boundaries perpendicularly.
3. At its corners, the Fermi surface very sharply “feels” the influence of the transcrys-

talline potential.
4. The total volume enclosed by the Fermi surface depends only on the electron con-

centration and does not depend on the features of the electron-lattice interaction.

Given these remarks, the Fermi surface in the reduced zone scheme takes the form
shown in Figure 1.37. For an illustration, compare Figures 1.36 and 1.37.

Of course, without detailed calculations, it is impossible to predict how the parts
of the Fermi surface near theBrillouin zone boundarieswill be transformed. For exam-
ple, the problem in handmayhave another possible scenario: the electrons travel into
the third Brillouin zone through the corners of the second Brillouin zone (Figure 1.37).
Then, we will also have to draw the Fermi surface pieces in the third Brillouin zone.

The Fermi surface is periodic in k-space and, to reflect this fact, it is sometimes
useful to use the repeated zone scheme (Figure 1.38).

Of all the schemes presented above, the extended zone scheme, at first glance,
seems to be the simplest. However, it is not suitable for analytical calculations.

To compute the heat capacity, conductivity and other properties of metals, the
reduced zone scheme is especially convenient. In this scheme, one Brillouin zone in-
cludes all various states of an electron in a crystal, and none of them is considered
twice. It is the circumstance that facilitates all integrations over k⃗.

Fig. 1.38: The Fermi surface in the second Brillouin zone in the
repeated zone scheme.
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The repeated zone scheme is used to describe the dynamics of an electron in a
crystal theoretically, for example, when the electron wave vector k⃗ approaches the
Brillouin zone boundary under the influence of an external electromagnetic field. In
this case, the calculations require the vector to be continuous. This cannot be done in
the reduced zone scheme. Once the wave vector k⃗ has overstepped the Brillouin zone
boundary, it must be returned back via translation by a reciprocal lattice vector. This
procedure creates substantial analytical difficulties. In what follows, we discuss the
nontrivial dynamics of an electron in a crystal.

1.8 Electronic Specific Heat of Normal Metals

Using themodel of an ideal gas of fermions in a periodic field, we derive an expression
for the electronic specific heat ofmetals [4]. Althoughwe call the Fermi particles form-
ing the gas electrons, they are in fact not like real electrons. Here, we are saying about
quasiparticles, particle like objects, into which turn real electrons due to their inter-
action with the crystal lattice and other electrons. Note that the differences between
the quasiparticles and the electrons are:
1. The quasiparticles do not interact with each other.
2. The quasiparticles and electrons have different masses.

Since the quasiparticles in a crystal do not interact with each other, the number of
states occupied by the quasiparticles in the volume element d3 k⃗ of the reciprocal lat-
tice is the same as that of the free electron gas (fermions).

The number of allowed energy levels for electrons in the volume element d3k⃗ is
given by:

dnk⃗ = 2Vd3 k⃗(2π)3 , (1.87)

and the number of electrons in the state of thermodynamic equilibrium and which fill
up these energy levels can be estimated by the formula:

dN = dnk⃗f . (1.88)

Here, f is the Fermi–Dirac distribution function.
However, there are differences between fermions in a crystal and a gas of free

fermions.
1. For fermions in the crystal, all possible states canbe restrictedby thefirstBrillouin

zone (for free fermions in the potential well, such restrictions do not exist).
2. The energy spectrum of electrons in a crystal forms zones so that the energies of

the electrons with different n are separated by large energy gaps εg. The potential
well does not have such gaps in the energy spectrum of free electrons.
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If one takes the wave vectors of electrons from the first Brillouin zone, we get several
functions εn(k⃗) for the same k⃗. These differ in the zone number n. In this case, the
lower branches of the energy spectrum of εn(k⃗) are completely filled with electrons.
To calculate the thermal properties of a metal, it suffices to consider the upper energy
branch partially filled with electrons and their behavior. Electrons of completely filled
zones do not affect the thermal properties of a metal, since their excitation requires
very large energy of the order of the gap width εg.

Hereinafter, for the sake of simplicity, the band partially filled with electrons is
assumed to be only one. The zone number is not labeled by n, i.e., we replace εn(k⃗) by
ε(k⃗). The bottomof the partially filled band is the level to beginmeasuring the electron
gas energy.

Given the above remarks, the energy of the Fermi gas is given by:

W = 2V ∫ ε(k⃗)fd3 k⃗(2π)3 , (1.89)

where the region of the integration over the wave vector k⃗ is the first Brillouin zone.
The specific heat of the electron gas at constant volume is obtained by differenti-

ating the energy (1.89) over temperature:

c = 1
V (∂W∂T )

V
= 2∫ ε(k⃗) ∂f∂T d3k⃗(2π)3 . (1.90)

The chemical potential μ can be determined from the condition of conservation
of the total number of particles:

N = 2V ∫ f d3k⃗(2π)3 . (1.91)

Here, N is the number of electrons in the upper partially filled band. These electrons
are called conduction electrons.

Since N = const, V = const, we have:

∂
∂T

N
V = 2∫ ∂f

∂T
d3k⃗(2π)3 = 0 . (1.92)

The integration is carried out also over physically different k⃗ belonging to the first
Brillouin zone, rather than the entire k-space, as it was for the free electrons.

Given that ∂f /(∂T) has the form:
∂f
∂T

= − ∂f
∂ε [ ε − μ

T
+ dμ
dT ] , (1.93)

from (1.90) and (1.92) the system of equations follows:

c = −2∫ ε ∂f∂ε [ ε − μ
T + dμ

dT ] d3k⃗(2π)3 ,

2∫ ∂f
∂ε [ ε − μ

T + dμ
dT ] d3k⃗(2π)3 = 0 .

(1.94)
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Fig. 1.39: The transition from the integration over the
volume element in reciprocal space to the integration
over the constant-energy surface and the normal to it.

The integrals over k⃗ can be converted as follows. Let ε(k⃗) = const be the surface of
constant energy in k-space. Then, the integration over d3k⃗ can be divided into the
integration over the constant-energy surface and the normal to it (Figure 1.39). If dS
is an element of the isoenergetic surface, then d3k⃗ = dkndS, where dkn stands for the
integration over the normal to the element.

It is worth keeping in mind that the gradient in k⃗ of the function ε(k⃗) or ∇⃗k⃗ ε(k⃗) is
a vector perpendicular to the surface ε(k⃗) = const, and therefore:

dε = (∇⃗k⃗ε ⋅ dk⃗) ≡ 󵄨󵄨󵄨󵄨󵄨∇⃗k⃗ ε
󵄨󵄨󵄨󵄨󵄨 dkn ⇒ dkn = dε/ 󵄨󵄨󵄨󵄨󵄨∇⃗k⃗ε

󵄨󵄨󵄨󵄨󵄨 . (1.95)

The above outcome allows us to rewrite (1.87) in the form:

dnk⃗
V

= d3 k⃗
4π3

= dεdS
4π3 󵄨󵄨󵄨󵄨󵄨∇⃗k⃗ε

󵄨󵄨󵄨󵄨󵄨 =
dε
4π3

dSℎ𝑣 , (1.96)

where �⃗� = (1/ℎ)∇k⃗ ε is the group velocity of the wave packet describing an electron.
We denote through ν(ε)dε the quantity:

ν (ε) dε = 1
V ∫

ε≤ε(k⃗)≤ε+dε

dnk⃗ = dε
4π3

∫
ε(k⃗)=ε=const

dSℎν . (1.97)

The function ν(ε) is called the level density or the density of states. This is because the
quantity ν(ε) yields the number of the energy levels of an electron per unit volume of
a crystal in the range of energy values from ε to (ε + dε).

To clarify the physical meaning of this quantity, we should calculate ν(ε) for the
free electron gas, using the advance knowledge:

�⃗� = ℎk⃗
m , ε(k⃗) = ℎ2k2

2m , k = √2mεℎ2 . (1.98)

By applying formulas (1.97) and (1.98), we find that:

ν (ε) = 1
4π3

∫
ε(k⃗)=ε=const

dSℎ𝑣 = 1
4π3

mℎ2k4πk2 = mk
π2ℎ2 = m(πℎ)2√2mεℎ2 . (1.99)
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Fig. 1.40: The ε-dependent function f(ε)ν(ε). The solid curve corresponds to states occupied by an
electron at absolute zero. The shaded area gives the number of electrons per unit volume of a metal.
The dashed line describes the nature of filling the states by electrons at some finite temperatures
T > 0 as kBT ≪ εF . As the system temperature rises from 0K to T, a part of the electrons pass from
the zone 1 to 2 due to thermal excitation. The areas under the dotted and solid curves are the same.

The quantity ν(ε)dε governs the number of permitted states, but our concern is the
number of states occupied by the electrons. Therefore, we introduce another charac-
teristic dN/V, the density of electrons being in a state of thermodynamic equilibrium
and filling the energy levels in the range from ε to (ε + dε):

dN
V

= f (ε) ν (ε) dε . (1.100)

The function f(ε)ν(ε) describes the nature of filling the electron levels. The plot of its
dependence on ε is shown in Figure 1.40.

Recall that the function εn(k⃗) is periodic in reciprocal space and bounded above
and below for each value of n. In addition, it is differentiable. Hence, it follows that,
in each Brillouin zone, the function has at least one local minimum and one local
maximum. The extremum points are determined by the extremum condition ∇k⃗ ε = 0.

ν(  )ε

ε

Fig. 1.41: Van Hove singularities in the density
levels (indicated by arrows perpendicular to the
axis ε).

When ∇k⃗ε(k⃗) vanishes, a singularity for the density levels appears in the integrand of
formula (1.97). It can be shown that similar features may be integrable in the three-di-
mensional case and provide the finite values of ν(ε) for the density of states. However,
they still lead to an infinite growth of the quantity dν(ε)/dε (Fig. 1.41). Such singular-
ities are called Van Hove singularities.
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Later, we will see that the value of the derivative dν(ε)/dε for ε = εF involves
low temperature expansion of various observables, particularly in the expansion of
the chemical potential of the electron gas in powers of temperature. Consequently,
we can conclude that if the Fermi surface has points where ∇k⃗ ε(k⃗) = 0, we should
expect anomalies in the low temperature properties of metals. I.M. Lifshitz was the
first to predict their existence [5]. Furthermore, for simplicity, we assume that the state
density ν(ε) has no Van Hove singularities at the Fermi surface of the electrons.

The transition from the integration over d3k⃗ to the integration over ε makes the
system (1.94) take the form:

c = − ∞∫
0

dε εν (ε) ∂f∂ε [ ε − μ
T

+ dμ
dT

] ,

∞∫
0

dε [ ε − μ
T + dμ

dT ] ν (ε) ∂f∂ε = 0 .

(1.101)

Both formulas contain ∂f/∂ε. However, if kBT ≪ μ, what, as we have already said,
is always true for metals, then ∂f/∂ε is different from zero only in a small region of
energies of the order of kBT near the value μ (see Figure 1.26). This makes it possible
to formulate a general method to approximately calculate integrals of the type:

∫ dεF (ε) ∂f∂ε . (1.102)

Since ∂f/∂ε is nonzero only near ε = μ, we expand the function F(ε) in the inte-
grand in (1.102) in a Taylor series in powers of (ε − μ):

F (ε) = F (μ) + (ε − μ) F󸀠 (μ) + 1
2! (ε − μ)2 F󸀠󸀠 (μ) + ⋅ ⋅ ⋅ . (1.103)

Certainly, this can be done only in the case when F does not vary too rapidly in the
vicinity of the point ε = μ.

Now, we calculate:
∂f
∂ε

= − 1
4kBT

1
ch2 [(ε − μ) /2kBT] . (1.104)

In view of the rapid decrease of this function as the latter moves away from the
point ε = μ, the limits of integration over ε in formula (1.102) can be taken from −∞
to +∞. By virtue of parity of function (1.104), the odd terms of the expansion F(ε) van-
ish after integrating formula (1.102). The remaining terms can be expressed through
the integrals, which are easily calculable:

∞∫
−∞

dε ∂f∂ε = −1 . (1.105)

∞∫
−∞

dε (ε − μ)2 ∂f
∂ε ≈ − (kBT)2(2 ∞∫

−∞

ξ2dξ
ch2ξ

) = − (kBT)2 π23 . (1.106)
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In computing (1.106), we have taken into account that:

2
+∞∫
−∞

dξ ξ2

ch2ξ
= π2

3
.

As a result, we have:

∫ dεF (ε) ∂f∂ε = −F (μ) − (πkBT)2
6 F󸀠󸀠 (μ) + ⋅ ⋅ ⋅ . (1.107)

Applying the rule of approximate calculation of the integrals (1.107) to the sys-
tem (1.101), we find:

c ≈ μν (μ) dμdT + π2Tk2B
3

d
dμ [μν (μ)] ,

ν (μ) dμdT + π2Tk2B
3

d
dμ ν (μ) ≈ 0 .

(1.108)

In deriving these equations, we have left out the higher order corrections to the coef-
ficient beside dμ/dT because dμ/dT is considered to be a small quantity:

1
kB

dμ
dT ∼ kBT

εF
≪ 1 . (1.109)

During the calculations, we substantiate this assumption and the estimate given. Sup-
pose that μ(T) differs little from its value at T = 0K, i.e., from εF: μ ≈ εF. Then, in the
last equation of the system (1.108), we can replace the functions ν(μ) and ν󸀠(μ) by their
values ν(εF) and ν󸀠(εF), respectively. After that, the equation acquires a simple form:

ν (εF) dμdT + π2Tk2B
3 ν󸀠 (εF) = 0 . (1.110)

It can now be easily integrated:

μ(T) = εF − 1
6 (πkBT)2 ν󸀠 (εF)ν (εF) . (1.111)

Here, the summand εF gives the main contribution as (πkBT)2ν󸀠(εF)/(6ν(εF)), which
is a correction term.

To estimate the latter, we consider a free electron gas for which

ν (ε) ∼ √ε ⇒ ν󸀠 (εF)
ν (εF) = 1

2εF
. (1.112)

In this case, the relative magnitude of the correction

(kBT)2
εF

ν󸀠 (εF)
ν (εF) ∼ (kBT)2

ε2F
= ( T

TF
)2 (1.113)
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amounts to about 10−4, even at room temperature. This estimate justifies our presup-
positions:

μ ≈ εF ,
1
kB

dμ
dT ∼ kBT

εF
≪ 1 .

Note that, at T ̸= 0K, the chemical potential μ(T) in (1.111) is less than εF because
ν󸀠(εF)/ν(εF) > 0 as a rule.

Substituting the second equation of (1.108) into the first one, we find:

c = −π2k2BT3 μν󸀠 (μ) + π2k2BT
3 (μν (μ))󸀠 = π2k2BT

3 ν (μ) . (1.114)

Given that μ ≈ εF in themain approximation,wefinally obtain the following equation:

c = π2k2BT
3 ν (εF) . (1.115)

Thequantitative estimate of the electronheat capacity canbemadebyanexample
of the free electron gas. For free electrons:

ν (εF) = m(πℎ)2√2mεFℎ2 , (1.116)

εF = ℎ2
2m (3π2n) 2

3 . (1.117)

When we rewrite formula (1.117) in the form of:

√εF = ( ℎ2
2m)3/2 3π2n

εF
(1.118)

and plug it into (1.116), we get:
ν (εF) = 3

2
n
εF

. (1.119)

Using (1.119), we transform expression (1.115) for the electron heat capacity of a metal:

c = π2

2 ( kBTεF ) nkB . (1.120)

Comparing (1.120) with the result of classical physics for the specific heat of an ideal
gas

c = 3
2nkB , (1.121)

we see that the Fermi–Dirac statistics leads to a decrease in the specific heat of the
electron gas due to the multiplier ∼kBT/εF that is proportional to temperature. The
multiplier’s magnitude order is 10−2, even at room temperature. The quantum theory
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thus explains the absence of the observed electron contribution to the heat capac-
ity of metals at room temperature, which was a blatant discrepancy between theory
and experiment in classical physics. Classical physics could not give an answer to the
question: “Why do electrons have the ability to move freely through a metal, but con-
tribute very little to the heat capacity at the same time?” Only the Pauli principle and
the Fermi–Dirac distribution provide an answer to this question.

In deriving the expression for the electron heat capacity of a metal, we needed no
specific information about the Fermi surface. Consequently, the electron specific heat
is proportional to temperature for all metals. This quantum result can be understood
qualitatively even without resorting to any calculations.

When we heat a sample from absolute zero, not all the electrons receive the en-
ergy ∼kBT, as they should, according to the classical theory of gases. Only those elec-
trons suffer thermal excitation, for which the energies are disturbed over a range of
the width kBT near the Fermi level. The amount of excess energy received by the elec-
trons is of the order of kBT as shown in Figure 1.26. This allows us to evaluate the heat
capacity of the conduction electron gas. Suppose n is the total number of electrons
per unit volume of ametal, then only the part T/TF of these electrons belonging to the
Fermi thermal layer can undergo thermal excitation when the temperature rises from
zero to T. In other words, nT/TF governs the heat capacity of a metal rather than n.
Every electron of nT/TF has the excess thermal energy of the order of kBT. Therefore,
the total (thermal excitation) energy ∆E of the electrons is in the order of:

∆E ∼ nT
TF

kBT . (1.122)

The electron heat capacity of metals can be obtained in the usual way – by taking the
derivative of ∆E over the absolute temperature:

c = ∂∆E
∂T ∼ nkB

T
TF

. (1.123)

The result (1.123) coincides with the exact calculation (1.120) up to a factor of the order
of unity.

Let us return again to formula (1.115) for the electron heat capacity of a metal to
rewrite it differently. Given that:

ν (εF) = mkF(πℎ)2 ,

we find:

c = k2BTmkF
3ℎ2 . (1.124)
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The quantity kF has the same order for all metals: kF ∼ π/a, where a is the lattice
period, which is known to be a little different for different substances. Therefore, at a
given temperature, the electron heat capacity depends only on the effectivemassm of
quasiparticles (electrons). However, the effective mass can vary strongly from metal
to metal.

The effective mass forms as a result of the following interactions:
1. Interaction of conduction electrons with the periodic potential of a fixed (rigid)

crystal lattice. The effective mass of an electron in this potential field is referred
to as the band effective mass. It may even be less than the mass of a free electron.

2. Interaction of conduction electrons with lattice vibrations. An electron tends to
distort the lattice around itself. The electron travels through a metal, so as if it
drags ions encountered along their path. The effect makes itself felt through an
increase in their effective mass.

3. Interaction of conduction electrons between themselves. Amoving electron is sur-
rounded by a cloud of the perturbed electron gas, which also causes its effective
mass to increase as well.

4. Interaction of conduction electrons with atomic nuclei. In this case, an essential
role is played by a great mass of quasiparticles – electrons belonging to weakly
overlapping unfilled inner shells of atoms in transition metals.

Let us explain the last statement. When N separated atoms are brought together to
form a complete crystal, the atom-atom interaction results in splitting each energy
level of the isolated atoms into a band of closely spaced sublevels. Such a band, due
to the weak overlap of the inner atomic shells, has a small width of the order of ∆ε. It
can be shown that the mass of quasiparticles in this band is m ∼ 1/∆ε. The width ∆ε
being small, the mass of the quasiparticles associated with the electrons is large. This
is the case of the so called strong coupling of electrons with the atomic nuclei.

Of course, an experiment measures not electrons but the total heat capacity of a
metal. The total heat capacity is the heat capacity of both electrons and a crystal lat-
tice. At room and higher temperatures, the total heat capacity is mainly contributed,
not by electrons, but thermal vibrations of crystal lattice ions. However, at temper-
atures well below room temperature, a part of the heat capacity associated with the
lattice vibrations decreases by the cubic law c ∼ T3. At very low temperatures, it be-
comes less than the linearly temperature dependent electron gas heat capacity. There-
fore, the total heat capacity of metals at low temperatures can be represented as:

cfull = AT + BT3 . (1.125)

Having plotted the dependence of cfull/T on T2 (Figure 1.42), we can see that, at
low temperatures, the graph is a straight line. Using the graph, we can know both the
coefficients A and B.
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Fig. 1.42: Graph of the dependence of cfull/T on T2.

1.9 Screening of the Coulomb Field of External Electric Charges in
Metals (the Thomas–Fermi Model) and Semiconductors

As used herein, a single electron model is underlain by an assumption that many par-
ticle Coulomb interactions between electrons and ions in a crystal are almost com-
pletely screened. Let us give a quantitative estimate of the screening effect [7].

For this purpose, we will examine the motion of electrons in a simplified model
of a metal, or in the so called jelly model (the Sommerfeld model). Such a model re-
places some ions of a crystal by a positive fixed charge background uniformly dis-
tributed through the crystal. Here, the ionic charges are assumed to be distributed
uniformly only because their real periodic arrangement makes the task daunting. At
the same time, the basic collective effects of charge screening are easier to estimate by
applying the jelly model. The positive background provides the electroneutrality con-
dition.With this model being at equilibrium, the densities of the positive and negative
charges are equal to a constant n0 everywhere inside the sample.

To comprehend what happens with the field of any noncompensated charge in
metals, we should consider the following simple problem. Suppose Q is an external
charge placed inside a metal at a point with the radius vector ⃗r = 0⃗. This will result
in a spatial redistribution of electrons in the metal. The constant electron density n0
is replaced by the variable n( ⃗r) and an electric field with the strength E⃗ appears. The
latter creates a force F⃗ acting on a single electron in the metal:

F⃗ = − |e| E⃗ .

It is known from electrostatics that:

E⃗ = −∇⃗φ ,

where the potential φ is the solution of the equation:

−∆φ = 4πρ .

Here, ρ is the total uncompensated charge density:

ρ = ρext + ρind .
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It includes the density of the external (imbedded) charge:

ρext = Qδ( ⃗r)
and the charge density of the redistributed electrons:

ρind = − |e| (n( ⃗r) − n0) .
Thus, to find the resulting electric field E⃗ inside the metal, we need to solve the equa-
tion: − ∆φ = 4π (Qδ( ⃗r) − |e| [n( ⃗r) − n0]) . (1.126)

This equation is not closedbecause thedistributionof n( ⃗r)dependson thepotentialφ.
In principle, the electron density n( ⃗r) can be expressed in terms of single particle

wave functions Ψi which are solutions of the Schrödinger equations:

(− ℎ2
2m

∆ − |e|φ)Ψi = εiΨi ,

n( ⃗r) = N∑
i=1

|Ψi|2 .

However, such a consequent way to calculate n( ⃗r) is complex. The calculations can
be simplified by assuming that the potential φ( ⃗r) is a smoothly varying function of ⃗r.
Suppose the characteristic scale L of changes in the functionφ( ⃗r) aremuch larger than
the de Broglie wavelength of an electron:

L ∼ 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 φ
∂φ/∂ ⃗r

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 ≫ 2π
kF

∼ a . (1.127)

Here, a is an interatomic distance. Now the energy dependence of the electron on its
wave vector can be defined at every point in space. Consequently, it would be reason-
able to admit that the dependence is determinedwithin the quasiclassical approxima-
tion:

ε(k⃗, ⃗r) = ε0 − |e|φ( ⃗r) , ε0 = ℎ2k2
2m , (1.128)

where k⃗ is an electron wave vector and m is its mass.
Recall that the electron density in the absence of the external charge can be cal-

culated using the Fermi–Dirac distribution:

n0(μ) = 2∫ d3k⃗(2π)3 1
exp [(ε0 − μ) /kBT] + 1 . (1.129)

Since the external charge changes the energy electron (1.128) when it appears, the
density (1.129) also changes:

n(μ) = 2∫ d3k⃗(2π)3 1
exp [(ε0 − μ − |e| φ) /kBT] + 1 = n0 (μ + |e|φ) . (1.130)
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The chemical potential values can be considered to coincide in formulas (1.129)
and (1.130), under the condition that the potential φ is different from zero only in a
finite spatial region, outside which a perturbation of the electron density is small.

We assume that: 󵄨󵄨󵄨󵄨eφ( ⃗r)󵄨󵄨󵄨󵄨 ≪ μ ≈ εF . (1.131)

In this case, ρind can be expanded in a Taylor series in |e|φ( ⃗r). Then we restrict our-
selves to only the first term of the expansion:

ρind = − |e| [n0(μ + |e|φ) − n0(μ)] ≈ −e2 ∂n∂μ φ( ⃗r) . (1.132)

Using the above method to calculate integrals approximately, it is easy to show
that, for a free electron gas up to room temperature and above, the relation is true:

∂n0
∂μ ≈ ν(εF) . (1.133)

Here, ν(εF) is the density of states at the Fermi surface.
As a result, equation (1.126) for computing the potential φ becomes a simple

closed form: − ∆φ = 4πQδ( ⃗r) − λ2φ , (1.134)

where
λ2 = 4me2kFℎ2π . (1.135)

Let us estimate the constant λ. For this, we introduce the Bohr radius:

aB = ℎ2
me2

, (1.136)

and use the estimate for the radius of the Fermi sphere:

kF ∼ π
a , (1.137)

where a is an interatomic distance. Plugging formulas (1.136) and (1.137) into (1.135),
and given that aB ∼ a, we find:

λ2 = 4kF
πaB

∼ 1
a2

⇒ λ ∼ a−1 . (1.138)

By directly inserting (1.139) into (1.134), it is not difficult to make sure that for ⃗r ̸= 0 the
solution of the Poisson equation has the form:

φ = Q
r exp(−λr) . (1.139)

Let us show that the singularity of the solution (1.139) at the point with the radius
vector ⃗r = 0⃗ is consistent with the singularity of the term 4πQδ( ⃗r) in equation (1.134).
To do this, we integrate equation (1.134) over the spherical volume V by radius r0 → 0
that surrounds the origin.
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Now, using the Gauss–Ostrogradsky theorem, we transform the integral in the left-
hand side of equation (1.134) into the integral over the surface of a sphere with ra-
dius r0: −∫

V

∆φd3 ⃗r = −∫
V

div∇⃗φd3 ⃗r = −∮
S

∇⃗φ ⋅ dS⃗ .
In the main approximation for r0 → 0, we have:

∇⃗φ ≈ ∇⃗Q
r
= − ⃗r

r3
Q .

Therefore, in the limit r0 → 0, we find:

−∫
V

∆φd3 ⃗r = ∮
S

Q
r3

⃗r ⋅ dS⃗ = ∮
S

1
r2
QdS =

r0→0
4πQ .

After integrating a small volume V, the right-hand side of equation (1.134) yields:

4πQ

1⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞∫
V

d3 ⃗rδ( ⃗r) − λ2 ∫
V

d3 ⃗rφ . (1.140)

We show that the contribution from the second term in (1.140) in the limit r0 → 0 is
zero. To this end,wewrite the volume element in spherical coordinates: d3 ⃗r = r2drdΩ.
Integratingover the solid angledΩ gives a constant.Wecompute∫ φd3rwithaccuracy
up to this constant. In the limit r0 → 0, we can hold that φ ≈ 1/r, therefore:

∫φd3 ⃗r = const ⋅ r0∫
0

rdr
r0→0󳨀→ 0 .

It is clear that the integration of both sides of equation (1.134) in the limit r0 → 0
leads to the same results. Consequently, the singularities of equation (1.134) and the
solution (1.139) are consistent.

Let us analyze the solution obtained:

φ = Q
r exp(−λr) , λ ∼ 1

a .

Within the sphere of radius of the order of the interatomic distances (for λr < 1),
the potential φ( ⃗r) of the point charge Q in a metal is the same as in a vacuum: φ ≈
Q/r. Simultaneously, outside the sphere specified (for λr > 1), we have exp(−λr) ≈ 0.
Therefore, φ ≈ 0. That is to say, the free electrons redistributed completely shield the
electric field of the embedded charge in ametal already at distances of the order of the
interatomic one.

Here, it is worth emphasizing that, despite the quasiclassical nature of the calcu-
lations, the finding takes the electron energy distribution into account in accordance
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with the Fermi–Dirac quantum statistics. Let us discuss what would change if we car-
ried out the calculations within classical physics.

The density of a classical ideal electron gas in an external potential field U( ⃗r) is
described by the Boltzmann distribution:

n( ⃗r) = n0 exp(−U( ⃗r)kBT
) .

In this case U( ⃗r) = −|e|φ( ⃗r), and therefore:
n( ⃗r) = n0 exp(|e|φkBT

) . (1.141)

Suppose |eφ( ⃗r)| ≪ kBT. We can now expand the exponential factor in formula
(1.141) in a Taylor series in the small parameter |e|φ/kBT and restrict ourselves to the
first two terms of the expansion:

n ≈ n0 (1 + |e| φ
kBT

) .

In the long run:

ρind = − |e| [n( ⃗r) − n0( ⃗r)] ≈ − e2n0kBT
φ( ⃗r) .

Thus, it can be concluded that classical physics still gives equation (1.134) to cal-
culate the potential φ. However, the length of screening of the external charge by the
plasma electrons turns out to be different:

λ−1 = √ kBT
4πn0e2

. (1.142)

It is interesting and important that the Fermi–Dirac distribution for electrons and
holes in semiconductors reduces to the Boltzmann distribution. This means that the
screening of interactions between the electric charges in semiconductors is well de-
scribed by classical physics. Later we will justify this statement.

Thus,wehave demonstrated that electrons in ametal screen the distribution of an
embedded external electric charge. However, the screening also affects the electron-
electron interactions because every electron can be regarded as an external charge.

To further discuss the dynamic screening of the electron-electron interactions, we
should be familiar with basic collective excitations of the electron gas in metals with
properties of quasiparticles (plasmons).

1.10 Plasmons and Dynamic Screening of the Electron-Electron
Interactions in Metals

We start from themodelwhere the ions of the lattice constitute a uniformly distributed
background of the positive charge.
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Fig. 1.43: Local change in the equilibrium density of electrons in a
metal.

Suppose a local change in the density of the electrons has occurred as shown in Fig-
ure 1.43. After the electrons left the region, the positively charged fixed ions formed.
Conversely, where the electrons reached, the negative charge became excessive. As a
result, due to the imbalance of charges, an electric field E⃗ appears. It acts with the
force F⃗ = −|e|E⃗ on every electron and tries to return it to its former equilibrium posi-
tion with the coordinate x = 0. Under the influence of this force, the electrons move
towards the initial equilibrium position and flow through it by inertia. Thus, an elec-
tric field reappears and it again tries to get the electron back to its equilibriumposition
with the coordinate x = 0. The process takes a periodic nature. This is electron plasma
oscillations, which will be described below.

To simplify the analysis, we accept that the motion of each center of mass wave
packet corresponding to an electron is described by Newton’s second law:

mẍ = − |e| E , (1.143)

where m is the mass of an electron, E is the component of the electric field along the
axis Ox, and x is the coordinate of the electron. The validity of this approximation is
discussed later.

Electrostatic induction D⃗ in a metal is determined by the Maxwell equation:

div D⃗ = 4πρexternal . (1.144)

In the given case, the metal has no external charges (ρexternal = 0) and the problem is
one-dimensional. Equation (1.144) acquires the form:

∂D
∂x = 0 . (1.145)

Here, D is the component of the vector D⃗ directed along the axis Ox: D⃗ = (D, 0, 0).
Since the field D⃗ → 0 as x → ±∞, a solution of equation (1.145) is:

D⃗ ≡ 0 . (1.146)
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However, we should note that:
D⃗ = E⃗ + 4πP⃗ , (1.147)

where E⃗ is the electric field strength in a metal and P⃗ is the dipole moment per unit
volume of medium. All the vectors in the problem at hand have only x-components.
Using the equations (1.146) and (1.147), we express the electric field via the electric
dipole moment P⃗ per unit volume of the medium:

E⃗ = −4πP⃗ .

The electric dipole moment P⃗ can be easily calculated:

P⃗ = n0 p⃗ .

Here, n0 is the concentration of electrons in ametal, and p⃗ = (−|e|x, 0, 0) is the dipole
moment appearing due to the shift from the equilibrium position of a single electron.

Thus, the x-component of the electric field that returns the electron to its equilib-
rium position can be written as follows:

E = 4π |e| n0x . (1.148)

Given formula (1.148), the equation of motion of the electron (1.143) is equivalent to
the equation of a harmonic oscillator:

ẍ = −ω2
px , (1.149)

where ωp is the plasma oscillation frequency equal to:

ω2
p = 4πn0e2

m . (1.150)

The solution of (1.149) is:

x = A sin(ωpt + φ) , (1.151)

whereA, φ are constants of integration. Formula (1.151) describes the longitudinal col-
lective oscillations of an electron gas.When oscillated, the electron plasma condenses
and discharges with respect to the fixed lattice ions. Such collective oscillations must
occur due to any violation of the homogeneity of the electron distribution in a metal;
they try to restore the violated electroneutrality of the electronion system.

The consistent quantum mechanical description of the electron density oscilla-
tions in a metal leads to the quantization of their energies: En = ℎωp(n + 1/2), where
n = 0, 1, 2, . . . .

By consequently solving the problem, the electron-electron interactions can be
treated as a result of the exchange of the plasma oscillations with the energy ℎωp by
virtual quanta. The plasma oscillation quanta play the same role as that of photons
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in a vacuum. Like photons, they possess the properties of quasiparticles, so they are
called plasmons.

Moving in a metal, the electron is continuously exchanged by quanta of the en-
ergy ℎωp with the electrons surrounding it. Therefore, its energy is determined with
accuracy up to the energy of an individual quantum: ∆E = ℎωp. A time τ over which
there is a change of the electron energy canbe estimated from theuncertainty relation:

∆Eτ ∼ ℎ .
Note that the virtual electron energy change occurs over a period of time so small that
the virtual electron transitions are impossible to study experimentally. At the same
time, an important consequence of the foregoing pattern is to relate the range of forces
acting between the electrons and the quantum energy ℎωp in a metal. In fact, for the
time

τ = ℎ
∆E = ℎℎωp

= 1
ωp

,

the virtual energy exchange between two electrons happens, and the latter can move
apart at a distance not exceeding:

r0 = 2τVF ,

where 2VF is the relative electron velocity. When the electrons move in opposite direc-
tions, the distance is maximal (their velocity value is close to the Fermi velocity). We
have:

r0 = 2VF
ωp

= 2ℎkF
mωp

, ωp = √4πn0e2
m

, n0 = 1
3π2

k3F ⇒
r20 = 4ℎ2k2F

m2 ⋅ m
4πn0e2

= 3π ( ℎ
me2

) 1
kF

.

(1.152)

The virtual plasmon cannot be spread at a distance greater than r0. Consequently, the
two electrons exchanging by plasmon cannot interact if the distance between them
greatly exceeds r0. Thus, the range of forces between the electrons in the plasma of a
metal is of the order of r0. Let us estimate r0:

kF ∼ π
a , aB = ℎ

me2
∼ a ⇒ r20 = 3π ( ℎ

me2
) 1
kF

∼ 3πaBa
π ∼ 3aBa ∼ a2 .

In other words, the electrons in a metal have no interaction at distances greater than
interatomic.

The resulting expression for r0 up to a factor of the order of unity reproduces the
previous formula for the length of the screening of interactions between charges in
the electron plasma of ametal. As can be seen, two different approaches give the same
result.

It is interesting that, with a quantum mechanical standpoint, the electron-elec-
tron interaction in a vacuum is also associated with the virtual photon exchange.
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A similar calculation of the range of the interaction forces between two electrons in a
vacuum yields the estimate:

r0 ∼ c
ω ,

where ω is the frequency of a virtual photon and c is the speed of light. Since the
frequency of the virtual photons can be made arbitrarily small, the range of the in-
teraction forces between the electrons in a vacuum is endless. In full accordance with
Coulomb’s law F ∼ 1/r2, the interaction force between electrons in a vacuumvanishes
only when r → ∞. In a metal, the frequency of each plasmon cannot be less than ωp,
therefore the range of the interaction forces between the electrons is finite.

The concept of interaction of one-sort quasiparticles through intermediate fields
of other quasiparticles is common in quantum field theory, quantum theory of solids,
and particle physics.

Real, not virtual plasmons, can appear in the electron plasma of a metal when
fast charged particles (or particle flux) have great energy flying through themetal. The
energy required to excite a plasmon is very high and amounts to about 10 eV.

1.11 The Pauli Principle and Suppression of Electron-Electron
Collisions in Metals

Within the model of dynamic screening of electron-electron interactions, the rate of
electron-electron collisions in a metal remains high because the Coulomb interaction
turns out to be strong enough; even when given the screening. In other words, the
model cannot explain a largemean free path of electrons in ametal, which, as a rule, is
10−4cm. Inmetals, anothermechanismexists to suppress electron-electron collisions;
it is more efficient and associated with the Pauli principle [3].

To illustrate how the Pauli principle affects the scattering frequency, we consider
the nextN-electronic state. Imagine the Fermi spherewas filled by N−1 electrons, and
one electron had the energy (ε1+εF), where ε1 > 0. For further analysis, the level of εF
is convenient to start measuring the electron energy. Using the free electronmodel, we
now analyze features of the elastic interaction between this electron and an electron
of the Fermi sphere at a temperature of absolute zero.

Obviously, the energy of the second electron is less than εF. We designate it as(εF+ε2), where ε2 < 0. After interacting, the two electrons have energy higher than εF,
because at T = 0K, all energy levels inside the Fermi sphere are occupied. The trivial
case, when the electrons exchange by their initial places, is not our concern because
there is no scattering. The electron energy after the collision can be represented in the
form (εF + ε3) and (εF + ε4), where ε3 ≥ 0 and ε4 ≥ 0.

In elastic collisions, the law of conservation of energy holds true:

ε1 + ε2 = ε3 + ε4 .
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Fig. 1.44: Elastic col-
lisions of electrons.
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Fig. 1.45: Positions of the electrons with respect to the Fermi sphere
(points 1 and 2) and positions of the electrons after the collision
(points 3 and 4).

From the law of conservation and the condition ε3 ≥ 0, ε4 ≥ 0, we have:

|ε2| ≤ ε1 . (1.153)

Consequently, the appropriate “targets” for the first electron are not all the electrons
inside the Fermi sphere, but only those that meet the condition (1.153). That is to say,
those are located inside the spherical layer of a thickness of ε1. Figure 1.45 shows this
layer as a darkened bagel. The number of those electrons is ε1/εF times less than the
total number of electrons.

When electrons collide elastically, the law of conservation of momentum also
holds. Given that, for free electrons, the momentum is linearly related to the wave
vector (p⃗ = ℎk⃗), we write the law of conservation of momentum in the form of the law
of conservation of the total wave vector of the electrons (see Figure 1.44):

k⃗1 + k⃗2 = k⃗3 + k⃗4 . (1.154)

It can be shown that (1.154) contributes to reducing the number of electrons ca-
pable of scattering by ε1/εF times. Thus, the number of electrons that may interact
with the electron having the energy (εF + ε1) > εF is (ε1/εF)2 times less than the total
number of electrons inside the Fermi sphere.

Consider a case when the temperature is not absolute zero. Here, ε1 is the same
order of magnitude as kBT, which is far less than the Fermi energy. Let us estimate
what part of the electrons, in this case, is capable of scattering at room temperature(T = 300K). Supposing that εF = 8 eV, we obtain:

(kBT/εF)2 ∼ (8.6 ⋅ 10−5 eVK ⋅ 300K/8 eV)2 ∼ 10−4 . (1.155)

The interaction between the electrons is screened at interatomic distances of the
order of a ∼ 10−8cm. Therefore, the size of anelectron is of theorder a. Its cross section
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l

S

Fig. 1.46: A cylinder that “sweeps” the electron moving between
collisions.

in this case is of the order of a2. Given the fact that not every electron can be targeted,
we find the area of the effective cross section of the electrons:

S ∼ a2 (kBT/εF)2 . (1.156)

We estimate the mean free path of the electron, as is done in the course of general
physics. The total concentration of electrons is assumed to be:

n ∼ a−3 . (1.157)

Every electronmoves almost freely between collisions.Wefind the volumeof the cylin-
der that “sweeps” the electron moving freely between two successive collisions (Fig-
ure 1.46):

Vcyl = Sl ,

where l is the mean free path of the electron. Since only one electron moves inside the
volume Vcyl, we have:

Sln = 1 ,

or it can be written as:
l = 1/Sn . (1.158)

Inserting formulas (1.156) and (1.157) into (1.158), we obtain the estimated relation for
the mean free path of an electron in a metal:

l ∼ (εF/kBT)2 a ≫ a .

Using formula (1.155) and the value of a ∼ 10−8cm at room temperature, we find
that l ∼ 10−4cm. Thus, the Pauli principle answers the central question of the theory
of metals: “Why do electrons move almost freely in a metal?”

1.12 The Concept of the Mean Free Path of Electrons: Electrical
and Thermal Conductivities of Metals and the
Wiedemann–Franz law

The upper energy band partially filled by electrons governs high electrical and ther-
mal conductivities of metals. As a comparison, the thermal conductivity of dielectrics
and semiconductors is determined by their lattice. These phenomena cannot be ex-
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plained by thinking that the potential of electrons in a metal is purely periodic. This
is because, in such a potential, wave packets corresponding to the electrons move
with constant group velocity and without any barriers. Due to comprising impurities
or defects, the crystal lattice in metals is imperfect and responsible for resistance and
thermal conductivity. Moreover, ion oscillations can disrupt the crystal periodicity.

We will not discuss here the full quantummechanical theory of different electron
scatteringmechanisms inmetals. It turns out that we can understandmuch, and even
derive explicit formulas for the electrical and thermal conductivities of metals, by as-
suming that some scattering mechanisms exist and that they are completely charac-
terized by the mean time τ (the relaxation time approximation) between collisions of
electrons with scatterers. The probability of undergoing the collision per unit of time
is 1/τ. The time τ is called the relaxation time. The electron mean free path l, or an
average distance traveled by an electron in a metal between collisions, is related to τ
by the following equation:

l = VFτ . (1.159)

Note that the parameter τ may be temperature dependent.
Based on this assumption, we find, first of all, the diffusion coefficient for elec-

trons in metals. Imagine that the electron density is nonuniform along the axis Oz.
The concentration gradient along the direction of the axis gives rise to the mean par-
ticle flux. Consider the plane z = z0 (Figure 1.47). If all the electrons move in the same
direction, the number of electrons passing through a unit area of the plane z = z0 per
unit of time would be equal to:

j = nVz . (1.160)

Supposing that the value of the modulus of the velocity vector for all the electrons is
equal to VF, we obtain an expression for the z-component of the velocity vector:

Vz = VF cos θ . (1.161)

Here, it is worth recalling that the diffusion flux jD is the average number of parti-
cles passing through a unit area per unit of time. The electrons diffuse with different
velocities in different directions. So, to calculate the diffusion flux, we should average

O

θ

z= 0z

z

V

Fig. 1.47: The motion of the electrons through the
plane z = z0.
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Fig. 1.48: A solid angle.

the electron flux density (1.160) in the velocity directions:

jD = ⟨nVz⟩ . (1.162)

Suppose the electron velocity vector lies within a solid angle dΩ = sin θdθdφ. By
definition, the solid angle dΩ is the area of a segment in a unit sphere. In Figure 1.48,
this area is shaded. For small angles, it looks like a rectangle. One side of the rectangle
is equal to sin θdφ, and the other is dθ. The entire sphere corresponds to the total solid
angle:

π∫
0

sin θdθ
2π∫
0

dφ = ∫dΩ = 4π .

Using the standard formula of probability theory for finding amean value and as-
suming that, due to the chaotic thermalmotion of the electrons their different velocity
directions are equally probable, we get the expression:

jD = ∫ nVzdΩ∫dΩ = ∫ nVzdΩ
4π . (1.163)

Note that the value of the electron density n cannot be taken at the point z = z0
because the electronmoves freely between collisions. The last collision suffered by the
electron occurs before the plane z = z0 at the distance (z0 − Vzτ) from it. Therefore,
the concentration should be taken at this point:

n(z0 − Vzτ) = n(z0 − VFτ cos θ) = n(z0 − l cos θ) . (1.164)

Substituting formulas (1.161) and (1.164) into the expression for jD (1.163), we get:

jD = VF
4π

π∫
0

n (z0 − l cos θ) cos θ sin θdθ 2π∫
0

dφ = VF
2

1∫
−1

n (z0 − lx) xdx .
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Furthermore, we expand the function n(z0 − xl) in a Taylor series in powers of xl
and limit ourselves to the first two summands of the expansion. Obviously, the first
summand in the integrand is an odd function of x and, therefore, does not contribute
to the general integral. The integral of the second term is easily calculated:

jD = VF
2

1∫
−1

(n(z0) − lx ∂n
∂z

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨z=z0 + ⋅ ⋅ ⋅ ) xdx ≈ − lVF
2

∂n
∂z

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨z=z0
1∫
−1

x2dx = − lVF
3

∂n
∂z

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨z=z0 .

Finally, we find:
jD = − lVF

3
∂n
∂z

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨z=z0 . (1.165)

The diffusion coefficient D is the factor preceding the derivative of concentration:

D = lVF
3 = V2

F τ
3 , (1.166)

where l is the length of the electron mean free path (l = VFτ).
We can consider charge and heat transport processes in a metal using the above

approach. They can be treated as special cases of diffusion caused by an electrostatic
potential gradient or temperature.

Conductivity is, in essence, the diffusion of electrons under an external force F⃗ =−|e|E⃗ = |e|∇⃗φ, where φ is the potential of an electric field. Without limiting the gen-
erality, the axis Oz can be always codirected along the strength vector of the electric
field. Therefore, we can accept that E⃗ = (0, 0, E) (Figure 1.49). This leads to the expres-
sion for the electric current density acquiring the form:

j = |e| jD .

Recall the formula for the electron concentration and apply it to our case:

n = +∞∫
−∞

f(ε − |e|φ)ν(ε)dε , (1.167)

where f(ε) is the Fermi–Dirac distribution function, (ε − |e|φ) is the energy of an elec-
tron inanelectric field, and ν(ε) is thedensity of the allowedenergy levels for electrons
in a metal. The given expression involves the z-dependence only through the poten-
tialφ. In formula (1.167), we expand the function f(ε−|e|φ) in a Taylor series in powers
of −|e|φ. After that, we differentiate the whole expression over z:

∂n
∂z ≈ − |e| ∂φ∂z

+∞∫
−∞

∂f(ε)
∂ε ν(ε)dε . (1.168)

jD

E Fig. 1.49: The motion of electrons in an electric field.
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In formula (1.168), we have kept only the first nonzero term. Now, we evaluate the
integral (1.168) approximately by expanding the function ν(ε) in the neighborhood of
the point ε = μ ≈ εF in a Taylor series. Here,μ is the chemical potential. Confining
ourselves to the first term, we obtain:

− +∞∫
−∞

∂f(ε)
∂ε ν(ε)dε ≈ ν(εF) .

As a result, we have:
∂n
∂z = − |e| ν(εF)E .

Thus, the electric current density is given by:

j = − |e|D∂n
∂z = De2ν(εF)E . (1.169)

The factor preceding the strength of the electric field E in (1.169), by definition, is the
coefficient of conductivity σ. In this case, we can neglect the anisotropy of the sample
because we are using the model of nearly free electrons.

The relationship between the conductivity and diffusion coefficients:

σ = e2Dν(εF) , (1.170)

is referred to as the Einstein relation.
Plugging the diffusion coefficient D in explicit form, we get another formula for

the conductivity:
σ = 1

3
e2V2

F τν(εF) . (1.171)

Similarly, we can find an expression for the thermal conductivity. The heat flux q
along the axisOz represents the energy passing through a unit area of the plane z = z0
per unit of time and averaged over the electron velocity directions:

q = 1
4π ∫ W

V VzdΩ , (1.172)

whereW/V is the energy of electrons per unit volume of a metal.
Suppose that the energy W = W(T) depends on the coordinates only because

the latter are temperature dependent, then we expand it in a Taylor series, restricting
ourselves to the first two summands. As previously noted, the temperature should be
taken, not at the point z = z0, but at the point shifted by Vzτ = l cos θ:

W(T(z0 − l cos θ)) = W(T(z0)) − ∂W
∂T

∂T
∂z

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨z=z0 l cos θ + ⋅ ⋅ ⋅ .
Substitute formula (1.161) and the expression obtained above in (1.172). As a result of
the integration we find:

q = 1
4πV ∫(W (T (z0)) − ∂W

∂T
∂T
∂z

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨z=z0 l cos θ)VF cos θdΩ =
= −13 lVF ( 1

V (∂W∂T )
V=const

) ∂T
∂z

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨z=z0 = −13V2
F τcV

∂T
∂z

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨z=z0 ,
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where cV = (1/V)((∂W)/(∂T))V=const is the specific heat of a metal at constant volume.
The coefficient of thermal conductivity κ is equal to the multiplier of the temperature
derivative:

κ = 1
3
V2
F τcV . (1.173)

It is curious that Drude has been the first to derive a similar formula for κ within
the framework of classical physics in the model of a free electron gas of metals. How-
ever, Drude has used the mean square thermal velocity V2

T of the electrons instead
of V2

F . Classical physics, of course, does not give correct values for either V
2
F or for the

specific heat cV. Striking success came to Drude due to him twice “successfully” mis-
taking a hundred times and these errors compensated for each other. At room temper-
ature, the real electron contribution to the specific heat is one hundred times less than
that calculated in the framework of classical physics. The real mean square electron
velocity V2

F is one hundred times greater than V2
T . This amusing incident, however,

stimulated the rapid development of the free electron model for metals, first within
classical physics, and after the errors were opened and contradictions were accumu-
lated, in the framework of quantum theory.

Using the quantum mechanical expression for the electron heat capacity of a
metal:

cV = π2k2BT
3 ν(εF) ,

we have arrived at the final formula for the coefficient of thermal conductivity of met-
als:

κ = π2

9
k2BTV

2
F τν(εF) . (1.174)

Comparing the expressions for σ (1.171) and for κ (1.174), we get an interesting re-
sult:

κ
σT

= k2BTV
2
F τν(εF)π2/9

e2V2
F τν(εF)T/3 = π2k2B

3e2
. (1.175)

As amatter of interest, the right-hand part of the expression is a combination of funda-
mental constants and includes no specific characteristics of a particularmetal. The re-
sulting relation has no relaxation time τ, whose temperature dependence is unknown
to us without detailed calculations. Formula (1.175) is called the Wiedemann–Franz
law, and the constant in its right-hand side is referred to as the Lorentz constant.

In the case of free electrons we are aware that:

ν(εF) = 3n
2εF

, εF = mV2
F

2 .

Then the formulas for σ and κ take the form:

σ = e2nτ
m , κ = π

3
nτT
m .

Although these formulas do not apply to real metals, they are useful for estimations.
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It would be instructive to reproduce Drude’s conclusion for the conductivity
within classical physics through the free electron model. Drude believed that under
an electric field E⃗, an electron in a metal moves as a material particle according to
Newton’s second law:

mdV⃗
dt = − |e| E⃗ − mV⃗

τ .

The second term in the right-hand side is some frictional force, which simulates a de-
crease in the electron momentum as a result of electron scatter interactions.

In a steady-state (dV⃗)/(dt) = 0⃗ and, therefore, the drift velocity of electrons in a
conductor is:

V⃗drift = − |e| τE⃗m .

Then, for the conduction current density, we have:

⃗j = − |e| nV⃗drift = e2nτ
m E⃗ ≡ σE⃗ ,

σ = e2nτ
m .

It turns out, the formula for the conductivity coefficient and that found earlier
are identical. Here, the Principle of Correspondence between classical and quantum
physics manifests in a delicate and controversial manner. The coincidence of some
of the results is not accidental. Many features of the dynamics of wave packets corre-
sponding to electrons in a metal can indeed be described in terms of quasiclassical
equations of motion. Only these equations seldom coincide with Newton’s equations.

Notes
1. For metals with impurities, the concept of the relaxation time τ works well at low
temperatures (T < 10K). In this temperature range, the main scattering mechanism
is elastic electron impurity interactions, with the relaxation time τ as well as the con-
ductivity σ being temperature independent. Simultaneously, the thermal conductivity
is directly proportional to temperature. The Wiedemann–Franz law is well satisfied.

2. As the temperature increases, the electron scattering by thermal vibrations of
the lattice ions begins to emerge more andmore rapidly. As a single parameter, the re-
laxation time becomes insufficient to describe two different phenomena, such as the
heat and charge transfer processes. In this case, the σ- and κ-dependencies on tem-
perature are complex. In the temperature range (10–100K), the inelastic scattering of
electrons by the ion lattice vibrations prevails. TheWiedemann–Franz law is violated.

3. At higher temperatures, the scattering of electrons by the ion lattice vibrations
again becomes elastic, and the Wiedemann–Franz law holds once again.

4. The electron-electron scattering processes are important only as far as very
pure metals at low temperatures are concerned. Under these conditions, the relax-
ation time can be entered as a single parameter to describe the heat and charge trans-
fer processes. Then, the above theory can be applied to them. The electron-electron
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scattering takes place against the background of a periodic lattice. It can be shown
that, in this case, the law of conservation of the total wave vector of the electrons as a
consequence of the lawof conservation ofmomentum loses its validity and transforms
into a statement:

k⃗1 + k⃗2 = k⃗3 + k⃗4 + K⃗ ,

where K⃗ is an arbitrary reciprocal lattice vector. When scattered, the electrons throw
over their wave vectors into other Brillouin zones. Therefore, the electron-electron col-
lisions are not elastic. Although these are inelastic, and the relaxation time depends
on temperature (τ ∼ T−2), the Wiedemann–Franz law is satisfied with pure metals as
well.

Let us summarize. Thermal conductivity and resistance for most normal metals
(not superconductors) are controlled mainly by electrons, which are in the upper par-
tially filled energy band. The σ- and κ-dependencies on temperature are complex and
reflect various electron scattering mechanisms at different temperatures. There is a fi-
nite temperature range where the electron scattering by vibrating lattice ions cannot
be described through the relaxation time as a single parameter. Typical curves of the
electrical resistance R ∼ 1/σ and thermal conductivity κ as a function of temperature
are shown in Figures 1.50 and 1.51.

Analysis of experimental data leads to the following general conclusions.
1. A crystal lattice behaves differently at T > TD and T < TD. The temperature TD

(the Debye temperature) is characteristic of the lattice and will be introduced later.
2. The theory set forth above involves the relaxation time τ as a single parameter.

Such a simplified theory is true for only the low temperature region where τ is a con-
stant and the higher temperature range where τ ∼ T−1. Figures 1.50 and 1.51 display
how the resistance R and the thermal conductivity coefficient κ depend on tempera-
ture. As can be seen, the temperature dependence of the resistance (R ∼ T) is linear
and the thermal conductivity coefficient (κ = const) is constant at T ≥ TD. In this
region, the electron scattering by the vibrating lattice ions is a dominating factor.

R

TTD0

R ~ 
T

R= const
Scattering by

impurities

Scattering by

lattice vibrations

Fig. 1.50: The R-dependence
on temperature T .

TTD0

κ

κ = const

Scattering by

impurities

κ ~ T

Scattering by

lattice vibrations

Fig. 1.51: The κ-dependence on tem-
perature T .
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1.13 The Semiclassical Dynamics of Electrons in a Crystal

The Sommerfeld theory for free electrons has been generalized by Bloch and applied
to the case of an arbitrary periodic potential. Such a generalization was called a semi-
classical model [1, 5].

Consider awave packet constructed from the Blochwave functions for an electron
in a crystal:

Ψn( ⃗r, t) = ∑⃗
k󸀠
g(k⃗󸀠)unk⃗󸀠( ⃗r) exp (ik⃗󸀠 ⃗r − iℎ εn(k⃗󸀠)t) (1.176)

where g(k⃗󸀠) ≈ 0 for |k⃗− k⃗󸀠| > ∆k and k⃗ is the center of the wave packet in the reciprocal
space. All k⃗󸀠 are inside an area centered at the point with the radius vector k⃗ and of
radius ∆k ≪ |k⃗|. Assume |k⃗|, in turn, to be much smaller than the Brillouin zone size:

∆k ≪ k ≪ 1
a . (1.177)

Under such circumstances, the whole wave packet moves integrally with the group
velocity:

V⃗n = 1ℎ ∂εn(k⃗)∂k⃗
, (1.178)

and its width in the real space has the form:

∆r ∼ 1
∆k . (1.179)

It follows from (1.178) and (1.179) that:

∆r ≫ a , (1.180)

i.e., the size of the wave packet or the area where the function Ψn is localized is far
larger than the interatomic distance. In real space, the wavepacketwhose wave vector
is defined in the range that is smaller than the dimensions of the Brillouin zone smears
itself out over a large number of elementary cells.

Suppose an electromagnetic field slowly varieswithin awave packet (Figure 1.52):

λ ∼ 󵄨󵄨󵄨󵄨󵄨B⃗󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨∂B⃗/∂x󵄨󵄨󵄨󵄨󵄨 ∼
󵄨󵄨󵄨󵄨󵄨E⃗󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨∂E⃗/∂x󵄨󵄨󵄨󵄨󵄨 ≫ ∆r ≫ a . (1.181)

Having formulated data as above and by using a semiclassicalmodel, we can cal-
culate how the wave packet moves under the influence of external electric and mag-
netic fields. In other words, we canfind out how the wave vector k⃗, the packet center ⃗r,
and the zone number vary in time. Such predictions can be made based on a knowl-
edgeof the function εn (k⃗)without addingany informationabout theperiodic potential
of the lattice.
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Fig. 1.52: The ratios of characteristic scales in the semiclassical model.

In the semiclassical model, the functions εn(k⃗) are thought to be known. Therefore, a
method to calculate them is not specified. This is a delicate moment. The fact of the
matter is that, to determine the function εn(k⃗), we should either conduct an experi-
ment or solve the Schrödinger equation:

[− ℎ2
2m ∆ + U( ⃗r)]Ψnk⃗ = εn(k⃗)Ψnk⃗ , (1.182)

with the potential U( ⃗r) varying at distances of the order of the lattice constant.
The semiclassical model is only partly the classical limit. It deals classically with

external fields but not the periodic field of a crystal.
The coordinates, the wave vector of an electron, and the zone number vary in time

according to the following laws:
1. The zone number is an integral of motion. All zone numbers remain unchanged.

The semiclassical model ignores interband transitions. This means that every
zone has a fixed number of electrons.

2. Time changes of the coordinates and the wave vector k⃗ of an electron with the
zone number n is determined by the following equations of motion:

̇⃗r = V⃗n(k⃗) = 1ℎ ∂εn(k⃗)∂k⃗
. (1.183)

ℎ ̇k⃗ = − |e| ⋅ (E⃗( ⃗r, t) + 1
c [V⃗n(k⃗) × B⃗( ⃗r, t)]) . (1.184)

Attention should be drawn to the fact that an electron in a crystal is subjected to
forces of both the lattice and the external fields B⃗ and E⃗. In equations (1.183) and
(1.184), only the external forces are responsible for the resulting electron motion.
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The function εn(k⃗) that plays the role of the kinetic energy of the electron in a
periodic field of the crystal has already taken the forces of the crystal lattice into
account. That iswhyequations (1.183) and (1.184) donothave the formofNewton’s
second law.

3. The electron wave vector is determined with accuracy up to a term equal to the
reciprocal lattice vector K⃗. The symbols n, ⃗r, k⃗ and n, ⃗r, (k⃗ + K⃗) represent two
completely equivalent ways of describing one and the same electron. At thermo-
dynamic equilibrium, the electrons of the n-th zone with energies from ε to (ε +
dε) contribute to the electron density. Their contribution can be governed by the
Fermi–Dirac distribution:

∆N
V = ν (ε) f (ε) dε ≡ ∫

ε<ε(k⃗)<ε+dε

d3 k⃗
4π3

[exp( ε(k⃗) − μ
kBT

) + 1]−1 . (1.185)

In the case of thermodynamic equilibrium, the energy bands being above the Fermi
energy by amagnitude that is greater than (εF+kBT) prove to be empty, and the energy
bands that are below (εF − kBT) are completely filled with electrons. For this reason, a
theoretical description of physical properties of real metals and semiconductors must
consider only a small number of the bands and electrons.

The Limits of Applicability of the Semiclassical Model

In the Schrödinger equation (1.179), the validity of the semiclassical model must be
broken in the limit of zero potential U( ⃗r) because an electron becomes free at this
limit. Being in a uniformand constant electric field, the free electron can continuously
accumulate its kinetic energy due to the electrostatic potential energy. However, the
semiclassicalmodel prohibits interband transitions and requires limiting the electron
energy by its initial band boundaries. Consequently, the semiclassical model can be
applied to cases where the amplitude of the interatomic periodic potential exceeds
some minimum acceptable value.

The restrictions imposed on the amplitudes of slowly varying external electric and
magnetic fields have the form:

|e|Ea ≪ [εg(k⃗)]2
εF

. (1.186)

ℎ|e|B
mc

≪ [εg(k⃗)]2
εF

. (1.187)

The proof of these conditions is given, for example, in the book by Ashcroft and Mer-
min [1].
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Comments

1. The length a has the order of the lattice constant.
2. The Fermi energy εF must be measured from the bottom of the energy band at

hand. εg(k⃗) is the difference between the energy εn(k⃗) and the nearest energy
εn󸀠 (k⃗) at the same point of k-space, but in another zone:

εg(k⃗) = min
n󸀠

󵄨󵄨󵄨󵄨󵄨εn(k⃗) − εn󸀠 (k⃗)󵄨󵄨󵄨󵄨󵄨 , n󸀠 = n ± 1 .
3. The condition (1.186) is never violated for metals but can be broken for semicon-

ductors and dielectrics under huge electrical fields. In the case of the latter, elec-
trons can make interband transitions. This effect is called electrical breakdown.

4. The condition (1.187) can be broken simply enough. When moved, electrons can-
not follow the paths obtained from the semiclassical equations. This effect is
calledmagnetic breakdown.

5. It is also necessary that the frequency of the fields be small:

ℎω ≪ εg . (1.188)

Otherwise, a single photon may possess sufficient energy to cause the interband
transition.

6. The wavelength of the applied fields must be restricted:

λ ≫ a . (1.189)

In doing so, the correspondence of the wave packet to the electron makes sense.

1.14 The Justification of Semiclassical Equations of Motion,
the Hamiltonian Formulation and Liouville’s Theorem

Let us try to prove the validity of the semiclassical equations of motion. The equation:

̇⃗r = V⃗n = 1ℎ ∂εn(k⃗)
∂k⃗

is equivalent to saying that the velocity of a semiclassical electron is the group velocity
of the underlying wave packet. We show, that equation:

ℎ ̇k⃗ = − |e| (E⃗( ⃗r, t) + 1
c [V⃗n(k⃗) × B⃗( ⃗r, t)]) ,

at least, is not contradictory.
In the case of a time independent electric field, the above equation seems quite

plausible because it provides the conservation of energy. Indeed, if the field is given
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by the expression E⃗ = −∇⃗φ, every wave packetwouldmove so that the electron energy
should remain constant. The time derivative of the energy is equal to zero:

∂εn
∂k⃗

⋅ ̇k⃗ − |e|∇⃗φ ⋅ ̇⃗r = 0 . (1.190)

Replacing (∂εn)/(∂k⃗) by ℎ ̇⃗r, we get:
ℎ ̇⃗r ⋅ ̇k⃗ − |e|∇⃗φ ⋅ ̇⃗r = 0 ,

or: ̇⃗r ⋅ [ℎ ̇k⃗ + |e|E⃗] = 0 , (1.191)

which is the same. Equation (1.191) is satisfied if:

ℎ ̇k⃗ = −|e|E⃗ . (1.192)

As can be seen, the resulting expression is nothing but the equation (1.184) in
the absence of a magnetic field. However, implementing equation (1.192) is not a nec-
essary condition for energy preservation. This is because expression (1.191) is zero
even by adding any vector perpendicular to the vector ̇⃗r to (1.192). To prove that the
term −|e|[V⃗n(k⃗)× B⃗( ⃗r, t)]/c is the only additional one and that the final equationmust
be carried out also for time dependent fields is a considerably daunting task, and it
should be omitted.

The semiclassical equations of motion (1.183) and (1.184) can be written in a com-
pact Hamiltonian form: ̇⃗r = ∂H

∂p⃗
, ̇p⃗ = −∂H

∂ ⃗r , (1.193)

where the Hamiltonian for an electron of the n-th zone is:

H( ⃗r, p⃗) = εn [1ℎ (p⃗ + |e|
c
A⃗( ⃗r, t))] − |e|φ( ⃗r, t) . (1.194)

The fields B⃗ and E⃗ can be expressed through the vector and scalar potentials:

B⃗ = rot A⃗ , E⃗ = −∇⃗φ − 1
c
∂A⃗
∂t . (1.195)

The variable k⃗ in the equation (1.183) and (1.184) is determined as follows:

ℎk⃗ = p⃗ + |e|
c A⃗( ⃗r, t) . (1.196)

Note that the Hamiltonian formulation contains the canonical momentum p⃗ not
coinciding with the quasimomentum ℎk⃗ of an electron in metals, and has the appear-
ance:

p⃗ = ℎk⃗ − |e|
c A⃗( ⃗r, t) . (1.197)

For the semiclassical equations of motion for an electron having the Hamiltonian
form, Liouville’s theorem holds true.
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Fig. 1.53: Semiclassical trajectories in x, k-space (the one-
dimensional case).

Liouville’s Theorem

In a six-dimensional phase space ( ⃗r, p⃗), any areas can evolve in time only if their vol-
umes are preserved.

The vector ℎk⃗ differs from p⃗ only by an additional vector, which does not depend
on p⃗ (1.196). Therefore, any area in the ( ⃗r, p⃗)-space has the same volume as in the( ⃗r, ℎk⃗)-space. This means the following. Imagine Ωt0 to be a region in the ( ⃗r, k⃗)-space
at amoment t0. Traveling outward according to the semiclassical equations ofmotion,
its points will comprise a set Ωt1 at an arbitrary moment t1 > t0. As a result, their
volumes Ωt0 and Ωt1 will match exactly (Figure 1.53):

V(Ωt0 ) = V(Ωt1 ) .
Let us discuss what this means for the completely filled electron energy bands.

Thewave vectors of the electrons lie within the reciprocal space volume d3k⃗. Since the
Fermi–Dirac distribution function is f = 1, the electron density is equal to d3 k⃗/(4π3).
Therefore, the number of electrons in the small volume d3 ⃗r of the coordinate space
amounts to:

dN = 1
4π3

d3 k⃗d3 ⃗r . (1.198)

Here, d3 k⃗d3 ⃗r is the volume element in the six-dimensional phase space ( ⃗r, k⃗) contain-
ing points corresponding to states of the electrons. By Liouville’s theorem, a certain
number of the points (dN = const), when driven, keep their phase volume unchanged:
d3k⃗d3 ⃗r = const. It follows that when the electrons move in accordance with the semi-
classical equations of motion, the density of the points corresponding to states of the
electrons in ( ⃗r, k⃗)-space remains constant:

dN
d3 k⃗d3 ⃗r = 1

4π3
= const .

From the perspective of full quantummechanical theory, this assertion emanates
directly from the Pauli principle. The density of points corresponding to states of the
electrons inside the completely filled band in the phase space cannot be enlarged be-
cause every level contains a maximum electron number allowed by the Pauli prin-
ciple. In our case, interband transitions are forbidden, so the electrons cannot leave
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their band limits. Consequently, the density of points featuring states of the electrons
in the completely filled band cannot be reduced.

Thus, the quasiclassical equations of motion for an electron are consistent with
the Pauli principle. The semiclassicalmodel does not contradict to a more fundamen-
tal quantum theory, and it can be used instead of the full quantummechanical theory.

1.15 The Lack of Contribution of Bands Completely Filled with
Electrons to an Electric Current and a Flux of Heat

To begin with, we prove the validity of the following auxiliary theorem. Suppose f(k⃗)
is an arbitrary function with lattice periodicity in reciprocal space: f(k⃗ + K⃗) = f(k⃗).
Then we have: ∫

Vb

d3k⃗ ∂
∂k⃗

f(k⃗) = 0 , (1.199)

where the integration is carried out over the first Brillouin zone Vb.
Since Vb is a primitive cell of the reciprocal lattice, for any vector k⃗󸀠 we have:

I(k⃗󸀠) = ∫
Vb

d3k⃗f(k⃗ + k⃗󸀠) = const . (1.200)

We now differentiate equation (1.200) over k⃗󸀠. After that, in the integrand, we re-
place the differentiation over k⃗󸀠 by the differentiation over k⃗:

∫
Vb

d3 k⃗ ∂
∂k⃗

f(k⃗ + k⃗󸀠) = 0 . (1.201)

Calculating this expression for k⃗󸀠 = 0, we obtain:

∫
Vb

d3 k⃗ ∂f(k⃗)
∂k⃗

= 0 ,

which was to be proved.
Now we will find the contribution of electrons to an electric current. If the wave

vectors of the filled band electrons occupy the volume d3 k⃗ in k-space, then the contri-
bution of these electrons to the total electron concentration is (d3 k⃗)/(4π3). If onemul-
tiplies the above value by (−|e|V⃗n(k⃗)), the electron contribution to the electric current
density is given by:

d ⃗je = d3k⃗
4π3

(−|e|V⃗n(k⃗)) = − |e|
4π3

d3k⃗1ℎ ∂εn∂k⃗
. (1.202)

The contribution of all the electrons of the completely filled energy band to the current
density is controlled by an integral of expression (1.202). In line with the previously
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proven theorem, the integral vanishes:

⃗je = − |e|
4π3ℎ ∫

Vb

d3 k⃗ ∂εn(k⃗)
∂k⃗

= 0 .

The function ε(k⃗) is periodic in the reciprocal lattice. The integration is over the entire
Brillouin zone.

Analogously, the heat flux carried by the electrons of the completely filled band
is also equal to zero:

⃗jq = 1
4π3

∫
Vb

d3k⃗V⃗n(k⃗)εn(k⃗) = 1
8π3ℎ ∫

Vb

d3k⃗ ∂
∂k⃗

ε2n(k⃗) = 0 . (1.203)

Thus, when calculating the electrical characteristics of a solid body, it is neces-
sary to take into account only partially filled bands. This explains the emergence of
a mysterious parameter of theory of metals; the number of conduction electrons. The
conductivity is caused only by the electrons of the partially filled bands.

Note that the identity: ∫
Vb

d3k⃗V⃗n(k⃗) = 0 , (1.204)

is true even when not all the energy levels have electrons. That the integral (1.204)
vanishes due to the fact that Vn(k⃗) = ∂εn(k⃗)/ℎ∂k⃗, where εn(k⃗ + K⃗) = εn(k⃗).
1.16 Holes

One of themost impressive results of the semiclassicalmodel is to explain phenomena
in terms of the free electron theory, by just assuming that the carriers have a positive
charge.

To understand why the quasiparticles in metals and semiconductors can some-
times give such a contribution to a current as if they were positively charged, it is nec-
essary to take into account three factors listed below [1].

1. All calculations, as used herein, are done at zero temperature, so that the
Fermi–Dirac distribution function f(k⃗) reduces to a step. Then the contribution of
electrons of an energy band labeled by n to the current density is determined by the
formula: ⃗jn = − |e|

4π3
∫d3 k⃗f(k⃗)V⃗n(k⃗) = − |e|

4π3
∫

filled
levels

d3k⃗V⃗n(k⃗) ̸= 0 , (1.205)

where the integration is performed over only filled levels of the energy band. Given
the identity (1.204): ∫

filled
levels

d3k⃗V⃗n(k⃗) + ∫
unfilled
levels

d3k⃗V⃗n(k⃗) = 0 , (1.206)
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expression (1.205) can be rewritten in the equivalent form:

⃗jn = |e|
4π3

∫
unfilled
levels

d3 k⃗V⃗n(k⃗) . (1.207)

Consequently, the current produced by electrons filling a certain set of the levels
coincides exactly withwhat can be obtained by leaving the levels unfilled but by occu-
pying the rest of the levels in the Brillouin zone by particles having a positive charge.

Thus, although the only real charge carriers are electrons, the current can be
viewed, when necessary, as consisting of entirely fictitious particles with a positive
charge, with those filling the band levels devoid of electrons. These fictitious particles
are called holes.

Both ways of describing electron and hole processes taking place in it are impos-
sible to apply simultaneously to one and the same band. Every particular problem
requires choosing the most convenient way of describing the processes.

2. Under external electromagnetic fields, unfilled levels in the band evolve in
such a way as if they were occupied by real electrons:

̇⃗r = V⃗n = 1ℎ ∂εn(k⃗)∂k⃗
,

ℎ ̇k⃗ = −|e| (E⃗( ⃗r, t) + 1
c [V⃗n(k⃗) × B⃗( ⃗r, t)]) .

(1.208)

The fact is that, under the given initial conditions, equation (1.208) describe cer-
tain paths, regardless of whether the electrons are in the levels εn(k⃗) or not. In this
case, the resulting trajectories do not intersect. Consequently, if all the trajectories
can be divided into occupied and empty ones at the initial time, they remain as such
at all subsequent times.

We have arrived at a statement equivalent to the result of classical mechanics. It
reads that the position and momentum of a particle completely determine its motion
trajectory at any instant of time.

An occupied level as well as an empty one evolves completely according to the
shape of the trajectory. The latter, in turn, depends on the form of the semiclassical
equations only, but it does not depend onwhether an electron resides in the trajectory
or not (Figure 1.54).

3. Therefore, to find out the behavior of a hole, it suffices to establish how an
electron responses to applied fields. The semiclassical equation

ℎ ̇k⃗ = −|e| (E⃗( ⃗r, t) + 1
c [V⃗n(k⃗) × B⃗( ⃗r, t)]) (1.209)

governs its motion.
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Fig. 1.55: Energy levels filled by electrons and
holes in a one-dimensional crystal.

In our case, two variants are possible:
(a) The solution ̇k⃗ ↑↑ (dV⃗/dt) of the semiclassical equations of motion corresponds

to the motion of a free particle with a negative charge.
(b) The solution ̇k⃗ ↑↓ (dV⃗/dt) of the semiclassical equations of motion corresponds

to the motion of a positively charged particle.

The second variant can be realized only when k⃗ is the wave vector of the unfilled level
(of a hole). Ultimately, this is explained by often being the unoccupied electron levels
(holes) near the top of the valence band (Figure 1.55). Let us explain this statement.

Suppose that, for k⃗ = k⃗0, the energy of the band ε(k⃗) have amaximum. For values
of k⃗ sufficiently close to k⃗0, the function ε(k⃗) can be expanded in powers of (k⃗ − k⃗0)
and still keep the first terms of the expansion:

ε(k⃗) = ε(k⃗0) + 3∑
i=1

∂ε
∂ki

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨k⃗=k⃗0 (k − k0)i + 1
2

3∑
i,j=1

∂2ε
∂ki∂kj

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨k⃗=k⃗0 (k − k0)i(k − k0)j .
At the maximum point ∂ε/∂k⃗|k⃗=k⃗0 = 0, the term linear in (k⃗ − k⃗0) disappears. For
simplicity,we suppose that the pointwith the radius vector k⃗0 possesses a high degree
of symmetry, that is:

∂2ε
∂ki∂kj

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨k⃗=k⃗0 = −2Aδij .
Since the function ε(k⃗) has a maximum at the point with the radius vector k⃗0, then
A > 0. So, we have:

ε(k⃗) ≈ ε(k⃗0) − A(k⃗ − k⃗0)2 . (1.210)
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Normally, it is necessary to determine a positive quantity m∗ with the dimension of
mass, assuming that:

A = ℎ2
2m∗

. (1.211)

Consequently,

ε(k⃗) ≈ ε(k⃗0) − ℎ2
2m∗ (k⃗ − k⃗0)2 . (1.212)

For electron states with wave vectors close to k⃗0, the relation holds true:

V⃗(k⃗) = 1ℎ ∂ε
∂k⃗

≈ − ℎ
m∗ (k⃗ − k⃗0) .

We come up with the result: ̇V⃗ = − ℎ
m∗

̇k⃗ . (1.213)

In other words, the electron acceleration is opposite to ̇k⃗. Using (1.213), we give the
equation of motion (1.209) the form:

ℎ ̇k⃗ = −|e| (E⃗ + 1
c
[V⃗ × B⃗]) = −m∗ ̇V⃗ . (1.214)

In the long run,we can reach a conclusion that a negatively charged electron responds
to driving fields as if it had a negative mass −m∗. Having changed the sign on both
sides of the equation,wemight aswell assume that this equation describes themotion
of a positively charged particle with positive mass m∗:

m∗ ̇V⃗ = |e| (E⃗ + 1
c [V⃗ × B⃗]) . (1.215)

We have proceeded from the statement that, in the external fields, the hole behaves
the same as the electron as if the latter were in an unoccupied level. According to the
above result (1.215), theholesbehave like ordinaryparticleswith apositive charge. The
quantity m∗, responsible for the dynamics of the holes near the points of maximum
of the band with a high degree of symmetry, is called the hole effective mass.

The requirement that the unoccupied levels should lie near the point ofmaximum
of the band with a high degree of symmetry can be significantly weakened. Consider
a general situation, when:

ε(k⃗) = ε(k⃗0) + 1
2

3∑
i,j=1

∂2ε
∂ki∂kj

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨k⃗=k⃗0 (k − k0)i(k − k0)j . (1.216)

If k⃗0 is the point of a local maximum of the function ε(k⃗), then:
3∑

i,j=1

∂2ε
∂ki∂kj

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨k⃗=k⃗0 sisj < 0 , ∀si , sj ̸= 0 . (1.217)
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Furthermore, we compute the group velocity of the wave packet underlying a
quasiparticle with the energy (1.216):

Vi = 1ℎ ( ∂ε
∂k⃗

)
i
= 1ℎ

3∑
j=1

∂2ε
∂ki∂kj

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨k⃗=k⃗0 (k − k0)j .
As the solutions of the quasiclassical equations behave differently at different relative
directions of ̇k⃗ and ̇V⃗, it can be assumed that the behavior of the quasiparticle depends
on the angle between the vector ̇k⃗ and acceleration ̇V⃗. Using equation (1.217), in the
vicinity of the local maximum of the function ε(k⃗), the following condition meets:

̇k⃗ ⋅ ̇V⃗ = 1ℎ
3∑

i,j=1

∂2ε
∂ki∂kj

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨k⃗=k⃗0 k̇i k̇j < 0 . (1.218)

In other words, the angle between the vectors ̇k⃗ and ̇V⃗ is obtuse. Consequently, sup-
pose the wave vector of the quasiparticle (the hole) remains close to a neighborhood
of the maximum of the function ε(k⃗). This would lead to the hole being affected by
external fields as if it had a positive charge.

Near the local minimum of the function ε(k⃗), similar calculations yield ̇k⃗ ⋅ ̇V⃗ > 0.
In other words, the same semiclassical equations of motion describing the dynam-
ics of quasiparticles near the bottom of the conduction band results in a path that is
characteristic of a negative charge (an electron).

In general, it would be reasonable to introduce the concept of the effective mass
tensor near extrema of the function ε(k⃗):

(M−1)ij = ± 1ℎ2 ∂2ε
∂ki∂kj

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨k⃗=k⃗0 = ±1ℎ ∂Vi
∂kj

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨k⃗=k⃗0 . (1.219)

The nature of the extremum manages the choice of the sign in this expression: if the
extremum is a local maximum, then we choose the minus sign (the tensor describes
holes), and if the extremum is aminimum,we choose the plus sign (electrons). In both
cases, the effective mass tensor Mij is positive definite:

3∑
i,j=1

Mijxixj > 0 , ∀xi , xj ̸= 0 . (1.220)

Given ̇V⃗ = ±M̂−1ℎ ̇k⃗, the equation of motion takes the form:
M̂ ̇V⃗ = ∓|e| (E⃗ + 1

c [V⃗ × B⃗]) , (1.221)

where the sign “−“ is chosen for the electrons, and the sign “+” – for the holes.
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Fig. 1.56: Energy levels are filled, typically for semiconduc-
tors (a one-dimensional crystal).

Thus, we have derived a linear equation, which looks like Newton’s equation, where
the mass substitutes for a tensor quantity. Such equations quite accurately describe
the dynamics of electrons andholes in semiconductors. This is explained by the filling
of the energy levels that is inherent in semiconductors as shown in Figure 1.56.

The band gapwidth εg in intrinsic semiconductors is small. So, a significant part of
thermally excited electrons can tunnel from the highest completely filled band (called
the valence band) to the nearest unfilled zone (the conduction band).

In the valence band, the holes, that are the spaces empty of the electrons are near
a local maximum of the function ε(k⃗). Therefore, they behave in external fields as
positive charges. The electrons are located near the localminimumof the function ε(k⃗)
and move in external fields as negative charges.

1.17 Semiclassical Motion of Electrons in a Crystal in Constant
Electric and Magnetic Fields

I. The Motion of Electrons in an Electric Field

Consider themotion of electrons in a crystal in the presence of a constant electric field:

E⃗ = const , B⃗ = 0 . (1.222)

In such a field the semiclassical equations of motion appear as:

̇⃗r = V⃗n = 1ℎ ∂εn(k⃗)∂k⃗
. (1.223)

ℎ ̇k⃗ = −|e|E⃗ . (1.224)

Integrating equation (1.224), we get:

k⃗(t) = k⃗(0) |e|E⃗ℎ t . (1.225)
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As can be seen, during the time t the wave vectors of all the electrons acquire the
same displacement, regardless of whether their initial states k⃗(0) belong to a filled or
unfilledband. This agreeswith the statement that a completely filled energy banddoes
not create an electric current (see the proof of the assertion). From the point of view
of classical physics, the same displacement of the wave vectors of all the electrons in
the completely filled energy band without creating a current configuration seems to
be strange.

An understanding of why quantum theory approves the previously said comes
from the proportionality of the contribution of the group velocity of an electron rather
than its wave vector to the total current. The electron velocity in a crystal at the time t
is given by:

V(k⃗(t)) = 1ℎ ∂εn(k⃗(t))∂k⃗(t) , (1.226)

where k⃗(t) is determined by equation (1.225). Consequently, the constant electric field
causes the velocity of an electron in a metal to be a periodic and time limited func-
tion. If the electric field strength vector is codirected to the reciprocal lattice vector
(E⃗ ↑↑ b⃗i), the function V⃗ is even oscillating! However, free electrons behave in an ex-
ternal electric field absolutely differently because their velocity V⃗ is proportional to k⃗
and linearly rises with time.

Nowwe turn our attention to a one-dimensional crystalmodel. Figure 1.57 follows
the dependencies of the electron energy and its velocity on the wave number k⃗ in the
reduced zone scheme.

Given that ℎk̇ = −|e|E = F, where F is a force acting on the electron, we find the
acceleration acquired by the electron under the force:

V̇ = (∂V∂k k̇) = ∂V
∂k

Fℎ . (1.227)

k
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V
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Fig. 1.57: The dependencies of the ε(k) and V(k)
quantities on k for a one-dimensional crystal.
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In classical physics, acceleration is always codirected to a force. However, we get that:

V̇ ↑↑ F only when ∂V
∂k > 0 ,

V̇ ↑↓ F when ∂V
∂k < 0 .

(1.228)

Of course, the case of a one-dimensional crystal talks about directions of the force and
acceleration only along a straight line.

The electron behaves so unusually due to an additional force caused by the peri-
odic potential of the lattice ions. Nevertheless, though the semiclassical model does
not explicitly contain the force, it takes the force into account through the dispersion
law of ε(k⃗).

At T = 0K the density of the electric current in a one-dimensional crystal is cal-
culated from the expression:

j = − |e| ∫V (k0 − |e| Etℎ ) dk0
2π

. (1.229)

When the energy band is completely filled, the integration is over a unit cell of the
reciprocal space, from −π/a to π/a, for example. The result is a zero.When the band is
partially filled, the integration is over a part of the segment [−π/a, π/a]. In this case,
a static electric field in the crystal would create an alternating electrical current. In
reality this does not happen due to the high frequency of collisions.

With reasonable values of the electric field strength and the relaxation time, the
change of the wave vector of each electron between collisions is small in comparison
to the band sizes. For the electric field of the order of 10−2 V/cm and the relaxation
time of τ = 10−14 sec, the magnitude of |e|Eτ/ℏ has the order of 10−1cm−1. The band
sizes are about 1/a ∼ 108 cm−1.

The motion of electrons in a conductor can be treated as follows. Under the elec-
tric field, the electron moves with acceleration until it loses a part of its energy due
to collisions with a lattice defect, an impurity atom, or any other scatterer. Then the
electron is again accelerated by the applied field, and the process is repeated. Such
a stepwise motion of the electron can be characterized by some approximate average
velocity of ordered motion. The periodic motion of electrons in real metals is impossi-
ble to observe because the electrons move a little between collisions. On average, for
a long period of time, their motion looks almost uniform.

At the same time, the oscillatorymotion of electrons in a constant electric field, in
principle, can be expected to occur in sufficiently pure crystals at low temperatures.
Let us estimate the possible parameters of suchmotion in a three-dimensional crystal.
Equations (1.223) and (1.224) allow the law of conservation of energy:

ε(k(t)) − |e| E⃗ ⋅ ⃗r(t) = const . (1.230)

Since
k⃗(t) = k(0) − |e| Etℎ ,
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(1.230) implies that the motion of the electron in r-space is finite. If E⃗ ↑↑ b⃗i, the elec-
tron in reciprocal space oscillates. We can now estimate the oscillation period:

|e| |E⃗|ℎ T = |b⃗i| . (1.231)

T = ℎ|e| |E⃗| |b⃗i| ∼ ℎ
a|e| |E⃗| , (1.232)

as |b⃗i| ∼ 1/a (a is the lattice constant). The amplitude of these oscillations amounts
to ∆r ∼ ∆ε/|eE|, where ∆ε is the width of the energy band.
II. The Motion of Electrons in a Magnetic Field

Much important information about the electronic properties of metals and semicon-
ductors can be obtained by taking measurements of their response to various distur-
bances under a constant magnetic field:

E⃗ = 0 , B⃗ = const .

For definiteness, suppose that themagnetic field is directed along the axisOz. The
semiclassical equations in such a field take the form:

̇⃗r = V⃗n = 1ℎ ∂εn(k⃗)∂k⃗
, (1.233)

ℎ ̇k⃗ = − |e|c [ ⃗Vn(k⃗) × B⃗] . (1.234)

Of these, it follows directly that the vector component k⃗ along the field and the energy
of the quasiparticle ε(k⃗) are integrals of motion:

̇k⃗ ⋅ B⃗ = 0 ⇒ kz = const ,

dε(k⃗(t))
dt = ( ∂ε

∂k⃗
⋅ ̇k⃗) = −|e|ℎcℎ V⃗ ⋅ [V⃗ × B⃗] = 0 ⇒ ε(k(t)) = const .

The two conservation laws completely govern the trajectory of electrons and holes
in k-space. The electrons (holes) move along the curves defined by the intersection of
constant energy surfaces ε(k⃗) = const and planes kz = const (Figure 1.58).

The properties of the crystal are determinedmainly by electrons and holes having
energy close to the Fermi energy. It can be thought that the surface ε(k⃗) = const co-
incides accurately with the Fermi surface. In other words, it is the shape of the Fermi
surface that attention should be paid to when moving the electrons and holes in a
magnetic field.
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Fig. 1.58: The trajectory of an electron in
k-space.

In order to establish the direction of orbital motion, we note that:

V⃗ = 1ℎ ∂ε
∂k⃗

= 1ℎ ∇⃗kε . (1.235)

The gradient in turn evolves towards increasing energy. Consequently, the velocity of
the quasiparticle is directed towards higher energies. In combination with the equa-
tion: ℎ ̇k⃗ = − |e|

c
[V⃗ × B⃗] , (1.236)

this means that if one travels in k-space along the path k⃗(t) towards the motion of
the quasiparticle, and the magnetic field is directed upwards, the right-hand side has
values of k⃗ corresponding to higher energy levels.

This rule again yields the following conclusion. The filled energy electronic states
near the bottom of the conduction band correspond to trajectories for negatively
charged particles of classical physics. At the same time, the states near the top of the
valence band and unoccupied by electrons formhole paths, which are similar to those
for positively charged particles of classical physics (Figure 1.59). For definiteness, we
will only talk about electrons.

In coordinate space, the electron has motion of more complex patterns. Consider
the projection of its trajectory on a plane perpendicular to the vector of magnetic in-
duction: ⃗r⊥ = ⃗r − n⃗(n⃗ ⋅ ⃗r) where n⃗ = B⃗/|B⃗|. The desired projection can be found by
vectorially multiplying both sides of the equation (1.236) by the unit vector n⃗ directed

    = constkzthe plane

(a) (b)

B

more higher energies

the electron path

B

the hole path

more higher
energies Fig. 1.59: The dependence of the direction

of the quasiparticle motion in a magnetic
field on the nature of the energy level fill-
ing.
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along the field. This gives the following equality:

[n⃗ × ̇k⃗] = − |e| |B⃗|ℎc ( ̇⃗r − n⃗(n⃗ ⋅ ̇⃗r)) ,

or

[n⃗ × ̇k⃗] = − |e| |B⃗|ℎc ̇⃗r⊥ . (1.237)

After integrating expression (1.237), we come to:

⃗r⊥(t) − ⃗r⊥(0) = − cℎ|e| |B⃗| [n⃗ × (k⃗(t) − k⃗(0))] . (1.238)

Note that the cross product of the unit vector and its perpendicular vector equals
to the latter rotated around the unit vector by an angle of 90°. Therefore, in real space
the projection of the electron trajectory onto a plane perpendicular to the field is a
trajectory rotated by 90° around the field direction in k-space, with the scales of the
trajectories differing (cℎ)/(|e| |B⃗|) times.

In addition, attention should be drawn to the fact that, in the case of free elec-
trons, the constant energy surfaces are the spheres ε = (ℎ2k2)/(2m). Their intersec-
tions with the planes kz = const yield circumferences. A circumference rotated by 90°
remains a circumference. Thus,we again get the familiar result: being projected onto a
plane perpendicular to the field, where the trajectory of the free electron outlines a cir-
cumference in the plane. In general semiclassical cases, the orbits are not necessarily
circular; they are often even unclosed (Figure 1.60).

We cannot exactly say how the electron travels along the axis Oz. This is because
the electron coordinate along the axis Oz is given by the relation:

z(t) = z(0) + t∫
0

Vz(k⃗(t󸀠))dt󸀠 , (1.239)

where Vz(k⃗(t)) = (1/ℎ)(∂ε/∂kz). Even when kz = const, the quantity Vz may be vari-
able. Therefore, the electron’s motion along the magnetic field may be uneven. This
is another illustration of the fact that an electron in a crystal behaves differently to an
isolated electron in a constant magnetic field.

kx

ky

kz

O

B

    = constkz

the plane

Fig. 1.60: The path in the plane kz = const (in this case,
the trajectory is unclosed).
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The velocity of motion along the orbit in k-space can be expressed in terms of the
geometric characteristics of the band structure. Suppose an orbit with the energy ε
lies in the plane kz = const, perpendicular to the applied field. The time required for
the passage of a part of the orbit between the points with the k⃗1 and k⃗2 radius vectors
is estimated as the integral:

t2 − t1 = t2∫
t1

dt = k2∫
k1

dk

| ̇k⃗| .
In what follows, it is considered that dk = |dk⃗|. Given that:

| ̇k⃗| = |e|
cℎ 󵄨󵄨󵄨󵄨󵄨[V⃗ × B⃗]󵄨󵄨󵄨󵄨󵄨 = |e| |B⃗|

cℎ |V⊥| = |e| |B⃗|
cℎ2

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨( ∂ε∂k⃗)⊥
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 ,

we come up with:

t2 − t1 = ℎ2c|eB|
k2∫
k1

dk󵄨󵄨󵄨󵄨󵄨(∂ε/∂k⃗)⊥󵄨󵄨󵄨󵄨󵄨 . (1.240)

Here, ((∂ε)/(∂k⃗))⊥ is the component of the vector (∂ε)/(∂k⃗), perpendicular to the field
or the projection of this vector onto the plane kz = const.

Refer to Figure 1.61. Suppose ∆⃗(k⃗) is a vector lying in the plane kz = const and
that it is perpendicular to the trajectory with the energy ε at the point k⃗. Let the energy(ε + dε) corresponds to a trajectory lying in the same plane and this vector connects
the two paths. Now, when the magnitude of dε is small and positive, we will have the
following:

dε = ( ∂ε
∂k⃗

⋅ ∆⃗(k⃗)) = 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨( ∂ε∂k⃗)⊥
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 |∆⃗(k⃗)| . (1.241)

As can be seen from the figure, the electron’s trajectory in reciprocal space is the
intersection of the surfaces ε(k⃗) = const and kz = const. The vector (∂ε/∂k⃗) is per-
pendicular to the surface ε(k⃗) = const. Consequently, the vector (∂ε/∂k⃗) is perpen-
dicular to the trajectory as well but, generally speaking, does not belong to the plane
kz = const. At the same time, the vector (∂ε/∂k⃗)⊥ is perpendicular to the trajectory

dkk1

k2

ε ε+dε

O

Δ(  )k

kz = const

Fig. 1.61: The shaded strip in the
plane kz = const, bounded by the
trajectories with the ε and (ε + dε)
energies.
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Fig. 1.62: The electron motion along a closed path in
k-space.

and lies in the plane kz = const. Moreover, under the condition dε > 0 it is codirected
to the vector ∆⃗(k⃗). Then expression (1.240) can be written in the form:

t2 − t1 = ℎ2c|eB| 1dε
k2∫
k1

dk|∆⃗(k)| = ℎ2c|eB| dA12
dε

. (1.242)

The integral computes the area of A12, a segment of the plane kz = const. The segment
is bounded between two nearest trajectories from the point with the radius vector k⃗1
to the point with the radius vector k⃗2. The quantity (dA12)/(dε) is the rate of change of
the area swept out by a part of the trajectory between the points with the above radius
vectors in the plane kz = const.

When the trajectory is a simple closed curve, the k⃗1 and k⃗2 vectors can be chosen
in such a way to obtain a closed loop. Then the value of (t2 − t1) equals to a period T
of the electron’s motion along the closed orbit. If A is the area of that part of the plane
kz = const that our closed trajectory covers (Figure 1.62), formula (1.242) provides:

T(ε, kz) = 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 ℎ
2c
eB

d
dε

A(ε, kz)󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 . (1.243)

For various values of kz, information of the Fermi surface shape can be obtained
through measuring the period of the electron motion.

1.18 General Properties of Semiconductors: the Concentration of
Electrons and Holes and the Law of Mass Action

As we have previously seen, electrons of a completely filled band cannot carry a cur-
rent. It is this property that determines the difference between metals and insulators.
An insulator, being in the ground state, has all its bands either completely full or com-
pletely empty. A metal in the ground state contains at least a partially filled band.

Insulators can be characterized by the value of the energy gap or band gap be-
tween the top of the valence band and the bottomof the conduction band (Figure 1.63).
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Fig. 1.63: The spectrum of electron energy in a one-dimensional crystal.
The black points indicate states occupied by electrons.

Solids, being insulators at T = 0K but having energy gaps less than εg ≤ 2 eV, are
called semiconductors. These materials show noticeable conductivity when thermally
excited at temperatures below the melting point.

At nonzero temperature, the smallness of band gaps causes high probability of
transferring some thermally excited electrons from the valence band to the conduc-
tion band. As a result, equal small numbers of the electrons with the charge −|e| and
the holeswith the charge+|e| emerge in the conduction band and in the valence band,
respectively. Consequently, the low electrical conductivity of semiconductors is pro-
vided by both electrons of the conduction band and holes (missing electrons) of the
valence band.

The typical specific resistivities of semiconductors at room temperature lie in the
range of 10−3 and 109Ω ⋅ sm. As a reference source, the specific resistance of metals
is ρ ≈ 10−6Ω ⋅ sm. For good insulators, ρ can reach up to 1022Ω ⋅ sm. We can say that
a semiconductor is a bad insulator at room temperature.

The conductivity coefficient σ for metals in the free electron approximation is
given by:

σ = ne2τ
m , (1.244)

and decreases with increasing temperature. In metals, the carrier concentration n is
not temperature dependent. The entire temperature dependence is associated with
the relaxation time τ. The latter diminishes as the temperature grows due to intensi-
fying effects of electron scattering by lattice vibrations.

Unlikemetals, semiconductors change not only τ but their carrier density n under
varying temperature. Namely, the concentration rises steeply with increasing temper-
ature. Moreover, the contribution of an increase in the charge carrier concentration
prevails over the contribution of a decrease in the relaxation time τ. As a result, the
temperature goes up, and the conductivity coefficient σ increases as well. Therefore,
in contrast to metals, the main feature of semiconductors is for their resistance to fall
sharply as the temperature rises.

The case study indicates that the most important issue in semiconductor physics
is to calculate the charge carrier concentration. To put it differently, the density of
electrons in the conduction band and of holes in the valence band must be found.
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The carrier concentration in semiconductors is very low. Therefore, the behavior
of electrons andholes obeysMaxwell–Boltzmann statistics. Furthermore, the electron
and hole concentration values are strongly impurity dependent. That is why the early
stages of development of semiconductor physics significantly delayed the accumula-
tion of reliable information on the semiconductor materials.

Semiconductor physics of the twentieth century took great strides towards devel-
oping world civilization. High efficiency solar cells, devices of modernmicroelectron-
ics, powerful compact lasers, methods of recording, storing, and reading information
in modern computers, etc., use the unique properties of semiconductors.

The Number of Carriers at Thermodynamic Equilibrium

Themost important characteristic of semiconductors at a temperature T is the number
of electrons in the conduction band per unit volume and the number of holes in the
valence band per unit volume. Our task is to learn to calculate the concentrations as
functions of temperature. This is because it is these electrons and holes being close to
the maximum and minimum of the conduction band and valence band, respectively,
that are responsible for the conductivity of semiconductors. Near the extrema speci-
fied, the relations between the energy and the wave vector of electrons and holes are
approximated with good accuracy by quadratic forms:
– For electrons:

ε(k⃗) ≈ εc + ℎ2
2me

(k − kc)2 , (1.245)

– For holes:
ε(k⃗) ≈ εv − ℎ2

2mh
(k − kv)2 , (1.246)

whereme is themass of an electron andmh is themass of a hole; k = |k⃗|. Formulas
(1.245) and (1.246) result in the series expansion of the dispersion law:

ε = ε(|k⃗|) . (1.247)

Here, we are viewing a simple dispersion law (1.247) in order to not complicate
further exposition.

Let us designate the density of energy levels in the conduction band as 𝑣c(ε), in the
valence band as 𝑣v(ε). The level densities can be taken from the theory of an ideal gas
of fermions, where the relationship between ε and k is similar to (1.245) and (1.246):
– For electrons in the conduction band (ε > εc):

νc(ε) = me(πℎ)2√2meℎ2 (ε − εc) , (1.248)
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– For holes in the valence band (ε < εv):
νv(ε) = mh(πℎ)2√2mhℎ2 (εv − ε) . (1.249)

The concentration values, as we will see later, are strongly impurity dependent. How-
ever, there are some general relationswhich should be considered in the first instance.

I. The Concentration of Electrons

It is worth recollecting that the conductivity of semiconductors is governed both by
electrons residing at levels in the conduction band and by holes being at levels in
the valence band. Then, whatever the impurity concentration, the number of carriers
available at a given temperature T in the range of energies (ε, ε + dε) is described by
the following formulas:
– For electrons:

∆N
V = νc(ε)f(ε)dε , (1.250)

– For holes:
∆N
V = νv(ε)(1 − f(ε))dε , (1.251)

where the Fermi–Dirac distribution function appears as:

f(ε) = 1
exp [(ε − μ)/kBT] + 1 . (1.252)

In determining the concentration of electrons andholes, the effect of impuritiesmakes
itself felt only through the chemical potential μ. For the latter, as will be shown below,
the following relations hold:

εc − μ ≫ kBT ,
μ − εv ≫ kBT .

(1.253)

Next, we employ the following procedure: taking the conditions (1.253), we find
the concentration values for electrons and holes in semiconductors. Knowing infor-
mation about the possible impurity levels, we can calculate the real value of the chem-
ical potential μ. In conclusion, we check whether μ falls in the range defined by the
conditions (1.253).

The concentration of electrons in the conduction band is given by:

n = +∞∫
εc

νc(ε)f(ε)dε . (1.254)

Under the conditions (1.253) the Fermi–Dirac distribution reduces to the Maxwell–
Boltzmann distribution:

f(ε) = [exp ( ε − μ
kBT

) + 1]−1 ≈ exp (μ − ε
kBT

) . (1.255)
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As can be noticed, the multiplier (1.255) in the integrand of (1.254) rapidly decreases.
Therefore, the replacement of the upper limit of integration in formula (1.254) by +∞
makes no discernible errors.

Entering the new variable of integration:

ε − εc
kBT

= u ,

from (1.254) and (1.255), we find:

n ≈ ∞∫
εc

me(πℎ)2√2meℎ2 (ε − εc) exp (μ − ε
kBT

) dε =
= me(πℎ)2√2meℎ2 exp (μ − εc

kBT
) (kBT)3/2∞∫

0

u1/2e−udu⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
√π/2

,

n ≈ Nc exp (− εc − μ
kBT

) . (1.256)

Here, the effective density of states in the conduction band is:

Nc = 1
4 (2mekBT

πℎ2 )3/2 . (1.257)

It is necessary to emphasize that formula (1.257) is valid both for impurity and for pure
semiconductors.

WeestimateNc for silicon.At T = 300Kand forme = 0.2m,wherem is the tabular
mass of an electron, we have Nc = 2.2 ⋅ 1018cm−3.
II. The Concentration of Holes

The function f(ε) gives the average number of spin projected electrons occupying the
energy level ε. According to the Pauli principle:

0 ≤ f(ε) ≤ 1 . (1.258)

The function f(ε) can be interpreted as the probability of occupying the energy state ε
by spin projected electrons. Then, the state occupation probability for holes is:

fh(ε) = 1 − f(ε) = 1 − 1
exp [(ε − μ)/kBT] + 1 = 1

exp [(μ − ε)/kBT] + 1 . (1.259)
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Under the conditions (1.253), the distribution (1.259) also reduces to the Boltzmann
distribution:

fh(ε) ≈ exp (−μ − ε
kBT

) . (1.260)

Hence, it is easy to estimate the concentration of holes in the sameway as the electron
density has been recently calculated:

p ≈ εv∫
−∞

νv(ε)fh(ε)dε . (1.261)

p ≈ Nv exp(−μ − εv
kBT

) . (1.262)

Here Nv is the effective density of states in the valence band, both in impurity and in
pure semiconductors. It equals to:

Nv = 1
4 (2mhkBT

πℎ2 )3/2 . (1.263)

The electron and hole density values cannot be computed until the chemical po-
tential μ is unknown. However, the product of these two concentrations do not de-
pends on μ:

np = NcNv exp (−εg/kBT) , (1.264)

where εg = (εc − εv) is the energy gap width. The result obtained is referred to as
the law of mass action. It means that it is sufficient to know the concentration of one
charge carrier type, in order to find the concentration of another charge carrier type
(at a given temperature). Methods of calculating the densities depend on how much
the impurities contribute to the carrier concentration.

The universal formula (1.264) originates from the following simple reasoning. In
a state of thermodynamic equilibrium, the number of electrons passing from the va-
lence band to the conduction band per second is proportional to the transition prob-
ability of a single electron from the valence to conduction band. It can therefore be
written as:

Ntrans = A exp (−εg/kBT) , (1.265)

where A is a coefficient of proportionality. The electron can go back only if the valence
bandhas ahole. Then thenumber of transitions of electronsper second from theupper
conduction band to the lower valence band must be proportional to the product of
the electron and hole concentrations. In a state of thermodynamic equilibrium, the
numbers of direct and inverse transitions are equal, so we have:

np ∼ exp (−εg/kBT) . (1.266)
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1.19 Intrinsic Semiconductors

A semiconductor crystal that is so pure that the impuritiesmake a negligible contribu-
tion to the carrier concentration is called an intrinsic semiconductor. In intrinsic semi-
conductors, the concentrations of electrons ni and holes pi are ideally equal, since
these particles emerge and annihilate in pairs. Using the law of mass action (1.264),
we find the concentration value:

ni = pi = √NcNv exp (−εg/2kBT) . (1.267)

In formula (1.267), the main temperature dependence is related to the exponential
factor. In the calculations, it can be considered that NcNv ≈ const in the main ap-
proximation (Figure 1.64). The index i, as labeled herein, denotes parameters of pure
semiconductors.

We can find the chemical potential μi for intrinsic semiconductors, setting equal
the expressions for the concentrations (1.267) and (1.262):

μi = εv + 1
2εg + kBT

2 ln Nv
Nc

= εv + εc
2 + 3

4 kBT ln
mh
me

. (1.268)

At T → 0K, the chemical potential lies exactly in the middle of the band gap
(Figure 1.65). Moreover, since the ratiomh/me is a magnitude of the order of unity, the
chemical potential μi does not differ much from the value (εv + εc)/2, even at room
temperatures. As a result, we have:
– For electrons:

ε − μ ≥ εg/2 , (1.269)

– For holes:

μ − ε ≥ εg/2 . (1.270)
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Fig. 1.64: The concentration of
electrons in intrinsic semicon-
ductors.
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Fig. 1.65: A chemical potential energy
diagram for intrinsic semiconductors
(a one-dimensional crystal).
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In the calculations, the assumption has been done that |ε − μ| ≫ kBT (1.253). It is
equivalent to εg ≫ kBT. The latter condition is fulfilled for all semiconductors at about
room temperature.

Let us carry out some numerical estimates. The concentration of charge carriers in
intrinsic semiconductors at room temperature is ni ∼ 106 cm−3. This value is many or-
ders less than the concentration of electrons inmetals (ni ∼ 1022cm−3). Consequently,
the conductivity of intrinsic semiconductors is extremely small. Experimentally, the
electrical conductivity observable exceeds the intrinsic electrical conductivity of even
very pure semiconductors. This is explained by the capability of even small propor-
tions of impurities to significantly alter the charge carrier concentration and, hence,
the conductivity of semiconductors.

1.20 Impurity Levels

An impurity is called a donor that supplies extra electrons to the conduction band. An
impurity is called anacceptor that supplies extra holes to the valence band or captures
electrons from it.

Donor impurities are atoms of a higher valence than those forming a pure sub-
stance. Acceptors, in turn, are lower valence atoms.

The most common semiconductor of the group IV elements of the periodic table
is germanium (Ge). Each atom of germanium is at the center of a regular triangular
pyramid whose vertices have four neighbors. Silicon and diamond are the same crys-
tal lattice. Figure 1.66 shows a unit cell of the crystal lattice of germanium (atoms of
germanium reside in vertices of a tetrahedron and in its center).

a1

a2

a3

b1

b2

Fig. 1.66: The unit cell of the crystal lattice of germanium, where a⃗1, a⃗2, a⃗3
are Bravais lattice vectors; b⃗1 = (0, 0, 0), b⃗2 = (1/4)(a⃗1 a⃗2 a⃗3) are vec-
tors characterizing the positions of germanium atoms (black spheres) in the
unit cell.

For clarity, we project the picture of bonds on a plane (Figure 1.67). The double lines il-
lustrate covalent bonds between germaniumatoms. Eachatom of germaniumdonates
four valence electrons to bond its neighbors. Finding two electrons in the double line
area is highly probable.

Let us discuss what happens to a semiconductor doped by a small amount of ar-
senic (As); a pentavalent impurity. Arsenic has five valence electrons. Four of them
are adjacent to germanium atoms, according to the scheme previously proposed. The
fifth electron is redundant. The extra thermally excited electrons tear away from the
arsenic ions, leaving a fixed positive charge +|e| in the lattice site. These provide con-
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Ge
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Fig. 1.67: The picture of germanium
atom bonds in a plane.
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As+
e-

Fig. 1.68: The picture of atom bonds of germa-
nium with an arsenic donor impurity atom.

ductivity. An arsenic atom, when ionized, is a donor because it gives its electron into
the conduction band.

We estimate the energy of a loose chemical bond between the fifth electron and
the As+ ion core. The problem of seeking the wave functions and energies of the ex-
cessive (fifth) electron is similar to the problem of a hydrogen atom. The As+ ion core
plays the role of a proton; the fifth electron is like a single electron in a hydrogen atom
(Figure 1.68).

If the impurity was not inside the semiconductor but in the empty space, the im-
purity ionization energy would be just equal to the first ionization potential of the
hydrogen atom, equal to 13.6 eV. However, due to being the impurity inside the semi-
conductor, the ionization energy is significantly reduced. This occurs for the following
reasons.
1. The effective mass of the electron in the crystal is significantly different from the

free electron mass.
2. The excessive electron in the Coulomb field of the impurity atom has the potential

energy−e2/εr (in theCGS system),where ε is thedielectric permittivity of covalent
crystals. The multiplier 1/ε (ε > 1) allows for the screening of the Coulomb forces
due to electronic polarization of the medium.

It should be especially emphasized that microscopics validly describes the screening
of the electronion interactions in terms of the dielectric permittivity ε only for the elec-
tron orbits sufficiently large compared with the interatomic distance: Rorb ≫ a. In
this case, the motion of the electron is slow enough because its orbital revolution fre-
quency ωorb must be much smaller than the characteristic frequency εg/ℏ of energy
transitions in the semiconductor. Only under these conditions does the electron feel
the mean field of the crystal.

The conditions formulated above are well met for pentavalent impurities being
added to semiconductor crystals with covalent bonds of tetravalent atoms. Later we
will confirm this by numerically estimating Rorb and ωorb.

It is known that the binding energy of an electron in a hydrogen atom is:

εb = − e4m
2ℎ2 . (1.271)
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In our case, e2 substitutes for e2/ε, and m – for me. Therefore, the ionization energy
of the donor impurity in the semiconductor (the ionization energy differs in the sign
from the binding energy) takes the following form:

Wd = e4me
2ε2ℎ2 = me

mε2
13.6 eV . (1.272)

We see that an additional factor appears here.
The Bohr radius of an electron in a hydrogen atom is:

aB = ℎ2
me2

. (1.273)

Therefore, we can determine the electron orbital radius around the As+ ion:

Rorb = εℎ2
mee2

= εm
me

aB . (1.274)

Since the mass me of an electron in semiconductors is about one order of mag-
nitude smaller than the free electron mass and the relative dielectric constant is one
order greater:

m
me

∼ 10 , ε ∼ 10 , (1.275)

from (1.274) and (1.275) we obtain:

Rorb ≈ 100aB ≫ aB . (1.276)

Formula (1.276) justifies our calculation because of the assumption that the orbital
radius of the fifth electron is much greater than the interatomic distance underlying
both the semiclassical model and the macroscopic dielectric permittivity being used.

In addition, we conclude from (1.275) and (1.272) that the donor ionization energy
may diminish a thousand times or more as compared to the value of 13.6 eV:

Wd ≈ 0.013 eV , εg ≈ (1 ÷ 2) eV ⇒ Wd ≪ εg . (1.277)

Therefore, the condition of slow motion along the orbit is fulfilled:

ωorb ∼ Wdℎ ≪ εgℎ . (1.278)

For the hydrogen configuration at hand, the conduction band plays the role of a
continuous spectrum. So the electron impurity binding energy is measured from the
bottom of the conduction band downwards. This yields the logical conclusion that the
donor impurities cause extra electronic levels to emerge, with the latter energies εd be-
ing less than the energies εc corresponding to the conduction band bottom. Moreover,
the energy difference εc − εd = Wd is small compared with the width of the forbidden
band.
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If one somehow succeeds in increasing the electron energy of the impurity byWd,
the electron will transition to the bottom of the conduction band where its wave func-
tion is not localized near the donor site. At low enough temperatures, donor impurity
semiconductors have electrons as major charge carriers. These are called n-type semi-
conductors (n stands for negative current carriers).

At high temperatures, the transition of electrons from the valence to the conduc-
tion band is possible, so that the impurity and intrinsic conductivities are combined.

Similar reasoning is applicable to acceptor impurities, whose valence is unity less
than the valence of the basic substance. For example, a boron atom (B) has only three
valence electrons. It needs one electron from the bondsGe–Ge to complete its covalent
tetrahedral bonds with the basic substance atoms, forming a hole in the germanium
valence band. The hole formed and the B− ion are weakly connected with each other
(Figure 1.69). The hole, when thermally excited, easily breaks the bond, taking part in
the conductivity of the semiconductor. The boron atom is an acceptor because it turns
into the B− ion through capturing an electron from the valence band. Semiconduc-
tors doped with acceptor impurities are known as p-type semiconductors. Their main
charge carriers are holes, i.e., positive charge carriers.

GeGe

Ge

Ge

Ge

Ge

Ge

B-

+

Fig. 1.69: The pattern of bonds between Ge atoms and an
acceptor impurity atom of B.

The binding energy between the positive hole and the negative ion B− can be calcu-
lated in a similarmanner. At the same time, the energy diagram indicates that the hole
increases its energy when passed towards the negative energy region. Therefore, un-
like the previous case, the binding energy between the hole and the impurity atom
turns out to be positive. This energy is small, compared to the width of the forbidden
zone, and has a value of:

Wa = mhe4

2εℎ2 . (1.279)

From a physical point of view, the ionization of the acceptor atom is to transition
an electron from the valence band to the level εa lying slightly above the valence band
bottom: εa − εv = Wa > 0.

Formally, that process can be treated as follows. Being initially in the orbit near
the B− ion, the hole changes its ground state εa to states of a continuous spectrum of
the hydrogen like configuration. These states belong to the valence band of the semi-
conductor.
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The valence band

The conduction band

Wd

Wa

x

ε

εc

εd

εa

εv

Fig. 1.70: Energy diagram: (εc − εd) is the ionization
energy of an electron localized on a donor impurity,
(εa − εv) is the binding energy of a hole localized
near an acceptor impurity.

General Conclusions

The impurity energy levels always lie in the forbidden band near the top of the va-
lence band and the conduction band bottom. As temperature grows, the transition of
an electron into the conduction band from the donor level or a hole into the valence
band from the acceptor level is much easier to cause than the transition of the elec-
tron from the valence band to the conduction band, as it did in the case of intrinsic
semiconductors (Figure 1.70).

To invent new semiconductor devices with required electrical properties, we have
to be able to govern the concentrations of electrons and holes.

1.21 Concentrations of Charge Carriers and the Chemical
Potential of Impurity Semiconductors

To determine how many current carriers can be transferred from impurity levels by
thermal excitation, it is necessary to know the average number of electrons at these
levels.

Donor Level

For definiteness, we consider a crystal of germanium Ge (the IV group of the periodic
table) doped with arsenic As (the V group). Suppose that a unit volume of the sample
has Nd arsenic atoms. Suppose the impurity concentration is low, so the interaction
of electrons localized on different atoms of As can be neglected.

We can find the electron density nd by simply multiplying the donor concentra-
tion Nd by the average number of electrons f(εd) localized on an individual impurity:

nd = Nd f̃ (εd) . (1.280)

Earlier, we used the Fermi–Dirac distribution function:

f(εd) = 1
exp ( εd−μkBT ) + 1 . (1.281)
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However, in this case we should use the revised function f̃ (εd). Let us explain the rea-
son.

The level of each impurity atom can be either empty or occupied by one electron
with arbitrary directed spin, or occupied by two electrons with opposite spins. The
Coulomb repulsion of two electrons strongly localized on the impurities increases the
energy level that finding two electrons on the same level is not possible. With this in
mind, the average number of electrons localized on a single impurity atom is equal to:

f̃ (εd) = 1
1
2 exp ( εd−μkBT ) + 1 . (1.282)

The proof of (1.282) is given, for example, in the book by Ashcroft and Mermin [1].
Therefore, from (1.280) and (1.282),we comeupwithanexpression for the electron

density:
nd = Nd

1
2 exp ( εd−μkBT ) + 1 . (1.283)

Acceptor Level

Analogously, the configuration that meets two holes localized near the acceptor im-
purity has a very large amount of energy because of the mutual Coulomb repulsion of
two holes. Therefore, it is not implemented. This circumstance leads to amodification
of the distribution function of the holes localized on the acceptor impurities. As a re-
sult, the concentration of holes connected with the acceptor impurities, is defined by
the relation:

pa = Na
1
2 exp ( μ−εakBT ) + 1 . (1.284)

Here Na is the number of acceptor atoms per unit volume of the sample.
Returning to the example of germanium doped with arsenic, we calculate the

chemical potential μ through an equation called the electroneutrality equation. The
latter replaces the previous normalization condition not suitable for this task since the
total number of electrons andholes is not constant. As temperature increases, the ion-
ization of both the impurity atoms and the atoms of the host material intensifies. As
a result, the number of electrons and holes grows. We use the fact that, in any small
volume of a substance, the total charge of all particles in the medium must remain
zero.

The positive charge is created by 1) the holes; 2) the As+ ions.
The negative charge is created by the electrons only. By the charge conservation

law, we have the equation:
n = p + N+d , (1.285)

where N+d is the number of the ionized impurity atoms per unit volume of the semi-
conductor, n is the total electron concentration, and p is the total hole concentration.
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Since the concentration of donor atoms is Nd, we get:

N+d = Nd − nd , (1.286)

where nd is the concentration of electrons remaining at the donor levels. For exam-
ple, at T = 0K we have N+d = 0. The impurity is not ionized because nd = Nd. Plug-
ging (1.286) into (1.285), we obtain:

n = p + Nd − nd . (1.287)

Based on (1.282) and (1.287), we arrive at:

n = p + Nd(1 − f̃ (εd)) = p + Nd [1 − (12 exp ( εd − μ
kBT

) + 1)−1] . (1.288)

This is the condition of electrical neutrality.
Let us recall the general formulas for calculating the concentrations of electrons

and holes in a semiconductor:

n ≈ Nc exp (− εc − μ
kBT

) , (1.289)

p ≈ Nv exp(−μ − εv
kBT

) . (1.290)

Equations (1.288)–(1.290) determine the value of μ and the concentrations of electrons
and holes in semiconductors doped with a donor impurity.

Semiconductors with a Donor Impurity

Our goal is to find working formulas for calculating the concentrations of charge car-
riers and the chemical potential μ for semiconductors doped with a donor impurity.

The chemical potential in general depends on a number of parameters:

μ = μ(me,mh, T, Nd, εc, εv, εd) . (1.291)

As mentioned earlier, the total number of electrons and holes is not constant. With
increasing temperature, their number rises. Therefore, the chemical potential needs
to be determined from the condition of electrical neutrality. Equations (1.288)–(1.290)
are impossible to solve analyticallywith respect to μ. Consequently,we should analyze
the limiting cases.

I. Region of High Temperatures

At high temperatures, the impurity is ionized throughout: N+d = Nd, f̃ ≈ 0. Therefore,
the relation (1.288) is simplified:

n = p + Nd . (1.292)
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We use the universal equation – the law of mass action:

np = n2i ⇒ p = n2i /n . (1.293)

From (1.292) and (1.293), the equation

n2 − nNd − n2i = 0 (1.294)

emanates to compute n. It has two roots, but one of them is redundant because of its
negative value. Only one solution remains:

n = Nd
2 (1 + √1 + 4n2i

N2
d
) . (1.295)

1. Consider the region of ultrahigh temperatures. It meets the following condi-
tion:

4n2i
N2
d

≫ 1 . (1.296)

From (1.293), (1.295), and (1.296) it follows that n ≈ ni, p ≈ ni and, therefore, the
chemical potential can be expressed by the formula:

μ = μi = εc + εv
2 + kBT ln

Nv
Nc

= εc − εg
2 + kBT ln

Nv
Nc

. (1.297)

In other words, at ultrahigh temperatures, the concentration of electrons and
holes, as well as the chemical potential are the same as in an intrinsic semiconductor.
This is easy to understand. At very high temperatures, the thermal energy is sufficient
to excite a large number of electrons from the valence to the conduction band. A small
number of electrons of the impurity play no significant role.

2. Lower temperatures are characterized by the opposite inequality:

4n2i
N2
d

≪ 1 , (1.298)

(1.295) and (1.298) imply:
n ≈ Nd . (1.299)

At lower temperatures, an impurity is the source of electrons. Almost all of the
electrons in the impurity level are donated to the conduction band. The minority car-
rier concentration (of holes) and the chemical potential are of the form:

p ≈ n2i
Nd

= NcNv
Nd

exp(− εg
kBT

) . (1.300)

μ = εc + kBT ln
Nd
Nc

. (1.301)

At very high temperatures, the chemical potential of (1.297) is close to a mean
value of the forbidden gap. With decreasing temperature, the chemical potential is
shifted from the middle of the gap to the bottom of the conduction band (1.301).
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II. Region of Relatively Low Temperatures

In this case, not all impurity atoms are ionized, but their contribution is large so that
n ≫ p. The impurities are a main supplier of electrons to the conduction band. Ther-
mal energy is not enough to promote the electrons from the valence to the conduction
band, so the valence band has little holes. In the main approximation we can assume
that:

p ≈ 0 . (1.302)

Then the equation (1.288) again simplifies and takes the form:

n ≈ Nd (1 − f̃ (εd)) . (1.303)

Or we can rewrite it in a more detailed form as:

Nc exp(μ − εc
kBT

) = Nd
1

1 + 2 exp [(μ − εd) /kBT] . (1.304)

The relation (1.304) reduces to a quadratic equation with respect to the unknown
variable exp(μ/kBT). Since the exponent cannot be negative, only one root of two re-
mains:

exp( μ
kBT

) = 1
4 exp( εd

kBT
)(−1 + √1 + 8Nd

Nc
exp ( εc − εd

kBT
)) . (1.305)

To simplify the analysis, we denote:

8Nd
Nc

exp( εc − εd
kBT

) = a . (1.306)

1. Consider the upper temperature limit in the low temperature region. The con-
dition a ≪ 1 helps to determine the limit. In expression (1.305), we expand the square
root in a Taylor series and restrict ourselves to the two first terms. As a result, we have:

exp ( μ
kBT

) ≈ Nd
Nc

exp ( εc
kBT

) , (1.307)

μ = εc + kBT ln
Nd
Nc

. (1.308)

Substituting the value of μ into expression (1.289) for the electron density, we obtain:

n = Nc exp(μ − εc
kBT

) ≈ Nd . (1.309)

The hole concentration can be found by using the mass action law:

p ≈ n2i
Nd

= NcNv
Nd

exp (− ε
kBT

) ≪ 1 . (1.310)
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As expected, it was small. The calculation suggests that p ≈ 0. Thus, even atmoderate
temperatures (about room temperature) the electron density coincideswith the impu-
rity concentration. The solutions obtained have beenmerged at the border of the high
and relatively low temperature regions.

As an example, consider a silicon sample doped with a donor impurity and
taken at room temperature T = 300K. The typical values such as Nd ∼ 1016cm−3,
Nc ∼ 2.2 ⋅ 1018cm−3 provide kBT ln(Nd/Nc) ≈ −0.14 eV, therefore:

μ ≈ (εc − 0.14) eV , (1.311)

i.e., the chemical potential lies below the conduction band bottom by a value of
0.14 eV.

Since, at temperatures well above room temperature, the silicon has −εg/2 ≈−0.55 eV, from (1.297) it follows that:

μ ≈ (εc − 0.55) eV . (1.312)

Thus, doping and temperature can cause a significant shift of the chemical potential.
2. Let us get a close up look at the ultralow temperature region determined by the

condition a ≫ 1. In this region we know that −1 + √1 + a ≈ √a, therefore:
exp ( μ

kBT
) = √ Nd

2Nc
exp ( εc + εd

2kBT
) , (1.313)

μ = εc + εd
2 + kBT

2 ln Nd
2Nc

. (1.314)

At T ≈ 0K, the chemical potential is shifted to themiddle between the conduction
band bottom and the level εd. At a temperature above absolute zero, there appears
a local maximum, which is described by the second term in formula (1.314) for the
chemical potential. The fact is that the second term is not a linear function of temper-
ature, although Nd = const, Nc = Nc(T). The local maximumof the chemical potential
of (1.314) lies within the range of ((εc + εd)/2, εc).

The concentrations of electrons and holes at ultralow temperatures are given by:

n = √NcNd
2 exp (− εc − εd

2kBT
) . (1.315)

p = n2i /n . (1.316)

These asymptotic formulas derived allow one to plot temperature dependencies
of the chemical potential and the electron density for semiconductors with donor im-
purity (Figures 1.71 and 1.72)
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Fig. 1.71: The temperature dependence of the
chemical potential for semiconductors with
donor impurity. Curve 1 corresponds to the
donor impurity concentration Nd1 , curve 2
corresponds to the impurity concentration Nd2 ,
Nd2 > Nd1 .
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Fig. 1.72: The temperature depen-
dence of the majority charge carrier
concentration in an n-type semicon-
ductor.

1.22 The Electrical Conductivity of Semiconductors

Since the quantity of electrons and holes in semiconductors is small, their contribu-
tion to the heat and thermal conductivity is also small. To a large extent, these prop-
erties are determined by the crystal lattice. Let us dwell on the electrical conductivity
of semiconductors.

The electrical resistance of semiconductors, as well as metals, is due to charge
carrier scattering, either by defects and lattice vibrations or by impurities. At low tem-
peratures, it is impurities that cause the charge carrier scattering.With increasing tem-
perature, an increasingly important role is played by lattice vibration scattering.

Let us estimate the conductivity of semiconductors in the framework of the semi-
classical model. In doing so, we take into account the following claims.
1. The distributions of holes and electrons obey the Maxwell–Boltzmann law.
2. In semiconductors, the energies of electrons and holes are approximated by

quadratic forms to be characteristic of free particles. In this case, it is possible to
introduce the concept of mass.
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For these reasons, electrons andholes in semiconductors conform to the laws of classi-
cal physics. Inparticular, thequasiclassical equationsofmotionof electrons andholes
in semiconductors are reduced to Newton’s equations. Next, we describe phenomeno-
logically collisions between the charge carriers and various scatterers, as Drude did.

By taking electron relaxation into account, Newton’s equation for electrons in the
conduction band appears as follows:

me
̇V⃗e = − |e| E⃗ − meV⃗e/τe . (1.317)

The second term on the right-hand side of (1.317) is responsible for themomentum loss
associated with scattering mechanisms (τe is the electron relaxation time).

A similar equation can be written for holes in the valence band:

mh
̇V⃗h = |e| E⃗ − mhV⃗h/τh . (1.318)

In a stationary state, ̇V⃗h = ̇V⃗e = 0. Therefore, from (1.317) and (1.318) we can find
the drift velocities of the charge carriers:
– For electrons:

V⃗e = − |e| τeme
E⃗ , (1.319)

– For holes:
V⃗h = |e| τhmh

E⃗ . (1.320)

Let us find the current density:

j = − |e| nV⃗e + |e| pV⃗h = σE⃗ , (1.321)

where the specific conductivity of the medium is:

σ = e2 (nτeme
+ pτh

mh
) . (1.322)

The conductivity coefficient (1.322) is involved in temperaturedependence through
the relaxation time and the carrier concentration. At room temperatures, the relax-
ation time in semiconductors is temperature dependent as follows:

τ ∼ T−3/2 .

However, the temperature dependence of the concentration of charge carriers such as
electrons and holes gives the greatest contribution.

Intrinsic Semiconductors

For intrinsic semiconductors ni = pi, so the electrical conductivity is of the form:

σ = ni(T) (τe/me + τh/mh) . (1.323)
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The multiplier ni(T) expresses the basic dependence on temperature. This depen-
dence has an exponential nature:

ni(T) ∼ exp (−εg/2kBT) ,
so

ln σ ∼ − εg
2kBT

+ const∗ . (1.324)

Here, the symbol const∗ stands for a value that weakly depends on the temperature.
For germanium, the multiplier exp(−εg/kBT) changes 1030 times while varying the
temperature from 100 K to 700K.

Impurity Semiconductors

For donor semiconductors n ≫ p, therefore, the conductivity coefficient has the form:

σ ≈ e2 nτeme
⇒ ln σ ∼ ln n + const∗ . (1.325)

We have already discussed the dependence of the function ln n on temperature.
Conductivity provides important information on semiconductors. Knowing the

electrical conductivity values, we can estimate the width of the band gap εg, the donor
level energy εd, and even estimate the donor atom concentration Nd (Figure 1.72).

1.23 Rectifying Action of a p-n Junction and a Simplified
Calculation of the Current Voltage Characteristics of a Diode

To start with, wemodel the contact of two semiconductors with different types of con-
duction: p-type and n-type (Figure 1.73). For this purpose, we inject a donor impurity
into the right side of the crystal during its growth, and into the left side – an acceptor
impurity. Such a production technology furnishes the width of the p-n junction of the
order of 10−4 cm.

Now, the temperatures are assumed to be so high that the left side of the crystal
has a lot of free holes, and their concentration value coincides with the acceptor im-
purity concentration (p ≈ Na). At the same time, many electrons reside in the right
side of the crystal; their concentration is equal to the donor impurity concentration

p–type
p ≈ Na

n–type
n ≈ Nd

Fig. 1.73: Contact between two semiconductors of p-type and n-type. Concentrations of the carriers
coincide with the concentration of impurities.
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(n ≈ Nd). This is a range of temperatures close to room temperature. Besides the ma-
jority charge carriers, each region of the p-n junction has the minority charge carriers
(of the opposite sign) generated by hopping the electrons from the valence to the con-
duction band. Such transitions produce an electron-hole pair. To be excited, each pair
requires a lot of thermal energy about the gapwidth of (εc − εc). So, the quantity of the
minority charge carriers are small. However, they are important for further analysis.

First, consider semiconductors of the p- and n-type separately. Then we bring
them into contact and view what changes.

A p-type Semiconductor

The valence band donates electrons to an acceptor level. As a result, the valence band
forms many majority charge carriers such as holes (Figure 1.74 (a)). Simultaneously,
the conduction band has only a small number of electrons skipped there from the
valence band. They are the minority carriers.

Although Figures 1.74 (a) and 1.74 (b) illustrate many identical charge carriers at
the same energy level, this does not contradict the Pauli principle. The charge carri-
ers differ in coordinates x, which are the quantum numbers for electrons and holes.
The electrons (or holes) have the same energy but different coordinates. Consequently,
they tell one from the other with different quantum numbers.

An n-type Semiconductor

There is a donor level from which electrons “jump” into the conduction band, where
they become themajority charge carriers (Figure 1.74 (b)). The transitions from the va-
lence band to the conduction band are also possible to occur. Such transitions provide
a small number of minority charge carriers (holes) in the valence band for the n-type
semiconductor.

x

ε

εc

εaεv

The conduction band

The acceptor level

The valence band

(a) (b)
x

ε

εcεd

εv

The conduction band

The donor level

The valence band

A p-type semiconductor A n-type semiconductor 

Fig. 1.74: Energy diagrams for isolated semiconductors: The symbols “○” depicts holes, “●” de-
picts electrons.
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Now let us look what happenswhen p- and n-type semiconductors are brought to-
gether into contact (Figure 1.73). The left part has a lot of holes and few electrons and
the right part has vice versa. All in all, the half of the p-type semiconductor is elec-
trically neutral because the charge of holes is compensated by the charge of negative
ions, which come off from the holes. The same takes place inside the n-type semicon-
ductor: the negative electron charge is compensated by positively charged ions, dis-
posed in the lattice nodes. The ions cannotmove freely, and the electrons and holes in
turn are mobile. Then the holes begin to diffuse across the junction from left to right
and the electrons – from right to left (Figure 1.73). Naturally, this immediately violates
the electroneutrality. When the holes leave the p-type region, the negative ions be-
come “bared.” Similarly, when the electrons diffuse from the n- to the p-region, the
immobile positive impurity ions remain inside the n-region. Consequently, in the nar-
row near boundary area, an electric field emerges. Its direction prevents the diffusion
process from spreading further (Figure 1.75). The diffusion ceases due to the electric
field of the electric double layer formedby the charges of the impurity ions. The electric
field of the double layer establishes a dynamic equilibrium: asmany electrons (holes)
go by diffusion as many return. At the thermal equilibrium, the total electric current
through the p-n junction is zero.

Beyond the junction, the electroneutrality of the sample is not broken and there is
no electric field. In the area of contact of the semiconductors, we can observe a jump
of the electrostatic potential ∆φ (Figure 1.76).

C
ar

ri
er

 c
o
n
ce

n
tr

at
io

n

The hole density

The electron density

x

Fig. 1.75: Distribution of electrons and holes in
semiconductors after being brought into contact.
The intersection point of the curves corresponds to
the place of the conductor contact.
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Fig. 1.76: The dependence of the electrical potential on the
coordinates. The symbols “−” and “+” conventionally de-
pict ion charges. The internal electric field is directed from
right to left. It exists only in the narrow transition layer.
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Important Notice
In a state of thermodynamic equilibrium, when two conductors are in contact, the
chemical potential must be constant at all points of a crystal (thermodynamics re-
quires this).

The chemical potential is aligned due to the change in the energy of electrons
and holes under the internal electric field E⃗internal. Let us dwell upon this statement in
detail. Please compare Figures 1.77 and 1.78.

We will measure the energy of electrons from the energy εc, i.e., from the conduc-
tion band bottom. To find the energy of an electron, we should subtract εc from the
current energy ε and take into account the interaction energy between the electron
and the internal electrostatic field −|e|φ(x). The potential φ, and hence the electro-
static energy, are defined with accuracy up to a constant. The electrostatic energy of
the electrons in the n-region far away from the p-n junction (as x → +∞) is assumed
to be equal to zero. Then the energy of the electrons at finite x has the form:

εelectron = ε − εc − |e| [φ(x) − φ(+∞)] . (1.326)

The above formula allows calculating the total energy of the electrons in the internal
electrostatic field. The bending of the conduction band is caused by the fact that the
potential energy of the electrons in the p-region is greater than in the n-region.
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The conduction band
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(a) (b)A p-type semiconductor 

μ – the chemical potential
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μ–the chemical potential

Fig. 1.77: The position of the chemical potential in the energy diagram for isolated p-type and n-type
semiconductors.
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Fig. 1.78: The energy diagram and the position of the chemical potential for semiconductors after
being brought into contact.
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The hole energy is measured from the level εv in the opposite direction of the axis
ε. Given that the holes have a positive charge, we get:

εhole = εv − ε + |e| [φ(x) − φ(−∞)] . (1.327)

We believe that the electrostatic energy of a hole in the p-region is zero as x → −∞.
Note that we select different levels of the energy to measure. There is no contradiction
in this because we describe the conduction and valence bands in different ways.

Due to the additional allowances ±|e|φ(x), the energy levels of the electrons and
holes are bent until the chemical potentials of the p- and n-regions are equalized (Fig-
ure 1.78 and formulas (1.326), (1.327)).

Note that Figure 1.78 shows that the values of εc and εv as x → +∞ and x → −∞
remain the same as the p- and n-type semiconductors had before their contact.

Let us analyze the state of dynamic equilibrium in the p-n junction [1, 15]. We also
need to focus our attention on holes. For electrons, the arguments are similar.

1. A weak hole current from the n- to the p-region exists even at thermal equi-
librium without an external field. This current is called the generation current Igenh of
holes. It is due to minority carriers.

Figure 1.79 shows that thermal fluctuations produce electron-hole pairs, either
in region 1 or in region 2. These pairs are formed by transferring electrons from the
valence band to the conduction band.

If the region 2 produces the electron-hole pairs, to describe the generation cur-
rent, we should also take into account the diffusion of holes from the region 2 into 1.
For simplicity, the electron–hole pairs are assumed to appear in the region 1 only (in-
side the double layer). Then, the electrostatic field immediately throws holes from the
n-type semiconductor into the p-type semiconductor. Electrons travel to the region 2.
Here, we are talking about only minority carriers. It is the minority carriers that are
responsible for the generation current of holes. It is important to emphasize that the
generation current does not depend on the external potential V, since the latter has
no appreciable effect on the internal electric field around the contact region. Note also
that the generation current of holes in the coordinate system at hand is negative:

Igenh (V) ≈ Igenh (0) < 0 .

p n

p n

Einternal

1 2

Fig. 1.79: . 1 and 2 regions of an n-type semiconductor are near the
interface of semiconductors. The dashed line depicts the interface be-
tween the p- and n-semiconductors; the symbols “−” and “+” denote
negative and positive ions, respectively.



114 | 1 Electrons and Holes in Metals and Semiconductors

2. Apart from the generation current, there is a current of recombination. It is as-
sociatedwith a current of holes from the p-type into the n-region (as long as we follow
only the holes). The holesmove from the p-region against the internal field. Therefore,
they can get into the n-region only if their kinetic energy is greater than the potential
barrier height. The name of the current comes from the hole-electron recombination
process in the n-region.

At thermal equilibrium and under the external potential V = 0, the total current
through the junction is zero:

Igenh (0) + Irech (0) = 0 .

The generation current is negative and the recombination current is positive.
Hence, we obtain:

Irech (0) = −Igenh (0) = 󵄨󵄨󵄨󵄨󵄨Igenh (0)󵄨󵄨󵄨󵄨󵄨 .
Against the generation current, the recombination current is sensitive to the exter-

nal potential difference V. A change in the recombination current can be determined
by the Boltzmann factor:

Irech (V) = Irech (0) exp (− ∆E
kBT

) . (1.328)

Here ∆E = −|e|V is an extra potential barrier for holes. It emerges due to an external
electric field. Next we choose the external potential V so that the external field dimin-
ishes the potential barrier by the magnitude ∆E = −|e|V > 0 when V > 0. Eventually,
we arrive at:

Irech (V) = Irech (0) exp (|e|VkBT
) .

To explain where the formula has come from, let us recall that the holes obey the
laws of classical statistical physics. Therefore, the Boltzmann multiplier determines
the change in the number of holes per unit volume of a crystal under an external po-
tential field:

p(V) = p(0) exp (|e| VkBT
) .

Hence the recombination current is equal to:

Irech (V) = |e| p(V)𝑣h = |e| p(0)𝑣h exp(|e|VkBT
) = Irech (0) exp (|e|VkBT

) ,

where 𝑣h is the velocity of the holes.
Given that Irech (V) = |Igenh (0)| we have:

Irech (V) = 󵄨󵄨󵄨󵄨󵄨Igenh (0)󵄨󵄨󵄨󵄨󵄨 exp (|e|V/kBT) .
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Let us find the total hole current through this junction. Because |Igenh (0)| =−|Igenh (0)|, we get:
Ih = Igenh (V) + Irech (V) = − 󵄨󵄨󵄨󵄨󵄨Igenh (0)󵄨󵄨󵄨󵄨󵄨 + 󵄨󵄨󵄨󵄨󵄨Igenh (0)󵄨󵄨󵄨󵄨󵄨 exp [ |e|VkBT

] =
= 󵄨󵄨󵄨󵄨󵄨Igenh (0)󵄨󵄨󵄨󵄨󵄨 {exp [ |e|VkBT

] − 1} . (1.329)

In deriving the formula, we have believed that the potential difference is V > 0 in the
event of increasing the potential of the p-region and diminishing it of the n-region.

Let us now dwell upon the electron current through the p-n junction. The electron
charge is opposite to the hole charge. Therefore, the electrons in the recombination/
generation current travel in directions opposite to hole motion direction. At the same
time, the electron and hole generation/recombination currents coincide in direction
with each other. It is important that the potential barrier of the p-n junction dimin-
ishes by |e|V as V > 0 for both the electrons and the holes. The electron and hole en-
ergies are measured along the axis ε in opposite directions. Therefore, the electrons
and holes must overcome one and the same barrier to pass from the n- to the p-region
and from the p to the n-region, respectively. Thus, the electron current through the
p-n junction can be calculated by a formula close to (1.329):

Ie = 󵄨󵄨󵄨󵄨󵄨Igene (0)󵄨󵄨󵄨󵄨󵄨 [exp(|e|VkBT
) − 1] . (1.330)

Suppose the p-n junction is subjected to an external potential difference V. What
changes in the energy spectrum of the electrons and holes, as well as in the chemical
potential, can be observed? The charge carrier density at the interface of the semicon-
ductors is less than in the homogeneous areas. Consequently, the p-n junction has a
much higher resistance and all the voltage drop occurs across it. As a result, the junc-
tion potential difference becomes equal to (∆φ − V). Accordingly, when V > 0, the
potential barrier height lowers to the value |e|(∆φ − V) for the electrons and holes,
and increases to the value |e|(∆φ + |V|) when V < 0 (Figure 1.80).

Note that, in this case, the difference between the chemical potentials of the p-
and n-semiconductor portions must be equal to |e|V. Indeed, the chemical potential
is the energy, which increases the system’s energy by adding an electron. The energy
required to transfer an electron from the p- into the n-region is |e|V. Here, we have the
sign of V taken into account.

Using formulas (1.329) and (1.330), we find the total electron-hole current through
the p-n junction:

I = Ih + Ie = (󵄨󵄨󵄨󵄨󵄨Igenh (0)󵄨󵄨󵄨󵄨󵄨 + 󵄨󵄨󵄨󵄨󵄨Igene (0)󵄨󵄨󵄨󵄨󵄨) [exp(|e|VkBT
) − 1] . (1.331)
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energy bands and the chemical potential of
the p-n junction under an external voltage:
(a) The voltage lacks; (b) By applying a
trigger voltage, V > 0; (c) By applying a
locking voltage, V < 0.
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+ –

Fig. 1.81: Connecting the p-n junction to a voltage source in a forward
direction V > 0: the battery plus connects the p-type region, the minus-
n-region.

It is evident that the current flowing through the p-n junction is great when V > 0. In
other words, the plus of a battery connects the p-type region; the minus of the battery
connects the n-region (Figure 1.81). The battery reverse polarity gives {exp(|e|V/kBT)−
1} ≈ −1; (V < 0). Thus, the current through the junction is determined by the low
generation currents:

I ≈ − (󵄨󵄨󵄨󵄨󵄨Igenh (0)󵄨󵄨󵄨󵄨󵄨 + 󵄨󵄨󵄨󵄨󵄨Igene (0)󵄨󵄨󵄨󵄨󵄨) .

Let us recall that the generation current of electrons and holes is due to minority
carrierswhose concentration canbeeasily found from the lawofmass action: pn = n2i .
For example, the electron concentration inan n-type semiconductor is known: n ≈ Nd.
Therefore, the hole concentration is p = n2i /Nd ∼ exp[−εg/(kBT)]. The hole concentra-
tion in the p-region is p ≈ Na, and consequently n = n2i /Na ∼ exp[−εg/(kBT)].
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V

I

Fig. 1.82: The current voltage characteristic of the p-n junction.

Theminority carrier concentrations up to aweakly temperature dependent multi-
plier are proportional to exp[−εg/(kBT)]. Therefore generation current can be approx-
imated by the expression:

󵄨󵄨󵄨󵄨󵄨Igenh (0)󵄨󵄨󵄨󵄨󵄨 + 󵄨󵄨󵄨󵄨󵄨Igene (0)󵄨󵄨󵄨󵄨󵄨 = I0 exp(− εg
kBT

) .

Here, the coefficient I0 depends so weakly on temperature that we can regard it as
I0 = const.

As a result, the current voltage characteristic of the p-n junction (of a diode) (1.331)
acquires the form (Figure 1.82):

I = I0 exp (− εg
kBT

)[exp(|e|VkBT
) − 1] . (1.332)

When V > 0, Ohm’s law I ∼ V holds true for small values of V. For large positive
values of V, Ohm’s law is violated. A large direct current passes through the p-n junc-
tion.

When V < 0, the current through the junction changes only for small values of |V|
and then rapidly reaches saturation:

I = Isaturation = −I0 exp (− εg
kBT

) = const .

To be precise, the saturation is quite conditional. This is explained by seriously chang-
ing the curve as V diminishes. Then the breakdown voltage of the p-n junction diode
arrives. Note that there are many Zener diodes working with critical voltage values.
The current of the reverse biased p-n junction is thousands of times smaller than the
direct current.



2 Crystal Lattice Vibrations

2.1 The Dynamics of the Crystal Lattice in the Harmonic
Approximation

Earlier, we discussed ions of a crystal forming a fixed immobile lattice. In classical
theory, such a model can hold only at zero temperature (T = 0K). At nonzero tem-
perature, every ion has some thermal energy andmust vibrate around its equilibrium
position.

In quantum theory, the static lattice model appears false even when T = 0K. This
is because, according to theuncertaintyprinciple, the ions cannotbe strictly localized.

The main cases of when the lattice vibrations are important to consider are listed
below:
1. Ions can vibrate around their equilibrium positions. This circumstance governs

all the equilibrium properties of a solid without any electron contribution. For
example, the lattice dynamics manifests itself in dielectrics, where electrons are
infilledbandsand therefore arepassive. Dielectrics conductnot onlyheat but also
sound in the form of ion lattice vibrations. The model of the static lattice makes
dielectrics sound insulators.

2. As to the mechanisms of electron-electron interactions and energy transfer in
solids, the lattice dynamics are extremely important. For example, the theory of
electron scattering by lattice vibrations explains what resistance and heat ca-
pacity of metals at room temperature are. In turn, superconductivity of metals at
very low temperatures is due to weak attraction between electrons affected by the
lattice vibrations.

3. Lattice vibrations play a role in the response of a solid to any probing radiation
affecting ions (visible light, x rays and neutrons, for example). The lattice vibra-
tions diminish the amplitude of the Bragg peaks, and create the background of
scattered radiation.

Let us recall the mathematical description of a static crystal. We have previously dis-
cussed a three-dimensional crystal being made up of unit cells; each cell is a paral-
lelepiped built on three noncoplanar vectors a⃗1, a⃗2, a⃗3. To describe any crystal struc-
ture, we should build a lattice of mathematical points – the Bravais lattice. The posi-
tions of the Bravais lattice points are defined by the vectors:

R⃗l = l1 a⃗1 + l2 a⃗2 + l3 a⃗3 , (2.1)

where li are integers. Next, using a set of three numbers of li, we enumerate the ele-
mentary cells of the Bravais lattice.

https://doi.org/10.1515/9783110586183-002
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For lattices with a basis, the positions of real atoms inside the unit cell are deter-
mined by the vectors R⃗κ, where κ = 1, 2, . . .r. Ultimately, the vector

R⃗l
κ = R⃗κ + R⃗l (2.2)

specifies a spatial position of an atom of the l-th unit cell indexed by κ.
The unit cell volume can be written as:

Va = a⃗1 ⋅ [a⃗2 × a⃗3] . (2.3)

Any function f(R⃗l + r) = f( ⃗r) with the periodicity of the Bravais lattice can be
expanded in a Fourier series:

f( ⃗r) = ∑⃗
K

fK⃗ exp (iK⃗ ⋅ ⃗r) . (2.4)

The coefficients fK⃗ in the expansion (2.4) are given by:

fK⃗ = 1
Va

∫
Va

f( ⃗r) exp (−iK⃗ ⋅ ⃗r)d3 ⃗r ,
where the integration is over the volume Va of the unit cell of the Bravais lattice. The
vectors K⃗ appear as follows:

K⃗ = n1 b⃗1 + n2 b⃗2 + n3 b⃗3 , (2.5)

where ni are integers and b⃗1, b⃗2, b⃗3 are the reciprocal lattice vectors:

b⃗1 = 2π
Va

[a⃗2 × a⃗3] , b⃗2 = 2π
Va

[a⃗3 × a⃗1] , b⃗3 = 2π
Va

[a⃗1 × a⃗2] . (2.6)

The basic properties of the reciprocal lattice are as follows:
1. The volume of the unit cell of the reciprocal lattice is:

Vb = b⃗1 ⋅ [b⃗2 × b⃗3] = (2π)3/Va . (2.7)

2. Direct and reciprocal lattices are inverse to each other.
3. Every reciprocal lattice vector K⃗ is perpendicular to an infinite set of planes pass-

ing through nodes of the direct Bravais lattice.
4. The distance d between adjacent crystal planes with the normal K⃗ is determined

by the formula:

d = 2π󵄨󵄨󵄨󵄨󵄨K⃗󵄨󵄨󵄨󵄨󵄨n0 , (2.8)

where n0 is the greatest common divisor of n that specifies the vector K⃗ (2.5).
Leaving aside the artificial assumption of fixed ions located at the points with the ra-
dius vectors R⃗l

κ, we use the following two weaker assumptions.
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1. It is assumed that the atoms (ions) of the crystal can shift from the positions R⃗l
κ by

the vectors U⃗( lκ). The position of the κ-th atom in the l-th unit cell is determined
by the vector:

R⃗l
κ + U⃗ ( l

κ
) . (2.9)

The vector R⃗l
κ is time independent and characterizes the mean position of the

atom. The vector U⃗( lκ) is dependent on time and determines the vibrations of a
particular atom in the crystal near its equilibrium position.

2. Typical deviations of every atom of the crystal from its equilibrium position are
small as compared to the distance a between neighboring atoms:󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨U⃗ ( l

κ
)󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 ≪ a . (2.10)

Assumption 1 makes it possible to explain the observed crystal structure of solids, for
it means that, despite the movement of ions in the solid, the Bravais lattice persists.
However, we can describe, with regards to the Bravais lattice, only average rather than
instantaneous positions of the ions (Figure 2.1). Note that although this assumption
allows for a variety of ion motion, it does not allow their diffusion. This is because we
believe that every ion oscillates with respect to a particular node. Such an assumption
brings no serious restrictions except cases of the mutual exchange by the equilibrium
ion positions.

R l

(a) (b)

R l+U l

Fig. 2.1: A two-dimensional crystal with a lattice without a basis. The Bravais lattice points are given
by the vector R⃗l and coincide with average ion positions of the crystal (a). One of the instantaneous
positions of the ions (b): an ion shifts from the node with the radius vector R⃗l to the point with the
radius vector R⃗l + U⃗l.

Weare stickingwithassumption 2because it leads to a simple theory– that a harmonic
approximation gives accurate quantitative results. These results are often in excellent
agreement with the observed properties of a solid.

In order to write down the total kinetic energy of the lattice, suppose an atom of
the unit cell labeled by κ has a mass of Mκ. Then, the kinetic energy of the lattice is:

T = 1
2

∑
l,κ,α

MκU̇2
α ( lκ) , (2.11)

where the index α = 1, 2, 3 enumerates the components of the vector U⃗( lκ).
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Suppose that the total potential energy Φ of a crystal depends on instantaneous
atom positions. This approximation needs to be explained. The potential energy, in
general, must be dependent on the coordinates of all particles comprising the crystal
(that is, the ions and electrons). However, the mass of the electrons is much smaller
than themass of the ions. The electrons are somobile that theymanage to adapt to ion
motion. Thus, the potential energy is supposed to be a function of only the coordinates
of the ions (atoms) of the crystal:

Φ = Φ({R⃗l
κ + U⃗ ( l

κ
)}) . (2.12)

Assuming that the electrons follow the ions, we, in essence, exclude the electron-ion
energy exchange. Therefore, the approximation in question is called adiabatic. Then,
bymeans of the perturbation theory, we take the electron-lattice energy exchange into
account.

With the potential energy Φ reaching a minimum as all the vectors U⃗( lκ) vanish,
we use the standard theory of small oscillations and expand the function Φ in powers
near the equilibrium position [9]:

Φ({R⃗l
κ + U⃗ ( l

κ
)}) = Φ ({Rl

κ}) + ∑
l,κ,α

Φα ( lκ)Uα ( lκ)+
+ 1
2 ∑
l󸀠,κ󸀠 ,α󸀠,
l,κ,α

Φαα󸀠 ( l l󸀠

κ κ󸀠
)Uα ( lκ)Uα󸀠 ( l󸀠κ󸀠) .

(2.13)

Here, the constant term Φ({R⃗l
κ}) is not our concern. The coefficients of the expansion

terms linear in Uα must be zero (the conditions of extremum of the function Φ):

Φα ( lκ) = ∂Φ

∂Uα ( lκ) {U⃗}=0
= 0 . (2.14)

Thus, the first nonvanishing expansion term is quadratic in displacements; it is the so
called harmonic term. The latter relates to the matrix of constants:

Φαα󸀠 ( l l󸀠

κ κ󸀠
) = ∂2Φ

∂Uα ( lκ) ∂Uα󸀠 ( l󸀠κ󸀠) {U⃗}=0
, (2.15)

that must be defined positively because the function Φ (2.12) has a minimum at the
stable equilibrium point of the crystal.

Knowing the potential Φ and kinetic T energies of the crystal, we can find the
Lagrangian of lattice vibrations in the harmonic approximation:

L = T −Φ ≈ 1
2

∑
l,κ,α

MκU̇2
α ( lκ)− 1

2
∑

l󸀠,κ󸀠 ,α󸀠 ,l,κ,α
Φαα󸀠 ( l l󸀠

κ κ󸀠
)Uα ( lκ)Uα󸀠 ( l󸀠κ󸀠) . (2.16)
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Hence, we obtain the equations of motion of the atoms of the crystal:

MκÜα ( lκ) = − ∑
l󸀠,κ󸀠 ,α󸀠

Φαα󸀠 ( l l󸀠

κ κ󸀠
)Uα󸀠 ( l󸀠κ󸀠) . (2.17)

Equation (2.17) can be interpreted as follows: each term of the sum in the right-hand
side of (2.17) is a force acting on the κ-th atom in the l-th cell due to the displace-
ments Uα󸀠 of the atom with the number κ󸀠 of the l󸀠 cell.

The energy of the crystal is H = T +Φ = const as the Lagrangian is explicitly time
independent.

2.2 General Properties of the Force Constants

1. The definition of the matrix of the force constants (2.15) as the second derivative of
the exact interaction potential yields the first property:

Φαα󸀠 ( l l󸀠

κ κ󸀠
) = Φα󸀠α ( l󸀠 l

κ󸀠 κ
) . (2.18)

2. The periodicity of an infinite lattice means that, if one displaces the lattice as
a whole by an arbitrary translation vector R⃗m, the displaced lattice coincides with the
original one. The force constants must, therefore, not be changed:

Φαα󸀠 ( l l󸀠

κ κ󸀠
) = Φαα󸀠 (l + m l󸀠 + m󸀠

κ κ󸀠
) . (2.19)

The right-hand side of (2.19) takes into account the following:

R⃗l+m = R⃗l + R⃗m , R⃗l󸀠+m = R⃗l󸀠 + R⃗m . (2.20)

The equality (2.19) holds for any vectors R⃗m and is possible only when satisfied by the
equality:

Φαα󸀠 ( l l󸀠

κ κ󸀠
) = Φαα󸀠 ( l − l󸀠

κ κ󸀠
) . (2.21)

Comment
In crystals with an inversion center (which is almost all crystals), the directions R⃗l

and R⃗−l = −R⃗l are of equal value. Hence, we conclude that the crystals with an inver-
sion center have:

Φαα󸀠 ( l
κ κ󸀠

) = Φαα󸀠 ( −l
κ κ󸀠

) . (2.22)
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3. If a crystal was shifted as awhole by a constant vector V⃗α, then no forces acting
on the atoms of the crystal will appear. The equation of motion (2.17) implies that this
is possible only if the condition is met:

∑
α󸀠 ,l󸀠,κ󸀠

Φαα󸀠 ( l l󸀠

κ κ󸀠
)Vα󸀠 = 0 . (2.23)

By virtue of the arbitrariness of the vector V⃗α, the equality (2.23) is valid only if:

∑
l󸀠 ,κ󸀠

Φαα󸀠 ( l l󸀠

κ κ󸀠
) = 0 . (2.24)

According to (2.21), the matrix Φαα󸀠 depends only on the difference of the argu-
ments l and l󸀠. Therefore, in formula (2.24), we can replace the summation over l󸀠 by
the summation over l̃ = l − l󸀠. Next, we proceed to the following form of writing:

∑̃
l,κ󸀠

Φαα󸀠 ( l̃
κ κ󸀠

) = 0 . (2.25)

4. If one rotates a crystal as a whole by any angle, no additional forces between
the atoms of the crystal must emerge. An infinitesimal rotation by an arbitrary angle
is determined by the antisymmetric matrix:

ωαα󸀠 = −ωα󸀠α

that depends on neither l nor κ. If the atom was in the equilibrium position Rα󸀠( l󸀠κ󸀠)
before the turn, then it would shift to the position Uα󸀠( l󸀠κ󸀠) = ∑

α󸀠󸀠
ωα󸀠α󸀠󸀠Rα󸀠󸀠 ( l󸀠κ󸀠) after

the turn. In other words, the κ󸀠-th atom of the l󸀠-th unit cell acquires an additional
displacement after the turn of the crystal as a whole:

Uα󸀠 ( l󸀠κ󸀠) = ∑
α󸀠󸀠

ωα󸀠α󸀠󸀠Rα󸀠󸀠 ( l󸀠κ󸀠) .

Such displacements of the atomsmust generate no forces in the equation of motion of
the atoms (2.17):

∑
α󸀠 ,l󸀠,κ󸀠 ,α󸀠󸀠

Φαα󸀠 ( l − l󸀠

κ κ󸀠
)ωα󸀠α󸀠󸀠Rα󸀠󸀠 ( l󸀠κ󸀠) = 0 . (2.26)

Equation (2.26) must be true for all values of ωα󸀠α󸀠󸀠 that satisfy the only condition:
ωα󸀠α󸀠󸀠 = −ωα󸀠󸀠α󸀠 . This is possible only when the matrix of force constants is limited by:

∑
l󸀠,κ󸀠

[Φαα󸀠 ( l − l󸀠

κ κ󸀠
) Rα󸀠󸀠 ( l󸀠κ󸀠) − Φαα󸀠󸀠 ( l − l󸀠

κ κ󸀠
) Rα󸀠 ( l󸀠κ󸀠)] = 0 . (2.27)
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2.3 The Born–Karman Boundary Conditions – the Dynamic Matrix
of a Crystal

To simplify the calculations, we suppose that a crystal has the form of a parallelepiped
with sides L⃗1 = La⃗1, L⃗2 = La⃗2, L⃗3 = La⃗3, where L is a large integer. Then, the crystal
contains N = L3 unit cells.

If the properties of the crystal inside its volume are our concern, its large sizes
make the boundary conditions negligible. For the calculations, the Born–Karman
boundary conditions are the most suitable. Then, according to these, each of the
three main vectors a⃗i is satisfied by the equalities:

U⃗ (l + Li
κ

) = U⃗ ( l
κ
) , (2.28)

where the vector R⃗l + La⃗i corresponds to the designation l + Li.
The equation of motion of the atoms in the lattice (2.17) can be rewritten in the

following form:

√MκÜ ( l
κ
) = − ∑

α󸀠 ,l󸀠,κ󸀠
(MκMκ󸀠)−1/2 Φαα󸀠 ( l l󸀠

κ κ󸀠
)√Mκ󸀠Uα󸀠 ( l󸀠κ󸀠) . (2.29)

The solutions need to be sought in the form of a Fourier series:

Uα ( lκ) = 1√MκN
∑⃗
q
Uα (q⃗κ) exp (iq⃗ ⋅ R⃗l) . (2.30)

If we add an arbitrary reciprocal lattice vector K⃗ = b⃗1n1 + b⃗2n2 + b⃗3n3 to the
wave vector q⃗, the representation (2.30) does not change because K⃗ ⋅ R⃗l = 2πm, where
m = l1n1 + l2n2 + l3n3 is an integer. It is always possible to ensure that the vectors q⃗
lies within a unit cell of the reciprocal lattice (the first Brillouin zone). Inwhat follows,
all the wave vectors are assumed to lie within the first Brillouin zone.

The Born–Karman (2.28) conditions impose restrictions on the possible values of
the wave vector q⃗:

exp (iLq⃗ ⋅ a⃗i) = 1 , (i = 1, 2, 3) .
Hence we find the allowed values of q⃗:

q⃗ = 1
L (n1 b⃗1 + n2 b⃗2 + n3 b⃗3) , (2.31)

where ns are arbitrary integers (s = 1, 2, 3). Next, from this set, we select only phys-
ically different vectors q⃗ of the first Brillouin zone. The number of such vectors q⃗ is
N = L3, which is as many as the unit cells in the crystal.
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By inserting the representation (2.30) into the equation of motion (2.29), we ob-
tain:

∑⃗
q
Üα (q⃗κ) exp (iq⃗ ⋅ R⃗l) =

= − ∑⃗
q

∑
α󸀠 ,l󸀠,κ󸀠

(MκMκ󸀠)−1/2 Φαα󸀠 ( l − l󸀠

κ κ󸀠
) exp [iq⃗ ⋅ (R⃗l󸀠 − R⃗l) + iq⃗ ⋅ R⃗l]Uα󸀠 ( q⃗

κ󸀠
) .

(2.32)
Note that R⃗l󸀠 − R⃗l = −R⃗l−l󸀠 . After replacing the summation over l󸀠 in the right-hand
side of (2.32) by the summation over l̃ = l − l󸀠, and setting equal the coefficients of the
linearly independent functions exp(iq⃗ ⋅ R⃗l), we have:

Üα (q⃗κ) = − ∑
α󸀠 ,κ󸀠

φαα󸀠 ( q⃗
κ κ󸀠

)Uα󸀠 ( q⃗
κ󸀠
) . (2.33)

Here the dynamic matrix of the crystal is represented as:

φαα󸀠 ( q⃗
κ κ󸀠

) = ∑̃
l

(MκMκ󸀠)−1/2 Φαα󸀠 ( l̃
κ κ󸀠

) exp (−iq⃗ ⋅ R⃗∼l ) . (2.34)

Equation (2.34) has κ = 1, 2, . . . r, α = 1, 2, 3. We reduce the infinite chain of equa-
tions (2.17) to the finite system (2.33), containing 3r equations.

2.4 Properties of the Dynamic Matrix

To start with, let us list the basic properties of the dynamic matrix:
1.

φαα󸀠 ( q⃗
κ κ󸀠

) = φα󸀠α ( −q⃗
κ󸀠 κ

) = φ∗α󸀠α ( q⃗
κ κ󸀠

) . (2.35)

This property is a corollary of the properties (2.18) and (2.19) of the force matrix,
as well as its reality condition:

Φαα󸀠 ( l
κ κ󸀠

) = Φα󸀠α ( −l
κ󸀠 κ

) = Φ∗α󸀠α ( −l
κ󸀠 κ

) .

It is convenient for us to introduce amultiple index s running over 3r values. s = {α, κ},
(κ = 1, 2, . . .r; α = 1, 2, 3). Then the dynamic matrix (2.34) can be written as:

φαα󸀠 ( q⃗
κ κ󸀠

) ≡ φss󸀠(q⃗) . (2.36)

The property (2.35), in terms of multi-index, stands for hermiticity of the dynamicma-
trix:

φss󸀠(q⃗) = φ∗s󸀠s(q⃗) (2.37)
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and satisfies the restriction:

φ∗s󸀠s(q⃗) = φs󸀠s (−q⃗) . (2.38)

The corollary of (2.37) and (2.38) is the equality:

φss󸀠(q⃗) = φs󸀠s (−q⃗) . (2.39)

Comment
In crystals with an inversion center, the following equalities are true:

φss󸀠(q⃗) = φ∗ss󸀠(q⃗) = φs󸀠s(q⃗) .
Otherwise, the dynamic matrix is real and symmetric.

2. The expanded form of φss󸀠 (2.34) implies that this function in reciprocal space
is periodical:

φss󸀠(q⃗ + K⃗) = φss󸀠(q⃗) . (2.40)

2.5 The Normal Modes of Lattice Vibrations

Further analysis of the lattice dynamics equations

Üα (q⃗κ) = − ∑
α󸀠 ,κ󸀠

φαα󸀠 ( q⃗
κ κ󸀠

)Uα ( q⃗
κ󸀠
) (2.41)

leads to the more convenient and compact form:

Üs = −∑
s󸀠
φss󸀠Us󸀠 . (2.42)

In the matrix equation (2.42), the multi-index s = (α, κ) runs over 3r values (α =
1, 2, 3; κ = 1, 2, . . .r), with the matrix φss󸀠 being Hermitian. That is, φ∗ss󸀠 = φs󸀠s.

By the theorem of linear algebra, Hermitianmatrix can be diagonalized by solving
the eigenvalue problem: ∑

s󸀠
φss󸀠es󸀠 = λes . (2.43)

The eigenvalues are the roots of the equation:

det (φ − λE) = 0 , (2.44)
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where E is a unit matrix. The left side of equation (2.44) is a 3r-degree polynomial.
Therefore, the equation (2.44) has 3r roots:

λj = λj(q⃗) ,
where j = 1, 2, . . . , 3r.

Let us analyze the properties of the eigenvalues λj = λj(q⃗).
1. Hermiticity of the matrix φss󸀠 guarantees that all the eigenvaluesare real: λ∗j (q⃗) =

λj(q⃗).
2. Due to the positive definiteness of the quadratic form corresponding to the poten-

tial energy of the lattice, all the numbers of λj(q) are positive:
λj(q⃗) ≡ ω2

j (q⃗) > 0 . (2.45)

The restriction (2.45) is the condition for minimumpotential energy of an equilib-
rium crystal.

3. The property (2.40) guarantees, that the functions ωj(q⃗) are periodic in the recip-
rocal space:

ωj(q⃗ + K⃗) = ωj(q⃗) .
4. The eigenvalues of the matrices φ(q⃗) and φT(q⃗) are equal (the symbol “T” stands

for conjugation). By (2.39), we have φT(q⃗) = φ(−q⃗). Therefore, the eigenval-
ues ωj(q⃗)must be even functions of q⃗:

ωj(q⃗) = ωj (−q⃗) (2.46)

Ultimately, the evenness of the function ωj(q⃗) is a manifestation of invariance of the
lattice dynamics equations (2.41) under the time reversal operation: t → −t.

Once the eigenvalues λj = ω2
j (q⃗) have become known and equation (2.43) is

solved, we can find 3r eigenvectors es. The vector components form amatrix (3r×3r):
esj ≡ eα (κ q⃗

j
) . (2.47)

The matrix (2.47) depends on the vector q⃗ as a parameter. Here, the index j andmulti-
index s, equal to s = {α, κ}, runs over 3r values: s, j = 1, 2, . . . , 3r.

If the matrix φss󸀠 is Hermitian, the eigenvectors can be chosen as orthogonal in
the following sense. That is, to obey additional conditions:

∑
s
e∗sjesj󸀠 = δjj󸀠 , ∑

j
e∗sjes󸀠 j = δss󸀠 . (2.48)
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Taking a careful look at the product of (2.48), we conclude that the matrix with the el-
ements esj turns out to be unitary. The conditions (2.48) are the conditions of unitarity
of the matrix.

We write the fields Us of the lattice atom displacements in the form:

Us = ∑
j󸀠
esj󸀠Qj󸀠 . (2.49)

Then the dynamic equations (2.42) of the crystal acquire the form:

∑
j󸀠
esj󸀠 Q̈j󸀠 = − ∑

s󸀠,j󸀠
φss󸀠es󸀠 j󸀠Qj󸀠 . (2.50)

Recall that the components esj are time independent as they are built by the dynamic
matrix φss󸀠 that is also time independent. Given the identity ∑s󸀠 φss󸀠es󸀠 j󸀠 = ω2

j󸀠 (q⃗)esj󸀠 ,
we can rewrite (2.50) in the form:

∑
j󸀠
esj󸀠 Q̈j󸀠 = −∑

j󸀠
ω2
j󸀠 (q⃗)esj󸀠Qj󸀠 . (2.51)

Taking the orthogonality conditions (2.48) into account, we multiply the equation
(2.51) by e∗sj and sum up the result in s. Then, we arrive at a system of equations for
independent harmonic oscillators:

Q̈j = −ω2
j (q⃗)Qj ,

where j = 1, 2, . . . , 3r. The problem has become trivial. Over the chosen variables,
the lattice dynamics equations are easily integrated:

Qj(q⃗, t) = cj(q⃗) exp (iωjt) + c̃j(q⃗) exp (−iωjt) , (2.52)

where cj(q⃗) and c̃j(q⃗) are constants of integration.
After inserting (2.52) into (2.30), we obtain the general solution of the lattice dy-

namics equations as a superposition of traveling waves. They are called the normal
modes of the lattice:

exp (±iωjt + iq⃗ ⋅ R⃗l) .

The resulting formula for the displacements of lattice atoms can be written in a
more convenient form for further analysis:

Uα ( lκ) = 1√MκN
∑⃗
q,j

eα (κ q⃗
j
)Qj(q⃗, t) exp (iq⃗ ⋅ R⃗l) , (2.53)

where the whole time dependence is contained in the function Qj(q⃗, t).
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Although the problem has been solved completely, we should clarify some prop-
erties of functions:

esj ≡ eα (κ q⃗
j
) , Qj(q⃗, t) .

To do this, we write the eigenvalue equation (2.43) in more detail. Thereby, we learn
more information:

∑
α󸀠 ,κ󸀠

φαα󸀠 ( q⃗
κ κ󸀠

) eα󸀠 (κ󸀠 q⃗
j
) = ω2

j (q⃗)eα (κ q⃗
j
) . (2.54)

After the complex conjugate of (2.54), we obtain:

∑
α󸀠 ,κ

φαα󸀠 ( −q⃗
κ κ󸀠

) e∗α󸀠 (κ󸀠 q⃗
j
) = ω2

j (q⃗)e∗α (κ q⃗
j
) . (2.55)

In going over from equation (2.54) to equation (2.55), we have used the property of the
dynamic matrix

φ∗
αα󸀠

( q⃗
κ κ󸀠

) = φαα󸀠 ( −q⃗
κ κ󸀠

) ,

and taken into account that the eigenvalues ω2
j (q⃗) are real.

Recall that ω2
j (q⃗) = ω2

j (−q⃗) (2.46). As a result, to determine the eigenvector
e∗α( κ 󵄨󵄨󵄨󵄨󵄨󵄨 q⃗j ), we have derived the same equation as it was for eα( κ 󵄨󵄨󵄨󵄨󵄨󵄨 q⃗j ) only with the re-
placement q⃗ by −q⃗ (this is seen from a comparison of formulas (2.54) and (2.55)). It
follows that there are two possibilities:

e∗α (κ q⃗
j
) = ±eα (κ −q⃗

j
) . (2.56)

Next, we select the eigenvectors in the following way:

e∗α (κ q⃗
j
) = eα (κ −q⃗

j
) . (2.57)

Now, we find a restriction to Qj(q⃗, t). For this, we note that the displacements of
lattice atoms are real in its physical sense:

U∗α ( lκ) = Uα ( lκ) .

Given (2.57), we come up with:

Uα ( lκ) = 1√MκN
∑⃗
q,j

eα (κ −q⃗
j󸀠
)Q∗j (q, t) exp (−iq⃗ ⋅ R⃗l) , (2.58)
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by complex conjugating of expression (2.53) for Uα( lκ). In the equality (2.58), we re-
place q⃗ by −q⃗:

Uα ( lκ) = 1√MκN
∑⃗
q,j

eα (κ q⃗
j
)Q∗j (−q⃗, t) exp (iq⃗ ⋅ R⃗l) . (2.59)

Expression (2.59) for Uα( lκ) coincides with expression (2.53) for Uα( lκ) only if:
Q∗j (−q⃗, t) = Qj(q⃗, t) . (2.60)

A suitable choice of the integration constants in formula (2.52) easily satisfies this con-
dition. It is enough to take

Qj(q⃗, t) = cj(q⃗) exp (iωjt) + c∗j (−q⃗) exp (−iωjt) .
A further analysis requires only that the functionQj(q⃗, t) satisfies the restriction (2.60)
and the equation of motion:

Q̈j + ωj(q⃗)Qj = 0 . (2.61)

Substitute the displacement fields Uα( lκ) in the form of (2.53) into the Lagrang-
ian (2.16) and rewrite the latter in terms of Qj, using the following four properties:
1. The orthogonality condition ∑s e∗sjesj󸀠 = δjj󸀠 .
2. The property of the dynamic matrix, such as∑s󸀠 φss󸀠es󸀠 j = ω2

j (q⃗)esj.
3.

1
N ∑

l
exp [i(q⃗ + q⃗󸀠)R⃗l] = {{{

0 , if q⃗ = −q⃗󸀠 + K⃗ ,
1 , if q⃗ = −q⃗󸀠 or q⃗ = −q⃗󸀠 + K⃗ .

Here, K⃗ is a reciprocal lattice vector. Recall that we choose the wave vectors q⃗
and q⃗󸀠 from the first Brillouin zone because only physically different values of q⃗
and q⃗󸀠 are taken into account. Therefore, in calculating the Lagrangian, we ex-
clude the case q⃗ = −q⃗󸀠 + K⃗ for K⃗ ̸= 0.

4. The restriction associated with the reality of displacement fields is: Qj(−q⃗, t) =
Q∗j (q⃗, t).

Simple algebraic calculations lead to the following expression for the Lagrangian:

L = 1
2 ∑⃗

q,j
[Q̇j(q⃗, t)Q̇∗j (q⃗, t) − ω2

j (q⃗)Qj(q⃗, t)Q∗j (q⃗, t)] .

We introduce generalized momenta conjugate to the coordinates Qj and Q∗j :

Pj(q⃗, t) = ∂L
∂Q̇j(q⃗, t) = Q̇∗j , P∗j (q⃗, t) = ∂L

∂Q̇∗j (q⃗, t) = Q̇j . (2.62)
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Now we pass from the Lagrangian to the Hamiltonian function:

H = ∑⃗
q,j

[Pj(q⃗, t)Q̇j(q⃗, t) + P∗j ( ⃗q, t)Q̇∗j (q⃗, t) ] − L =
= 1
2 ∑⃗

q,j
{Pj(q⃗, t)P∗j (q⃗, t) + ω2

j (q⃗)Qj(q⃗, t)Q∗j (q⃗, t)} . (2.63)

The Hamilton equations:

Ṗj = − ∂H
∂Qj

, Q̇j = ∂H
∂Pj

, Ṗ∗j = − ∂H
∂Q∗j

, Q̇∗j = ∂H
∂P∗j

, (2.64)

reproduce the relationship between Pj and Qj (2.62), and the lattice dynamics equa-
tions:

Q̈j + ω2
j Qj = 0 .

Thus, the Hamiltonian approach leads to the equations of the dynamics of the
crystal lattice. It should, of course, be noted that the functions of Lagrange andHamil-
ton are usually written through real generalized coordinates. There is no difficulty
in going over to the real coordinates and momenta because the following canonical
transformation helps do this:

Qj(q⃗) = 1
2 {Xj(q⃗) + Xj (−q⃗) + i

ωj(q⃗) [Pj(q⃗) − Pj (−q⃗)]} ,

Pj(q⃗) = 1
2{Pj(q⃗) + Pj (−q⃗) − iωj(q⃗) [Xj(q⃗) − Xj(−q⃗)] } .

(2.65)

In the formulas (2.65) the variables Xj and Pj are real and related as follows:

Pj(q) = Ẋj(q) . (2.66)

Given the evenness of the function ωj(q⃗) and by plugging the expressions (2.65)
into formula (2.63), we represent the energy of the crystal as the sum of the energies
of independent real oscillators:

H = 1
2 ∑⃗

q,j
[P2j (q⃗) + ω2

j (q⃗)X2j (q⃗)] .

The Hamilton equations

Ẋj = ∂H
∂Pj

, Ṗj = − ∂H
∂Xj

reproduce the relationships (2.66) between Xj and Pj. They also presentthe lattice dy-
namics equations as a system of equations for real noninteracting harmonic oscilla-
tors:

Ẍj + ω2
j (q⃗)Xj = 0 .
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2.6 Goldstone’s Theorem – Acoustic and Optical Modes of the
Normal Vibrations of a Crystal

The Lagrange function of any closed system of microparticles (electrons, ions, atoms)
is invariant under transformations of a continuous translation group. That is to say,
the Lagrangian form remains unchanged as the system is displaced by any constant
vector. At the same time, the atoms of a crystal, being in the ground state, form a lat-
tice whose symmetry is lower than the original symmetry of the Lagrangian of the
microparticles. In other words, the physical characteristics of the equilibriummacro-
crystals are invariant with respect only to a discrete translation group (there are no
arbitrary translations). The values observedare described by periodic functions, re-
flecting the periodicity of the crystal lattice.

When the symmetry of the ground state of the system is lower than the appropriate
symmetry of the Lagrangian, we can discuss this in terms of a spontaneous symmetry
breaking. The following general theorem, proved independently by Goldstone (1961)
and Bogolyubov (1963), is true.

Goldstone’s Theorem

Imagine a system of a large number of particles are in the ground state. Whenever
the latter’s symmetry properties spontaneously break the symmetry of the micro La-
grangian of the particles under transformations of a continuous group, collective os-
cillations always arise, whose frequencies tend to zero as a wave vector q⃗ tends to zero
as well: ωj(q⃗) → 0 as q⃗ → 0.

These collective oscillations of the system are called the Goldstone excitations, or
Goldstone bosons. The Goldstone excitations are always of such a nature, as if they
tend to restore the broken symmetry of the system. The breaking of the symmetry leads
to the appearance of branches (corresponding quasiparticles are called Goldstonians)
in the Goldstone excitation spectrum. Their number is determined by the number of
broken independent elements of the symmetry group of the system’s Lagrangian. That
is, by how many generators of the initial continuous symmetry group “disappear.”

Initially, the system of microparticles forming the crystal possesses an arbitrary
translational invariance. The micro Lagrangian of the particle system remains un-
changed under three independent translations along the axes: Ox, Oy,and Oz. Three
components of the total momentum as px , py , pz generate these translations. As the
microparticles form the crystal, the continuous translations disappear. Consequently,
according to Goldstone’s theorem, three crystal lattice frequencies among those 3r
found earlier must tend to zero as the wave vector q⃗ tends to zero.
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Let us verify this assertion with direct calculations. Recall that the displacement
of the κ-th atom of the l-th unit cell can be represented in the form:

Uα ( lκ) = 1√MκN
∑⃗
q,j

eα (κ q⃗
j
)Qj(q⃗, t) exp (iq⃗ ⋅ R⃗l) . (2.67)

The polarization vectors eα( κ 󵄨󵄨󵄨󵄨󵄨󵄨 q⃗j ) are solutions to the eigenvalue problem, which can
be written in detail as follows:

1
Mκ

∑
l,α󸀠,κ󸀠

Φαα󸀠 ( l
κ κ󸀠

) 1√Mκ󸀠
eα󸀠 (κ󸀠 q⃗

j
) exp (iq⃗ ⋅ ⃗Rl) = ω2

j (q⃗) 1√Mκ
eα (κ q⃗

j
) .

(2.68)
We argue that the three frequenciesωj(q⃗) vanish for q⃗ = 0. Let us prove this statement.

Suppose that q⃗ = 0 and the values (1/√Mκ)eα( κ 󵄨󵄨󵄨󵄨󵄨󵄨 0j ) do not depend on the param-
eter κ for all values of the index α:

1√Mκ
eα (κ q⃗ = 0

j
) = Vα(j) . (2.69)

Then equation (2.68) can be rewritten as:

1
Mκ

∑
α󸀠
Vα󸀠(j) ∑

l,κ󸀠
Φαα󸀠 ( l

κ κ󸀠
) = ω2

j (0)Vα(j), α = 1, 2, 3 . (2.70)

Due to the property of the force matrix (2.25), we have:

∑
l,κ󸀠

Φαα󸀠 ( l
κ κ󸀠

) = 0 .

Then from (2.70) we get:
ω2
j (0)Vα(j) = 0 . (2.71)

The number of the independent vectors Vα(j) in three-dimensional space cannot
be greater than three. Therefore, the equality (2.71) implies that only three frequencies
from ωj(0) can vanish. Thus, we are convinced of the validity of Goldstone’s theorem.

According to (2.53), if combinations of the constants (2.69) do not depend on the
parameter κ, all the atoms inunit cells of the crystal vibrate in the samephase,with the
same amplitude. The parameter κ enumerates the atoms within the unit cell. Such os-
cillations are characteristic of the displacements of an elastic medium through which
sound propagates. Therefore, three modes of lattice vibrations with frequencies van-
ishing for q⃗ = 0 are referred to as acoustic modes.

Since ω2
j (−q⃗) = ω2

j (q⃗), it can be assumed that the frequencies of the acoustic
modes for small q⃗ appear as:

ω2
j (q) ≈ 3∑

γ,δ=1
αjγδqγqδ , j = 1, 2, 3 .
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Adetailed calculation confirms this assumption. In an isotropicmedium, the acoustic
modes must have the form:

ω2
j ≈ c2j q⃗

2 , j = 1, 2, 3 ,

where cj are the velocities of sound waves. The velocities of two transverse sound
waves with different polarizations are the same, c1 = c2 and differ from the longi-
tudinal sound wave velocity, c3 ̸= c1, c2.

The rest (3r − 3) of the oscillations whose frequencies do not vanish as q⃗ → 0
are called optical lattice vibrations. The name is sometimes misleading. Let us explain
where it comes from. The fact is that, if we have two atoms in the unit cell, the atoms
oscillate in optical modes of vibrations towards or away from each other in opposite
phase. If the atoms bear a charge (they are ions), their vibrations correspond to al-
ternating electric dipole moments capable of emitting electromagnetic waves in the
optical range. This circumstance was the reason for all the (3r − 3) lattice vibrations
becoming known as optical.

If the unit cell has one atom (r = 1), there are only three acoustic modes of the
lattice vibrations. It is not worth forgetting that the opticalmodes canbe lost by taking
a simple lattice with identical atoms for theoretical calculations.

Counting the Number of States

In most cases, we have 3r functions of ωj(q⃗). The wave vector q⃗ runs over quasicon-
tinuous values within the first Brillouin zone. The first Brillouin zone has as many
permitted values of q⃗ as the crystal has unit cells, i.e., N. Therefore, the quantity ωj(q⃗)
takes 3rN values.

The density of the wave vectors in reciprocal space can be found by dividing the
numberN of thepermitted values of q⃗ in thefirstBrillouin zoneby the zonevolumeVb :

N
Vb

= NVa(2π)3 = V(2π)3 . (2.72)

By transforming formula (2.72), we have taken into account that if Vα is the volume of
the unit cell of the direct lattice, then Vb = (2π)3/Va, NVa = V is the volume of the
crystal.

In reciprocal space, the first Brillouin zone canbe split into small volumes d3q⃗. Ac-
cording to (2.72), the volume contains (V/(2π)3)d3q⃗ permitted wave vectors. We have
obtained amultiplier that allows replacing the summation in the vectors q⃗ by integra-
tion: ∑⃗

q
. . . = V(2π)3 ∫ d3q⃗ . . . . (2.73)
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2.7 Lattice Vibrations Using an Example of a Linear Chain of Atoms

Consider a set of atoms with mass M. Let them be arranged along a straight line Ox
at points spaced apart by a distance of a (see. Figure 2.2). On the axis Ox, Rn = na,
where n are integers, are sites of a one-dimensional Bravais lattice. In this case, the
unit cell contains one atom, and the atomic equilibrium positions coincide with the
Bravais lattice sites.

M M M M M

O x

a

Fig. 2.2: A monatomic linear chain.

Let un be the displacement of the atom along the Ox axis, measured from its equi-
librium position. The function un(t) describes the vibrations of the atom near the
point na.

The potential energy of atoms in the chain in the harmonic approximation has the
form:

U = 1
2
∑
n,n󸀠

Φ(an, an󸀠 )unun󸀠 , (2.74)

where Φ(an󸀠 , an) = (∂2Φ/∂un∂un󸀠)|{us}=0 is the force matrix and Φ({na + un}) is the
precise value of the potential energy of atom-atom interaction in the chain.We discuss
the basic properties of the force matrix next.

The matrix Φ(an󸀠 , an) is positive definite. A necessary (but not sufficient) condi-
tion for positive definiteness of the matrix is that all its diagonal elements must be
positive:

Φ(an, an) > 0 . (2.75)

From the definition of the force matrix, it follows that:

Φ(an, an󸀠 ) = Φ(an󸀠 , an) . (2.76)

Any endless chain (we handle an infinite chain) must remain invariant under
translations by the Bravais lattice vectors Rm = ma, hence it all comes to:

Φ(an, an󸀠 ) = Φ(a(n − n󸀠)) . (2.77)

The consequence of the properties (2.76) and (2.77) is that the chain directions are
equivalent:

Φ(an) = Φ(−an) . (2.78)

That is, a one-dimensional monatomic chain always has a center of inversion.
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Under arbitrary translations of the endless chain as a whole, no forces must
emerge: ∑

n󸀠
Φ(a(n − n󸀠)) = 0 . (2.79)

Let us make an additional assumption that the atom labeled by the number n in-
teracts only with its nearest neighbors on the left and right. With this assumption,
the matrix Φ(an󸀠 , an) = Φ(a(n − n󸀠)) accepts only the following index values n󸀠:
n󸀠 = n − 1, n, n + 1.

For n󸀠 = n, we have Φ(0) > 0 (see equations (2.75) to (2.77)). For further analysis,
it is convenient to denote:

Φ(0) = 2α > 0 .

For n󸀠 = n − 1, n󸀠 = n + 1, from (2.78) we find that Φ(a) = Φ(−a).
Next, we write down the condition (2.79) in the nearest neighbor approximation:

Φ(0) + Φ(a) + Φ (−a) = 0 .

This gives 2α + 2Φ(a) = 0, because Φ(0) = 2α, Φ(a) = Φ(−a). Consequently, Φ(a) =−α.
So we have ascertained that:

Φ(0) = 2α > 0, Φ (−a) = Φ(a) = −α < 0 . (2.80)

The equations of motion of the atoms in the chain in the nearest neighbor approxima-
tion have the form:

Mün = −α [2un − un+1 − un−1] = −∂U/∂un = Fn , (2.81)

where Fn the force that acts on the n-th atom from its surroundings. When un = un+1 =
un−1, the force Fn vanishes, as it should.

The potential energy U in the nearest neighbor approximation is written as:

U = 1
2 ∑

n
α(un − un−1)2 . (2.82)

We rewrite equation (2.81) in a different way:

Mün = −α(un − un+1) − α(un − un−1) . (2.83)

The equationsofmotionofmaterial pointswithmassM, coupledwith idealweightless
springswith the stiffness of α, have the exact same form. The equations do not include
the equilibrium spring length a because the forces arise only when the springs stretch.

Now we estimate the parameter α. The main forces to stabilize the crystal struc-
ture are electrostatic forces. Typically, these forces are due to the electrons of unfilled
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atomic shells, whose number is small. We believe that the effective charges of atoms
in the chain are equal in magnitude to the electron charge |e|:

Φ ∼ e2
4πε0 |a + un| (in the International System of Units) ,

Φ ∼ e2|a + un| (in the CGS)

Consequently,

α = ∂2Φ
∂u2n

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨un=0 ∼
e2

4πε0a3
(in the SI) , α ∼ e2

a3
(in the CGS) .

In the SI, we have:

a ∼ 10−10 m , e ∼ 10−19 C , 1/4πε0 ∼ 1010 m/F ,
Thus,

α ∼ 10−38

10−30
1010 ≈ 100 kg

sec2
= 100 N

m .

The solutions of the equations of motion of atoms in the chain (2.81) need to be
sought in the following manner:

un = Re (ũn) , ũn = A exp (iφn) , φn = −ωt + qna + β ,

where ω, A, β are real parameters. Then, we arrive at:

̈̃un = −ω2A exp (iφn) , ũn+1 = A exp (iφn + iqa) , ũn−1 = A exp (iφn − iqa) .
Plugging these expressions into the equations of motion, we find:

−Mω2A exp (iφn) = −α [2 − exp (−iqa) − exp (iqa)]A exp (iφn) == −2α(1 − cos qa)A exp (iφn) .
After reducing by the factor A exp(iφn), we obtain the dispersion relation (Figure 2.3):

ω2 = 2α
M (1 − cos qa) = 4α

M sin2 qa
2 . (2.84)

Hence it follows that:
ω(q) = 2√ α

M
󵄨󵄨󵄨󵄨󵄨󵄨󵄨sin qa

2
󵄨󵄨󵄨󵄨󵄨󵄨󵄨 . (2.85)

The solution describing the displacements of atoms in the chain is determined by the
real part of the function ũn:

un(t) = A cos[qna + β − ωt] . (2.86)

For 0 < |q| < π/a, the solution (2.86) is a traveling plane wave.



138 | 2 Crystal Lattice Vibrations

O q
aπaπ

ω

M
α

2

Almost linear
dependence

2aπ2aπ
Fig. 2.3: A dispersion curve for a monoatomic linear
chain in the nearest neighbor approximation.

O qaπaπ

u1(  )q

A

-A

2aπ2aπ

Fig. 2.4: The dependence of the displace-
ment of the atom with the number n = 1 on
the wave number q for β = 0, t = 0.

As can be seen, all the possible vibrations can be described by searching q through
the interval −π/a < q ≤ π/a corresponding to the first Brillouin zone. The values of q,
which lie outside the first Brillouin zone, lead to the already familiar repeatedmotions
(see Figure 2.4).

Suppose that the number of atoms N in the chain are finite but great. If effects
takingplace at the ends of the chain are not our concern,we canuse theBorn–Karman
boundary conditions un+N = un. The latter corresponds to closure of the chain to form
a ring. These require the following:

exp (iqNa) = 1 .

Hence, in turn, it implies that the quantity q must have the form:

q = 2π
a

n
N , (2.87)

where n is an arbitrary integer.
The first Brillouin zone contains the points qwhose values of n run over the inter-

val: − N
2

< n ≤ N
2

(The total number of pieces is N) . (2.88)

For large values of N, the allowed wave numbers are arranged quasicontinuously:

∆q = 2π
aN

→ ∞ as N → ∞ .
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When q = 0, the solution (2.86) describes the static displacement of all the atoms
by one magnitude:

un(t) = A cos β . (2.89)

When q = π/a, we obtain a standing wave. The neighbor atoms in the chain vi-
brate in opposite phase:

un(t) = (−1)nA cos[β − ωt] , ω = 2√α/M . (2.90)

When |qa| ≪ 1, the oscillation frequency of the atoms in the chain is given by:

ω ≈ √ α
M a |q| .

Such a dependence ofω on q is typical for soundwaves in the event of coinciding their
phase Vph = ω/|q| and group Vgroup = ∂ω/∂|q| velocities:

Vph = Vgroup ≡ s = √ α
M a . (2.91)

We estimate the quantity s. Earlier, we already evaluated the parameter α:
α ∼ 100N/m. The atoms of themiddle part of the periodic table haveM ∼ 10−25kg. The
interatomic distances in the crystals are a ∼ 10−10m. Therefore, s ∼ √102710−10 ≈
103m/ sec. We have obtained a typical velocity of sound in the crystal.

Near the Brillouin zone boundary, the dependence of the frequency ω on the
wave number q is nonlinear. Therefore, the group and phase velocities are not equal:
Vgroup < Vph. In general, when ω = ω(|q⃗|), the relation holds:

Vgroup = Vph + 󵄨󵄨󵄨󵄨q⃗󵄨󵄨󵄨󵄨 ∂Vph/∂ 󵄨󵄨󵄨󵄨q⃗󵄨󵄨󵄨󵄨 .
Media, for which Vgroup < Vph, are called the media with normal dispersion.

An arbitrarymotion of the chain can be represented as a superposition of N inde-
pendent waves (2.86)–(2.88). Therefore, we have found a complete solution.

2.8 A Diatomic Chain: A One-Dimensional Lattice with Basis

We will now deal with a one-dimensional chain with two kinds of atoms in the unit
cell, with the distance between them being equal to a. The period of the unit cell is 2a.
Along the axisOx, the position of the Bravais lattice points are defined by the formula:
Rn = 2an (Figure 2.5). The positions of the atoms in the unit cell are characterized
by the numbers Rκ (κ = 1, 2): R1 = 0, R2 = a. In this case, the coordinates of the
equilibrium atoms can be written as Rn

κ = 2an + Rκ, where n are integers.
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O x

M1 M1 M 2M 2M 2

a2

a

Fig. 2.5: Schematic representation of a diatomic linear chain.

Analysis of the diatomic chain is similar to the analysis of the single-atom chain.
The equations of motion of the atoms in the chain have a similar form:

Mnün = −α [2un − un+1 − un−1] . (2.92)

Now, the points with even and odd numbers of n identify the atoms with masses M2
and M1(M2 > M1), respectively. For simplicity, the constant α is assumed to be inde-
pendent of the number of the atom.

The solutions of (2.92) should be sought in the following form:

{{{
u2n+1 = A1 exp{−iωt + iq(2n + 1)a + iβ}
u2n = A2 exp{−iωt + iq2na + iβ} . (2.93)

After substituting (2.93) into (2.92) and reducing by the common factor, we get:

{{{
[M1ω2 − 2α]A1 + 2αA2 cos qa = 0
2αA1 cos qa + [M2ω2 − 2α]A2 = 0 .

(2.94)

The system (2.94) has a nontrivial solution only if its determinant vanishes. The van-
ishing of the determinant dictates the frequencies of the normal modes:

ω2
± = α ( 1

M1
+ 1
M2

) ± α√( 1
M1

+ 1
M2

)2 − 4
M1M2

sin2 qa . (2.95)

The two dependencies of ω on q bear the name of two branches of the dispersion
relation. The lower branchω−(q) has the same nature as the only branch found for the
monatomic one-dimensional lattice. This branch is called acoustic, because its disper-
sion relation for small wave numbers has the form: ω ≈ sq, which is characteristic of
soundwaves. The secondbranchω+(q) is called the optical branch. Let us first analyze
what constitutes each type of the oscillation when q ≈ 0 (q ̸= 0).

For the acoustic branches we have:

ω2
− ≈ 0 , A1 ≈ A2 .

Within the elementary cell, different atoms vibrate in phase (Figure 2.6).

M 2M1

Fig. 2.6:Motion of neighboring lattice atoms for the acoustic branch of the spectrum when q ≈ 0.
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For the optical branch:

ω2
+ = 2α ( 1

M1
+ 1
M2

) ̸= 0 , −M1
M2

A1 ≈ A2 .

Within the elementary cell, different atoms oscillate in opposite phase, and their os-
cillation amplitudes are inversely proportional to their masses (Figure 2.7).

M 2M1

Fig. 2.7:Motion of neighboring lattice atoms for the optical branch of the spectrum when q ≈ 0.

For the diatomic chain, the first Brillouin zone is twice less than in the case of a
chain of identical atoms: − π

2a < q ≤ π
2a . (2.96)

When q = π/2a at the boundary of the Brillouin zone for the optical branch of the
spectrum, we have:

ω2
+ = 2α

M1
, A1 ̸= 0 , A2 = 0 .

Within each unit cell, only light atoms vibrate (Figure 2.8)

M 2M1

Fig. 2.8: Oscillations of the light atoms for the optical branch of the spectrum when q = π/2a.

For the acoustic branch of the spectrum:

ω− = 2α
M2

, A1 = 0, A2 ̸= 0 ,

In this case, in each unit cell, the light atoms are immobile and only the heavy atoms
oscillate (Figure 2.9) but slower than the light atoms of the optical branch: ω2

− < ω2
+.

M1 M 2

Fig. 2.9:Oscillations of the heavy atoms for the optical branch of the spectrum when q = π/2a.

Since the frequencies ω−(q) and ω+(q) are not equal the gap emerges at the boundary
of the Brillouin zone (Figure 2.10). Moreover, at the edges of the Brillouin zonewe have
∂ω±/∂q|q=±π/2a = 0.
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Fig. 2.10: The dispersion relation for a di-
atomic linear chain. The lower branch is
acoustic and the upper is optical.
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Fig. 2.11: Dependencies of ω−(q),ω+(q),
in the limit of M2 → M1.

In the limit M2 → M1, the gap disappears and we obtain the dependencies depicted
in Figure 2.11.

When M2 → M1, the Brillouin zone of the chain of atoms expands twice:

− π
a
< q ≤ π

a
. (2.97)

This is true because, when M2 → M1, the unit cell in the direct space shrinks in half
(compare Figure 2.2 and Figure 2.5). In the new Brillouin zone (2.97), the upper branch
of the spectrum becomes equivalent to the lower, as:

ω2
± = 2α

M1
± α√ 4

M2
1

√1 − sin2 qa = 2α
M1

(1 ± cos qa) .
Then:

ω2
− = 2α

M1
(1 − cos qa) , ω2

+ = 2α
M1

(1 + cos qa) .
Consequently, we come upwith: ω−(q±π/a) = ω+(q) (see Figure 2.11). In other words,
when M2 = M1, the branch ω+(q) is no longer new because it is a product of the shift
of the branch ω−(q) to the next Brillouin zone.

The passage to the limit M2 → M1 is especially illustrative if one depicts the op-
tical and acoustic branches of the original spectrum in the expanded zone scheme
(Figures 2.12 and 2.13).

In the repeated zone scheme, the oscillation spectrum of a diatomic lattice has
the form as displayed in Figure 2.14.



2.9 Quantum Theory of the Harmonic Crystal | 143

ω(  )q

q0
π
a2

π
a2

π
a

π
a

α2
M1

+ α2
M2

Fig. 2.12: The appearance of the gap
in the vibration spectrum of a diatomic
chain (the extended zone scheme).
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Fig. 2.13: The change in the spectrum of a
diatomic chain whenM2 → M1.
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Fig. 2.14: The frequency spectrum of a diatomic chain
in the repeated zone scheme.

Thus, the alternate variation of the atom masses in the chain leads to the appear-
ance of new Brillouin zone boundaries at the points q = ±π/2a. The spectrum of the
atom vibrations shows these boundaries as forbidden frequency ranges (the gaps are
opened).

2.9 Quantum Theory of the Harmonic Crystal

To begin with, let us write the Hamiltonian of a crystal:

H = 1
2 ∑⃗

q,j
(P2j (q⃗) + ω2

j (q⃗)X2j (q⃗)) . (2.98)
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Furthermore, we replace the dynamic variables in (2.98) by Hermitian operators that
satisfy the canonical commutation relations:

[p̂i(q⃗) , p̂j(q⃗󸀠)] = [x̂i (q⃗) , x̂j (q⃗󸀠)] = 0 , [x̂s (q⃗) , p̂j(q⃗󸀠)] = iℎδsjδq⃗q⃗󸀠 . (2.99)

With the operators x̂s , p̂j being Hermitian, their eigenvalues correspond to observed
values.

However, the annihilation and creation operators âj , â+i not being Hermitian is
convenient against the operators x̂s , p̂j, as it allows us to run further analysis despite
them not corresponding to the observed values:

x̂j(q⃗) = √ ℎ
2ωj(q⃗) (âj(q⃗) + â+j (q⃗)) , p̂j(q⃗) = −i√ℎωj(q⃗)

2 (âj(q⃗) − â+j (q⃗)) . (2.100)

It is easy to verify that the previously entered variables Pi , Qi (2.65) correspond to
the operators:

Q̂j(q⃗) = 1
2 {x̂j(q⃗) + x̂j(−q⃗) + i

ωj(q⃗) (p̂j(q⃗) − p̂j(−q⃗))} = √ ℎ
2ωj(q⃗) (âj(q⃗) + â+j (−q⃗)) .

P̂j(q⃗) = 1
2 {p̂j(q⃗) + p̂j(−q⃗) − iωj(q⃗) (x̂j(q⃗) − x̂j(−q⃗))} = −i√ℎωj(q⃗)

2 (âj(q⃗) − â+j (−q⃗)) .

(2.101)
The commutation relations for the operators âs, â+j follow from the commutation re-
lations (2.99): [âs(q⃗), âj(q⃗󸀠)] = [â+s (q⃗), â+j (q⃗󸀠)] = 0 ,

[âs(q⃗) , â+j (q⃗󸀠)]= δsjδq⃗q⃗󸀠 .
(2.102)

The expression for the Hamilton operator, in terms of creation and annihilation oper-
ators that corresponds to the classical Hamiltonian (2.98), can be written as:

Ĥ = 1
2 ∑⃗

q,j
ℎωj(q⃗) [n̂j + Î

2] , (2.103)

where the Hermitian operator n̂j(q⃗) = â+j (q⃗)âj(q⃗) has the eigenvalues nj(q⃗) = 0, 1, 2,
3, . . . and the eigenvectors:

| {nj(q⃗)}⟩ = 3r∏
j=1

|nj(q⃗)⟩ ,

where r is the number of atoms of different sorts in the unit cell.
The number nj(q⃗) characterizes the degree of excitation of the normal mode with

thewave vector q⃗ of the j-th branch of the lattice vibration spectrum. Such terminology
is inconvenient for describing processes in a crystal, where the normal modes redis-
tribute energy among themselves, or their energy quanta feed other subsystems of the
crystal, such as electrons. Therefore, the quantum theory introduces the concept of a
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phonon in the same way as the electromagnetic field theory introduces the concept of
a photon. Rather than saying that the normal mode of the j-th branch with the wave
vector q⃗ is in the nj(q⃗)-th excited state, it is convenient to believe that the crystal con-
tains nj(q⃗) quasiparticles – phonons with the energy ℎωj(q⃗). Compare the photon and
phonon concepts.

A photon describes quanta of an electromagnetic field; in particular, light. The
speed of a photon coincides with the speed of light. In contrast, a phonon describes
vibrationsof a crystal (sound) in a certain frequency range. Phononsmoveat the speed
of sound.

Photons can exist in a vacuum. Phonons, in turn, are responsible for collective
motion of real particles (atoms in a crystal); hence they reside only in the crystal (in the
matter). Both phonons andphotons are bosons, i.e., any number of phononsmaybe in
one quantummechanical state. Moreover, both photons andphonons have spin equal
to unity. At the same time, a phonon has three projections of the angular momentum,
and a photon has only two.

2.10 The Debye Interpolation Theory of the Heat Capacity of a
Crystal

Debye was based on the assumption of exciting the intrinsic normal lattice vibrations
(phonons) by heating the crystal. The acoustic phonons possessing the minimum ex-
citation energy (ω(q⃗) → 0 for q⃗ → 0) govern the thermal properties of the crystal.
Debye regarded a crystal as a vessel containing an ideal gas of acoustic phonons. He
derived an approximate formula for the heat capacity of the crystal over the following
criteria, which is listed below:
1. Out of all the branches of the vibrational spectrum of the crystal, Debye took only

three acoustic ones into account. For the latter, he used one and the same linear
dispersion law ω = s|q⃗| (Figure 2.15).

π
a q

D
q

ω(   )q

O

ω=s q

Fig. 2.15: Three acoustic branches obeying one and the same linear
dispersion law.
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2. Debye replaced the true Brillouin zone by a sphere of radius qD; the volumes of
the sphere and the true Brillouin zone coincide:

4
3πq

3
D = Vb . (2.104)

Since Vb = (2π)3/Va, where Va is the volume of the unit cell of the direct lattice, an
expression for qD can be written as:

qD = 3√6π2/Va . (2.105)

To evaluate qD, note that Va ∼ a3, where a is the interatomic distance. Hence, we find:

qD ∼ π
a ∼ kF , (2.106)

i.e., qD has the same order of magnitude as the Fermi wave vector for electrons in a
crystal.

Themaximumpossible value of thewavenumber qD correlateswith theminimum
wavelength λD:

qD = 2π
λD

∼ π
a
→ λD ∼ 2a . (2.107)

The condition (2.107) has a certain geometric meaning. The wavelength of the lattice
vibrations cannot be less than λD = 2a. This is explained by the fact that the motion
can be observed only in those places where the atoms are (Figure 2.16). All the wave-
lengths of the lattice vibrations must be greater than λD and, therefore, all the wave
vectors must be less than qD ∼ 2π/λD ∼ π/a. The frequency ωD = sqD is called the
Debye frequency.

The density of the allowed wave vectors q⃗ in reciprocal space is V/(2π)3.

~λ D 2a Fig. 2.16: The minimum wavelength of the atom vibrations in a crystal.

The volumed3 q⃗ contains (V/(2π)3)d3 q⃗ allowedwave vectors. Aswe look into the three
branches of the energy spectrum of the crystal, the number of the allowed quantum
states in the volume element d3q⃗ of the reciprocal space is given by:

3 V(2π)3 d3 q⃗ . (2.108)

The average number of thermally equilibrium phonons with the energy ε(q⃗) =ℎs|q⃗| is determined by the Bose–Einstein distribution:

f = 1
exp (ℎs 󵄨󵄨󵄨󵄨q⃗󵄨󵄨󵄨󵄨 /kBT) − 1 . (2.109)
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This is anappropriateplace tonote an importantdetail: phononsarenot particles,
but quasiparticles. They can appear and disappear. At given parameters of T and V,
the number of phonons Ñ is not constant, but it derives from the thermodynamic con-
ditions of minimum free energy. Therefore, the chemical potential μ is equal to zero
for the phonon system:

μ = ( ∂F
∂Ñ

)
T,V

= 0 . (2.110)

That is why we put that μ = 0 in formula (2.109).
The total number of phonons in the volume element d3q⃗ centered at a radius vec-

tor q⃗ at temperature T can be estimated by the formula:

3Vf(q⃗)(2π)3 d3q⃗ , (2.111)

where d3q⃗ = 4πq2dq; their energy is equal to:

3Vf(q⃗)ℎs 󵄨󵄨󵄨󵄨q⃗󵄨󵄨󵄨󵄨(2π)3 d3q⃗ . (2.112)

Given the above, we can write the following expression for the total energy of the
crystal:

ε = 3Vℎs
2π2

qD∫
0

dq q3
exp (ℎsq/kBT) − 1 . (2.113)

Note, that:
Va = V

N = 1
n . (2.114)

where n is the number of unit cells per unit volume. Or, in other words, n is the number
of mathematical Bravais lattice points per unit volume. N is the total number of unit
cells in the crystal.

From (2.105) and (2.114), we get:

q3D = 6π2

Va
= 6π2n . (2.115)

Now, it is convenient to determine the Debye temperature TD:

kBTD = ℎωD ≡ ℎsqD . (2.116)

Hence, we can make the estimate:

TD = ℎsqD
kB

∼ ℎsπ
kBa

= 10−34 ⋅ 103
10−23 ⋅ 10−10 ≈ 102K .

Let us change the variables hsq/kBT = x in formula (2.113) and calculate the spe-
cific heat of the crystal at constant volume:

cV = 1
V ( ∂ε

∂T )V
= 9nkB ( T

TD
)3 TD/T∫

0

dx x4 exp x(exp x − 1)2 . (2.117)
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Now we can examine the limiting cases.
If T ≪ TD, then the upper limit in the integral (2.117) can be replaced by∞:

∞∫
0

dx x4 exp x(exp x − 1)2 = 4π4

15
.

Consequently, we come to

cV ≈ 12
5 π4nkB ( T

TD
)3 . (2.118)

If T ≫ TD then:

TD/T∫
0

dx x4 exp x(exp x − 1)2 ≈ TD/T∫
0

dxx2 = 1
3 (TDT )3 ,

and we get:
cV = 3nkB = const . (2.119)

We have arrived at the Dulong–Petit law of classical physics.
It isworth emphasizing that only the quantum theory can explain the law cV ∼ T3,

observed experimentally in dielectrics and metals at low temperatures (Figure 2.17).
Classical physics for any temperature yields the heat capacity of (2.119).

сV

T
TD

3nkB

T 3~сV

Fig. 2.17: Temperature dependence of the specific heat of the
crystal.

2.11 The Role of the Anharmonic Terms in the Energy of a Crystal

There are many physical phenomena that are entirely caused by the highest terms of
the expansion of the potential energy of a crystal in powers of the ionic displacements.
These terms, always neglect the harmonic approximation. One of such properties is
the effect of thermal expansion.

In the harmonic approximation, the thermal vibrations of atoms near the equilib-
rium positions are spherically symmetrical: each atom is as close to one of its neigh-
bors as it is far away from it. As temperature grows, the amplitude of the vibrations
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increase as well. However, the average distance between the atoms of the crystal does
not change. It follows that the harmonic approximation cannot explain the thermal
expansion of bodies.

When the expansion of the elastic energy of the crystal takes the highest terms
into account, the vibrations of eachatom are essentially amplitude dependent and are
of such a nature that the atom is easier to remove from a neighbor than to approach
it. Due to the asymmetry of the vibrations, the average distances between the atoms
become larger as the crystal heats up. That is why bodies increase their volume upon
heating.

Anharmonic interactions are an important cause of finite thermal conductivity of
dielectrics. In other words, a perfect harmonic crystal would possess infinite conduc-
tivity.

Let us explain this statement. In the harmonic approximation, the heat transfer
should be described by wave packets, each of which represents a superposition of
normal modes of the lattice vibrations of one (of the j-th) branch of the spectrumwith
close wave vectors: 󵄨󵄨󵄨󵄨󵄨q⃗ − q⃗󸀠󵄨󵄨󵄨󵄨󵄨 ≤ ∆q . (2.120)

The size ∆r of the wave packet in the coordinate space satisfies the constraint

L ≫ ∆r ∼ 1
∆q ≫ a , (2.121)

where L is the size of the crystal and a is the interatomic distance.
With the group velocity of thewavepacket being V⃗ = ∂ωj(q⃗)/∂q⃗ = const, a perfect

harmonic crystal has infinite thermal conductivity. Earlier, we noted a similar situa-
tion for the electrical conductivity of metals.

The finite thermal conductivity of real crystals appears for several reasons.
1. Various imperfections of a crystal lattice, impurities, and free electrons (in the

case of metals) act as scattering centers for phonons and prevent heat flux.
Phonons collide with the surface of the sample, which also limits the heat flux.

2. A special role is played by phonon interactions, such as processes of scattering,
merger or decay of phonons. The phonon interactions can be described by the
anharmonic terms in the crystal’s Hamiltonian. Therefore, they are always there
and they cannot be eliminated.

For a theoretical descriptionof thephonon interactions, the expansionof thepotential
energy of the lattice Φ in powers of the ionic displacements U⃗ keeps necessarily the
fourth-order terms together with cubic ones [2]. This is due to the following reasons:
(a) Hamiltonian that contains only third-order terms in U⃗ have no ground state: by

choosing the values of U⃗ in an appropriate way, we may set the potential energy
as arbitrarily large in absolute magnitude (as desired) and negative.
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Fig. 2.18: Processes corresponding to the third-order anharmonic terms: one phonon splits into two,
two phonons merge into one.
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Fig. 2.19: Processes corresponding to the fourth-order anharmonic terms: one phonon decays into
three, three phonons merge into one, phonon scattering.

(b) The laws of conservation of energy and momentum must be fulfilled when
phonons collide. These laws impose such severe restrictions on the scattering
processes associated with the third-order terms that even if |U⃗| is small (conse-
quently, the fourth-order terms in the potential energy of the crystal are small too),
the contributions of the third- and fourth-order terms to the thermal conductivity
are comparable in magnitude (Figures 2.18 and 2.19).

The anharmonic terms of higher order (5th, 6th, etc.) also lead to the phonon scatter-
ing and reactions between them. However, under the assumption of smallness of the
crystal vibrations, the third- and fourth-order terms are still the most important in the
expansion in powers of U⃗.

It is important to point out that the law of conservation of the total quasimomen-
tum of the phonons holds only up to the term ℎK⃗. For example, for the decay of a
phonon (Figure 2.18), in a general case, we have:

q⃗ = q⃗󸀠 + q⃗󸀠󸀠 + K⃗ ,

where K⃗ is an arbitrary reciprocal lattice vector.
The processes of the phonon interactions with the nonzero reciprocal lattice vec-

tor K⃗ are called Umklapp processes. It is these, rather than the processes with K⃗ = 0⃗,
that govern the phonon momentum relaxation and finite thermal conductivity of the
crystal. In this case, the crystal acquires the quasimomentum ℎK⃗ ̸= 0⃗ as a whole.
With decreasing temperature T, the number of phonons capable of participating in
the Umklapp processes diminishes exponentially: ∼ exp(−θ//T), with θ being a posi-
tive parameter.
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2.12 Electron-Phonon Interaction

To begin with, we write the potential energy of an electron in a periodic field of fixed
ions as:

Ureg( ⃗r) = ∑
l,κ

Ṽκ ( ⃗r − R⃗l
κ) , Ureg( ⃗r + R⃗l) = Ureg( ⃗r) , (2.122)

where Ṽκ( ⃗r − R⃗l
κ) is the pair interaction potential between the κ-th ion of the l-th cell

and an electron situated at the point with the radius vector ⃗r. The vector R⃗l
κ = R⃗l + R⃗κ

specifies the position of the ion in the crystal.
When the ions are displaced outwards from their equilibrium positions, their po-

sition vectors are described by the formula:

R⃗l
κ → R⃗l

κ + U⃗ ( l
κ
) .

In addition, the interaction energy between the electron and the crystal lattice takes
the following form:

U( ⃗r) = ∑
l,κ

Ṽκ ( ⃗r − R⃗l
κ − U⃗ ( l

κ
)) . (2.123)

The displacement fields U⃗( lκ) are assumed to be small, i.e., they meet the condi-
tion (2.10). Then, we expand the energy (2.123) into a Taylor series, restricting our-
selves to only the first terms [11]:

U( ⃗r) = ∑
l,κ

Ṽκ ( ⃗r − R⃗l
κ − U⃗ ( l

κ
)) ≈ Ureg − ∑

l,κ,α
[ ∂
∂rα

Ṽκ ( ⃗r − R⃗l
κ)Uα ( lκ)] . (2.124)

From here we get the interaction Hamiltonian between the electrons and the lat-
tice vibrations:

Hint = − ∑
l,κ,α

[ ∂
∂rα

Ṽκ ( ⃗r − R⃗l
κ)Uα ( lκ)] =

= ∑⃗
q,j

Qj(q⃗) ∑
l,κ,α

1√NMκ
[ ∂
∂rα

Ṽκ( ⃗r − Rl
κ)] eα (κ q⃗

j
) exp (iq⃗ ⋅ R⃗l) .

(2.125)

Here, we have used the expansion (2.67).
To go from the Hamiltonian of classical physics (2.125) to the Hamiltonian oper-

ator Ĥint of the quantum theory, we replace the dynamic variable Qj(q⃗) in the rela-
tion (2.125) by the operator Q̂j(q⃗). As shownpreviously, the operator Q̂j(q⃗) is expressed
in terms of the creation and annihilation of phonons:

Q̂j(q⃗) = √ ℎ
2ωj(q⃗) [âj(q⃗) + â+j (−q⃗)] . (2.126)

As a result, we have:

Ĥint = − ∑⃗
q,j

√ ℎ
2ωj(q⃗) [âj(q⃗) + â+j (−q⃗)] ⋅

⋅ ∑
l,κ,α

1√NMκ
[ ∂
∂rα

Ṽκ( ⃗r − Rl
κ)] eα (κ q⃗

j
) exp (iq⃗ ⋅ R⃗l) . (2.127)



152 | 2 Crystal Lattice Vibrations

The perturbation theory allows calculating various observables through the ma-
trix elements of the operator Ĥint on the Bloch functions of electrons. Recall that, in
the periodic field of ions, the electron Bloch functions have the form:

Ψsk⃗ = exp (ik⃗ ⋅ ⃗r) usk⃗( ⃗r) , us( ⃗r + R⃗l) = us( ⃗r) , (2.128)

where s is the energy band number and k⃗ is the electron wave vector.
Let the electron Bloch functions be orthonormalized in the crystal volume V:

∫
V

d3 ⃗rΨ∗
s󸀠 k⃗󸀠

( ⃗r)Ψsk⃗( ⃗r) = δss󸀠δk⃗k⃗󸀠 . (2.129)

To find thematrix element ⟨s󸀠 k⃗󸀠|Ĥint|sk⃗⟩, it is sufficient to calculate thematrix element⟨s󸀠 k⃗󸀠|∂Ṽκ( ⃗r − Rl
κ)/∂rα|sk⃗⟩. To calculate the latter, we replace the integration over the

coordinates ⃗r of the electron by the integration over the variable ⃗r󸀠 = ⃗r − R⃗l:

⟨s󸀠 k⃗󸀠
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 ∂
∂rα

Ṽκ( ⃗r −
R⃗l + R⃗κ⏞⏞⏞⏞⏞⏞⏞
R⃗l
κ ) 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 sk⃗⟩ =

[∫d3 ⃗r󸀠 ∂
∂r󸀠α

Ṽκ( ⃗r − R⃗κ)u∗s󸀠 k⃗󸀠 ( ⃗r󸀠)usk⃗( ⃗r󸀠) exp {−i ⃗r󸀠 ⋅ (k⃗󸀠 − k⃗)}] exp {iR⃗l ⋅ (k⃗ − k⃗󸀠)} .

(2.130)
Using formula (2.130) and the identity:

∑
l
exp [iR⃗l ⋅ (q⃗ − k⃗󸀠 + k⃗)] = Nδk⃗󸀠−k⃗,q⃗+K⃗ , (2.131)

where K⃗ is an arbitrary reciprocal lattice vector and N is the number of unit cells in
the crystal, wemay reduce the matrix element of the interaction operator between the
electrons and the lattice vibrations to the following form:

⟨s󸀠 k⃗󸀠| Ĥint |sk⃗⟩ = ∑⃗
q,j

[âj(q⃗) + â+j (−q⃗)] gs󸀠 k⃗󸀠 ,sk⃗ (q⃗j) , (2.132)

where

gs󸀠 k⃗󸀠 ,sk⃗ (q⃗j) = −√ ℎN
2ωj(q⃗) ∑κ,α⟨s󸀠 k⃗󸀠

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 ∂
∂rα

Ṽκ( ⃗r − R⃗κ)󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 sk⃗⟩ 1√Mκ
eα (κ q⃗

j
)∑⃗

K

δk⃗󸀠−k⃗,q⃗+K⃗

g∗
s󸀠 k⃗󸀠 ,sk⃗

(q⃗
j
) = gsk⃗,s󸀠k⃗󸀠 (−q⃗j ) (2.133)

From formula (2.133), an important statement follows. In the crystal, under the
electron-phonon interaction the quasimomentum conservation law holds true only
up to the quantity ℎK⃗ related to some reciprocal lattice vector K⃗:

ℎ(k⃗󸀠 − k⃗) = ℎ(q⃗ + K⃗) . (2.134)

Recall that the first Brillouin zone physically limits different values of the phonon
wave vector q⃗. According to the relation (2.134), under the electron-phonon interac-
tions, the processes with K⃗ ̸= 0, when the quasimomentum ℎ(k⃗󸀠 − k⃗) transfers the
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phonon wave vector from the first Brillouin zone in the neighboring ones, cannot be
excluded. From the standpoint of classical physics, there are certainly “normal” elec-
tron-phonon interaction processes when K⃗ = 0⃗.

For further analysis, the parameter gs󸀠 k⃗󸀠 ,sk⃗(q⃗j ) in formula (2.132) needs to be esti-
mated. In doing so, we assume that each unit cell of the crystal contains only one ion,
then:

κ = 1 , R⃗κ = 0 , Mκ = M , Ṽκ ( ⃗r − R⃗l

κ) = Ṽ ( ⃗r − R⃗l) .

It should be recalled that the potential energy Ṽ(r) of the Coulomb interaction
between the electron and the ion is screened so that it is of the order e2/a within a
sphere of radius a and vanishes outside this sphere. The parameter a is of the order
of the interatomic distance in the crystal. It means that:

∫ Ṽ( ⃗r)d3 ⃗r ∼ e2

a
a3 = e2a2 . (2.135)

Given (2.135), we replace the potential Ṽ( ⃗r) by the effective point potential:
Ṽ( ⃗r) = e2a2δ( ⃗r) . (2.136)

When estimating, we describe the electrons by plane waves, i.e., we put forward
that usk⃗ = 1√V, where V is the volume of the crystal. In addition, for simplicity, we
assume that the electron-phonon interactions happenwithin one energy band: s = s󸀠.

Under the above conditions, the formulas (2.133) and (2.135) yield the following:

gs󸀠 k⃗󸀠 ,sk⃗ (q⃗j) ∼ i√ ℎN
2ωj(q⃗)

(e⃗ ⋅ ̃⃗q)
V√M e2a2δk⃗󸀠−k⃗,̃⃗q , (2.137)

where e⃗ ≡ e⃗( κ 󵄨󵄨󵄨󵄨󵄨󵄨 q⃗j ) is the polarization vector of the phonon, ̃⃗q = q⃗ + K⃗. When K⃗ = 0,
the value of |(e⃗ ⋅ q⃗)| is maximal when e⃗| |q⃗, i.e., the interactions of the electrons with
longitudinal lattice vibrations are the most substantial.

The scattering of electrons by lattice vibrations can be regarded as a process of
interaction of two gases – electron and phonon. The Hamiltonian (2.127) describes
the electron-phonon interactions, which are characterized by Feynman diagramspre-
sented in Figure 2.20.

If an electric field accelerates electrons, the electrons, in turn, generate phonons
(Figure 2.20 (a)). This stands for heating the conductor by the electric current. There-
fore, the above theory makes it possible to theoretically describe the rise in tempera-
ture of the conductor as the current flows through the latter.

(a)

qj

k'

k
(b)

qj

k'

k
Fig. 2.20: Typical electron-phonon interactions. The
solid line corresponds to an electron and the wavy line
to a phonon.



3 Superconductivity

3.1 The Basic Physical Properties of Superconductors

In 1911, Kamerlingh Onnes, a Dutchphysicist, studying the temperature dependencies
of the resistance of mercury discovered that the resistance to an electric current sud-
denly dropped at a temperature of about 4 K. Shortly after, the same properties were
found in some other metals. The new phenomenon was called “superconductivity,”
and the respective metals came to be named “superconductors.” We will now take a
closer look at the phenomenon of superconductivity.

I. The temperature at which the resistance disappears is called the critical tem-
perature. This temperature is very different for different superconductors. To date,
among pure metals, niobium has the greatest critical temperature: Tc = 9.25K. The
lowest onewas found forwolfram: Tc = 0.0154K. Superconductivity is not a rarephe-
nomenon in nature. About twenty puremetals at low temperatures become supercon-
ductors: Ti, Zr, Hf, V, Nb, Ta, Mo, W, Tc, Re, Ru, Os, Ir, Zn, Cd, Hg, Al, Ga, In, Tl, Sn,
Pb, La, Th, Pa, U. Even some semiconductors, such as Si, Ge, can be transformed into
a superconducting state under certain conditions (such as when under high pressure,
or when used as a thin film sample).

There are thousands of alloys exhibiting superconducting properties. For alloys
the critical temperature turns out to be even higher than for pure metals. The record
holder among thealloys is aNb3Ge compoundwitha critical temperature of Tc = 23K.

The observation of superconductivity inmetals and alloys is possible only by cool-
ing themwith expensive and “capricious” liquid helium. Until 1987, no superconduct-
ing materials with Tc > 23K were synthesized. This inhibited practical applications
of superconductors.

One, and only one, replacement of copper wires by superconducting ones in-
creases power generation by 30%. Superconductors make it possible to manufacture
high efficient electricmotors and generators. For example, superconducting coils have
long since created hugemagnetic fields with induction of B ∼ 100T (CI) or ∼108Gauss
(CGS). This is important, for instance, to solve problems of controlled thermonuclear
fusion to develop new types of high speed magnetic levitation transport.

Superconducting magnets are of great importance to produce strong magnetic
fields because simple coils made of aluminum and copper wire, in this case, consume
enormous amount of energy. Almost all of this energy is released in the form of heat,
andheat dissipation requires a cumbersome and expensive water cooling system.Wa-
ter pumps experience vibration problems. A second difficulty is a strong attraction
between the solenoid turns as an electric current passes through them. The copper
solenoid coil begins to flow like a liquid. As a result, magnetic fields with the induc-
tion of a 10 Tesla cannot be achieved bymeans of the coils of copper wire. A coil made
of a superconductor would eliminate the first difficulty. This is because the energy re-

https://doi.org/10.1515/9783110586183-003
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quired only for maintaining the temperature of liquid helium is 1000 times less than
the energy a conventional electromagnet consumes. In addition, the entire installa-
tion becomes compact.

A superconducting coil can be short circuited, then it becomes a permanent mag-
net. According to Lenz’s rule, any change in external magnetic fields is compensated
by the induced superconducting currents in the material. Therefore, superconducting
magnets possess not only a great magnitude but also an extremely constant magnetic
field.

Superconductors are the basis for a new generation of computers, which are com-
pact, are high speed, and have low heat dissipation. One of themain problems arising
when designing compact chips is heat dissipation. A liquid or gas can cool off only
the surface but are unable to provide heat removal from the volume, which leads to
a rise in temperature and, consequently, to destruction of the chips. The minimum
area of contact between two superconductors, which serves as a logical element of
a computer, is 10−9 cm2, its speed performance is 10−10 sec, and the switching heat
dissipation is negligible.

Today, there are devices called SQUIDs (Superconducting Quantum Interference
Device), which already work on the basis of superconductingmaterials. These can de-
tect extremely weak magnetic fields with strength in the order of 10−14 (CGS), which
are generated, for example, by the heart or the cortex of the human brain. Methods
of magnetodiagnostics supply much more information than electro-, cardio-, and en-
cephalography. Moreover, they can be carried out in a noncontact manner. For exam-
ple, they make it possible to take cardiograms from the heart of a child while still in
the womb.

Until 1987, various theories of superconductivity thoroughly explained the avail-
able experimental data and left little hope for creating superconductors with Tc >
30K. Therefore, the scientific world was extremely shocked when, in 1986, Bednorz
and Muller (an IBM US company in Switzerland) declared the discovery of high tem-
perature superconductivity in La-Ba-Cu-O metal-oxide ceramics at temperatures of
liquid nitrogen which were cheap and available. Recall that nitrogen comprises 80%
of the earth’s atmosphere and its condensation temperature is 77 K. Early initial ex-
periments greatly overcame the nitrogen barrier. The critical temperature of the first
superconducting ceramics turned out to be about 90K. For this discovery, Bednorz
and Muller were awarded the Nobel Prize in 1987.

It is disappointing that ceramics are not stable; they crack, chemically decom-
pose, and undergo structural transitions. The mechanism of their high temperature
superconductivity has not still been elucidated. Therefore, we will talk about the high
temperature superconductivity of ceramics separately, butnow, let us return to thedis-
cussion of well-studied superconducting metals and alloys at temperatures of about
1–10 K.
II. Investigation of properties of metals and alloys has shown that superconductivity
can be destroyed not only by increasing the temperature, but also by applying a suffi-
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B = 0

(a) (b)
Fig. 3.1: The Meissner effect: (a) a superconductor; (b) a
normal metal.

ciently strongmagnetic field H. The critical field value Hc, at which superconductivity
disappears, decreases with increasing temperature.

One of the main properties of superconductors is the so called the Meissner effect.
The Meissner effect can be treated as the expulsion of a magnetic field with strength
less than Hc from a superconductor during its transition to the superconducting state.
In simpler words, the average macroscopic magnetic induction field in the supercon-
ductor is B⃗ = 0 (Figure 3.1). This statement needs to be clarified and detailed.

When placed in an external magnetic field, a superconducting sample produces
a persistent surface current. The latter creates its own field, fully compensating the
external field inside the superconductor. It is the true magnetic field B⃗ (magnetic in-
duction); it determines forces actingon the electric charge in the electromagnetic field:

F⃗ = qE⃗ + q
c [�⃗� × B⃗] (CGS) (3.1)

Here, q is the amount of charge, �⃗� is its velocity, and E⃗ and B⃗ are the electric field
strength and magnetic flux density, respectively. The magnetic field strength H⃗ is not
a real physical field, but is of an artificial mathematical construction, which relates
the true field by means of the formula:

B⃗ = H⃗ + 4πM⃗ , (3.2)

where M⃗ is the magnetization of the sample per unit volume.
From this point of view, the condition B⃗ = H⃗ + 4πM⃗ = 0 allows one formally to

regard the superconductor as a perfect diamagnetic with a negative definite tensor of
the magnetic susceptibility:

χsp = ∂Ms
∂Hp

= − 1
4π δsp . (3.3)

More detailed studies have found that the magnetic field is zero only inside the bulk
of the sample. In a thin surface layer, the field diminishes gradually from a predeter-
mined surface value to zero. The thickness of this layer called the penetration depth
is typically of the order of δ = (10−5 ÷ 10−6) cm at T = 0K. The penetration depth
depends on the temperature so that δ(T) → ∞ as T → Tc.

The expulsion of the magnetic field towards the outside of the superconductor, in
fact, is not always complete. There are two types of superconductors, both of which
differ in how they penetrate an external magnetic field into the material.
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The penetration of the field into the superconductor depends, generally speaking,
on what geometry the sample has. However, the field behaves clearly differently in
the simplest sample form (a long, thin cylinder with an axis parallel to the applied
magnetic field) and in the bulk samples.

Type-I Superconductors

A magnetic field never penetrates inwards superconductors when it is less than the
critical field Hc(T). When H ≥ Hc(T), the entire sample jumps from the superconduct-
ing state to the normal state. Empirically, it has been found that the dependence Hc(T)
is described well by the formula (Figure 3.2):

Hc(T) = Hc(0) [1 − (T/Tc)2] . (3.4)

The accepted way of penetrating a magnetic field into a type-I superconductor is
often described as dependence of macroscopic (diamagnetic)magnetizationM on the
strength of the applied field or by the dependence B = B(H) (Figure 3.3).

In type-I superconductors, an interface between the superconducting and normal
states is associated with positive surface energy. The penetration of the magnetic field
inwards a type-I superconductor requires energy consumption to create the interface
and the field inside the superconductor.

Hc(   )T

T

Tc0

A normal metal

A superconductor
Fig. 3.2: Phase boundary of the plane H-T between superconduct-
ing and normal states of a type-I superconductor.

Hc H

– 4πM

0 Hc H

B

0

Fig. 3.3: The dependence of magnetization (magnetic induction) on the strength of an external mag-
netic field for type-I superconductors.
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Type-II Superconductors

In contrast to type-I superconductors, a magnetic field gradually penetrates type-II
superconductors. When less than the lowest critical field Hc1(T), the magnetic field
never penetrates at all into the samples as type-I superconductors do. Within the in-
terval Hc1(T) < H < Hc2(T), the magnetic field forms thin filaments inside the bulk of
the sample. Inside the filaments, the superconducting state is destroyed; beyond the
filaments, it is maintained. According to Lenz’s rule, eddy superconducting currents
arise around the filaments. Their magnetic fields tend to shield the external magnetic
field inside each filament. This state of the superconductor is known as a vortex state.
The number of filaments (Abrikosov vortices) within the superconducting material in-
creases as the external magnetic field grows.

The external magnetic field in the form of filaments penetrates partially into the
type-II superconductor due to negative energy of the interface between the supercon-
ducting and normal phases. As a result, the penetration of the magnetic field into the
superconductor proves to be energetically advantageous in a certain field interval. We
will dwell later on the microscopic reasons for the difference in the surface energies
of different superconductors.

The theory of type-II superconductors was worked out by Ginzburg, Landau,
Abrikosov and Gor’kov. Abrikosov predicted theoretically that the vortex filaments in
the bulk of the superconductors form a regular and, often, a triangular lattice. The
lattice spacing between the vortices is larger than the vortex core size and can reach
10−5cm. The images of the vortex structures were captured with an electron micro-
scope. As can be seen from Figure 3.4, the end face of a superconductor powdered
with a contrasting powder of a ferromagnetic demonstrates a periodic lattice with
triangular cells through thickening the powder at the outlet points of the vortices.

B

Fig. 3.4: Schematic representation of a lattice of
Abrikosov vortices. Arrows indicate the directions of
the eddy currents.

When H > Hc2(T), the superconducting state in type-II superconductors is destroyed
completely. Dependencies M = M(T) and B = B(H) for type-II superconductors are
shown in Figure 3.5.

In any superconducting samples, superconductivity is destroyed when the mag-
netic field produced by a current flowing through the sample exceeds a critical surface
value. The critical current value can reach 100A in a wire with a diameter of 1mm.
Type-II superconductors possess the highest critical fields and critical currents.
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H

– 4πM

Hc1 Hc20 H

B

Hc1 Hc20

Fig. 3.5: The dependence of magnetization (magnetic induction) on the strength of an external mag-
netic field for type-II superconductors.

III. With ideal conductivity, superconductors in contrast to metals are poor heat con-
ductors and have even lower heat capacity. Let us recall that, at low temperatures, the
temperature dependence of the heat capacity of a normalmetal has the formAT+BT3,
where the linear term is due to electrons, and cubic one describes lattice vibrations.
The behavior of the heat capacity of the metal varies considerably below the super-
conducting transition temperature. Detailed studies show that the temperature linear
term describing the electron contribution to the heat capacity is replaced by another.
At very low temperatures, the new term descends much faster. Its low temperature
behavior is determined by the multiplier exp(−∆/kBT). This means that, in supercon-
ductors, the excited states of the electron subsystem are separated from the ground
state by an energy gap ∆, as in semiconductors. The gap in magnitude is very small
and amounts to ∆ ≈ kBTc, where Tc is the transition temperature (Tc ∼ 10K).

IV. Superconductors with different isotopic compositions are found to exhibit the
followingdependencies of Tc andHc on themassof the crystal lattice ions (the isotopic
effect):

Tc ∼ M−1/2 , Hc ∼ M−1/2 .

The mass of the ions becomes essential as soon as the lattice vibrations begin. Conse-
quently, the superconductivity phenomenon is not purely electronic. Its appearance
involves a lattice as well.

3.2 The Qualitative Features of the Microscopic Theory

An electric current in normal (i.e., not superconducting) metals is the transition of
electrons under an electric field to higher energy levels in the conduction band. This
is always possible because the electron energy levels in the conduction band are ar-
ranged densely. Current-carrying electrons can lower their energy by scattering on
impurities, phonons and lattice defects and come back to energy levels that are not
current carrying. From the energy point of view, this is the reason for the resistance of
metals. The structure of the electron energy spectrum in a normal metal, and thus its
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electrical resistance, can be explained by the fact that the electrons in the metal are
Fermi particles obeying the Pauli exclusion principle.

Particles with integer spin, bosons, behave differently: as T → 0K, all Bose par-
ticles can condense in the same lowest energy level. When n bosons are in the same
quantum state in particular, their velocities are equal. As a result, the probability of
falling into this state increases for other bosons. The collective synchronous boson
motion to be destroyed requires energy. At low temperatures, thermal energy is some-
times not enough to transfer the condensate of the synchronouslymoving bosons into
other energy states.

The superfluidity of liquid helium isotopeswith an atomicweight of four can serve
as an example of the Bose condensate motion without energy loss. The liquid 4He
when T < 2.19K flows through fine capillaries without friction (Kapitza P.L., 1940).

If, inmetals, onemanages to combine electrons in pairs to have integer spin, such
a system would exhibit superfluidity. In other words, we can observe superfluidity
with the charged Bose particles as electron vapor or superconductivity.

In a fixed lattice, the Coulomb repulsion between electrons is screened at dis-
tances of the order of interatomic. Nevertheless, it is still repulsion, not attraction.
So the electron pairing, at first glance, seems to be absurd. At the same time, the crit-
ical temperature dependence of a superconductor on mass of the crystal lattice ions
suggests that deformations and vibrations of the lattice contribute to the attraction
between electrons in a metal.

Whenmoved through the crystal lattice, an electronwith awave vector k⃗1 attracts
positively charged ions. Thus, it causes deformations and vibrations of the latticewith
the wavelength of the order of the interatomic distance. Such lattice vibrations corre-
spond to acoustic phonons with a maximum frequency ωD, and thus, with the en-
ergy ℎωD.

As a result, the lattice ions are displaced, and an excess positive charge arises
around the electron№1. Such a positively charged cloud attracts another electron№2
with a wave vector k⃗2 turned around. This electron tends to reduce the excess posi-
tive charge. Because of the inertia, some ions cannot separate from each other. As a
consequence, the electron №2 may be a relatively large distance away from the elec-
tron №1 (at a distance up to 10−5cm). In the language of quantum mechanics, the
process described stands for the generation of virtual phonon (or phonons) by the
electron№1 and for the absorption them by the electron№2. The virtual particles, in
contrast to conventional particles, exist only in intermediate states, have a short du-
ration, and serve as interaction carriers. If such an electron-electron interaction, me-
diated by phonons, blocks the Coulomb repulsion, the resulting interaction between
the electrons is attraction. The entire collective energy can further decrease as a result
of condensation of bound states of the electron pairs.

Next, by perturbation theory, we calculate the change in energy of two free elec-
trons. In doing so, we show that the energy of the system of two electrons, as a result
of the exchange of virtual phonons, indeed goes down if the initial energies of the
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kF

k1

k2 q

–q kΔ

Fig. 3.6: The wave vectors ⃗k1 and k⃗2 of electrons interacting
with phonons are antiparallel and lie in a narrow spherical
layer with a thickness of ∆k ≈ ωD/VF near the Fermi sphere
in the reciprocal space. The wave vectors of virtual phonons
interacting with the electrons are equal to ±q⃗.

electrons №1 and№2 lie in the narrow layer near the Fermi surface:

ℎωD ≈ ∆ε = ∂ε
∂k

∆k = ℎVF∆k ,

and the wave vectors k⃗1 and k⃗2 and the electron spins are antiparallel (Figure 3.6).
We can estimate the range of the forces of attraction between the electrons. The

attraction forces appear due to the electron-phonon exchange. According to the un-
certainty relation, the exchange takes place for the time τ ∼ ℎ/∆ε ≈ 1/ωD. During
this time, the electrons move apart at a distance of r0 ≈ τ2VF. Therefore, the radius of
action of the attraction forces between the electrons is given by:

r0 ≈ 2VF
ωD

∼ VF
s a ≈ 105 m/s

103 m/sa ≈ 102a ≫ a ,

where a is the interatomic distance. The phonon attraction turns out to be long range.
Recall that the Coulomb repulsion is short range, i.e., it manifests itself within

the distances of the order of interatomic spacing. However, estimates show that the
constants of the two interactions are the same order of magnitude:󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 grepgattr

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 ∼ 1 .

This statement will be justified below.
Hence, an important conclusion follows: the phonon attraction may prevail in

somemetals, and in the other: the Coulomb repulsion. It is this fact that explains why
some metals pass into the superconducting state, while others do not.

The phonon attraction of electronswas discovered byBardin andFröhlich in 1950.
Scientists of that time believed that the theory of superconductivity had been built
already. However, it took another twenty years before the theory was developed. Let
us clarify the main reason for the difficulties faced.

As mentioned earlier, the superfluidity in the electron system, i.e., the supercon-
ductivity, could be caused by the electron pairing. However, quantum mechanics de-
nies the bound states if the interactions are not strong enough.

A measure of the binding energy ∆ of electrons in a pair can be a critical temper-
ature Tc:

∆ ∼ kBTc .
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Since Tc ≈ (1÷10K), the ratio of the binding energy ∆ and the kinetic electron energy
εF turns out to be an extremely small magnitude:

∆
εF

∼ 10−4 .

Therefore, the electron pairing appears to be impossible.
A one-dimensional case, when the particles move along a straight line, is the ex-

ception. Here, any attraction forms a bound state. However, a one-dimensionalmodel,
at first glance, has nothing to do with this problem.

In 1956, Cooper resolved the paradox. He noticed that it came, not to the interac-
tion of isolated particles, but quasiparticles interacting with each other as the Fermi
sphere is filled. This results in a one-dimensional problem instead of a three-dimen-
sional one. From a formal point of view, the replacement is that the three-dimensional
integrals over the wave vectors should be calculated as one-dimensional by the rule:

∫ d3k⃗(2π)3 . . . = 1
2 ν (εF) ∫dε. . . ,

where ν(εF) is the density of energy levels on the Fermi surface. The multiplier 1/2
appears because of the summation over the one quasiparticle states. In this case, the
particle’s spin projection is assigned as the density of states, determined previously
as the form:

ν(ε) = km(πℎ)2 = m(πℎ)2√2mεℎ2 ,

and takes both the spin projections into account.
Thus, the filled Fermi sphere makes the Pauli principle radically change the prob-

lem at hand. As a consequence, the electrons fall into the bound state, whatever the
weakness of their attraction. Breaking a coupled pair of the electrons requires energy.
At low temperatures, the thermal motion energy is not enough to destroy the bound
states. As a result, the ground state of a superconductor is not like one of a normal
metal. The former lies below the energy ground state of a normal metal and is sepa-
rated by an energy gap.

3.3 The Second Order Correction to the Energy of a Two Electron
System Due to Electron-Phonon Interaction

Consider a gas of free electrons. For simplicity, the quasiparticle states, unperturbed
by lattice vibrations, are assumed to be described by a free fermionmodel in a poten-
tial box. Let us calculate the change in energy of any two electrons as a result of their
interactionwith the lattice ion vibrations. Suppose the electron-phonon interaction is
weak. We can find the correction to the energy of the two electrons from the general
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formula of perturbation theory [4, 6]:

∆ε = ⟨ñ󵄨󵄨󵄨󵄨 Ĥint
󵄨󵄨󵄨󵄨 ñ⟩ + ∑̃

m
m̃ ̸=ñ

󵄨󵄨󵄨󵄨󵄨⟨ñ󵄨󵄨󵄨󵄨 Ĥint
󵄨󵄨󵄨󵄨 m̃⟩ 󵄨󵄨󵄨󵄨󵄨2

E(0)ñ − E(0)m̃
. (3.5)

Here, Ĥint is the interaction Hamiltonian of electrons №1 and №2 with lattice vibra-
tions, and |ñ⟩ is the unperturbed states of the two electrons without lattice vibrations
(phonons): 󵄨󵄨󵄨󵄨 ñ⟩ = 󵄨󵄨󵄨󵄨󵄨 k⃗1⟩ 󵄨󵄨󵄨󵄨󵄨 k⃗2⟩ |0⟩Φ ≡ |k⃗1, k⃗2, 0⟩ , E(0)ñ = ε0(k⃗1) + ε0(k⃗2) . (3.6)

The ket-vector |0⟩Φ corresponds to the vacuum state of the phonon subsystem of
crystals. The ket-vectors |k⃗i⟩ characterize the states of free electrons with wave vec-
tors k⃗i and energies ε0(k⃗i) (i = 1, 2).

q
k1

k2

–k1 q +k2 q

k1

k2

–k1 q +k2 q

q– Fig. 3.7: Virtual processes where two
electrons are exchanged by a phonon.

In formula (3.5), the summation over the intermediate states |m̃⟩ of the whole sys-
tem takes into account the processes of virtual phonon exchange between these elec-
trons. For simplicity, attention should be drawn only to two main virtual processes
(Figure 3.7). They correspond to the intermediate states |m̃⟩ of the whole system with
a virtual phonon:

󵄨󵄨󵄨󵄨 m̃⟩ = {{{
󵄨󵄨󵄨󵄨󵄨 k⃗1 − q⃗⟩ 󵄨󵄨󵄨󵄨󵄨 k⃗2⟩ |1⟩Φ󵄨󵄨󵄨󵄨󵄨 k⃗1⟩ 󵄨󵄨󵄨󵄨󵄨 k⃗2 + q⃗⟩ |1⟩Φ ≡ {{{

󵄨󵄨󵄨󵄨󵄨k⃗1 − q⃗ , k⃗2, 1⟩󵄨󵄨󵄨󵄨󵄨k⃗1 , k⃗2 + q⃗, 1⟩ ,
(3.7)

Em̃ = {{{
ε0(k⃗1 − q⃗) + ε0(k⃗2) + ℎω(q⃗)
ε0(k⃗1) + ε0(k⃗2 + q⃗) + ℎω(−q⃗) . (3.8)

Here, ℎω(±q⃗) are virtual phonon energies. The calculation looks only at the main in-
teraction between the electrons with longitudinal phonons. In what follows, the po-
larization index j = 3 of these phonons is omitted.

Given an explicit form of the interaction operator Ĥint (2.127) and the identity:

⟨0| â |0⟩Φ = ⟨0| â+ |0⟩Φ = 0 ,

it is easy for us to verify that the first order correction to the energies of the two elec-
trons is zero: ⟨ñ|Ĥint|ñ⟩ = 0. As a result, formula (3.5) acquires the form:

∆ε = 󵄨󵄨󵄨󵄨󵄨⟨k⃗1, k⃗2, 0 󵄨󵄨󵄨󵄨󵄨Ĥint
󵄨󵄨󵄨󵄨󵄨 k⃗1 − q⃗, k⃗2, 1⟩ 󵄨󵄨󵄨󵄨󵄨2

ε0(k⃗1) − ε0(k⃗1 − q⃗) − ℎω(q⃗) + 󵄨󵄨󵄨󵄨󵄨⟨k⃗1, k⃗2, 0 󵄨󵄨󵄨󵄨󵄨Ĥint
󵄨󵄨󵄨󵄨󵄨 k⃗1, k⃗2 + q⃗, 1⟩ 󵄨󵄨󵄨󵄨󵄨2

ε0(k⃗2) − ε0(k⃗2 + q⃗) − ℎω(−q⃗) . (3.9)
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Let us transform expression (3.9) using the following claims.
1. The function ω(q⃗) is even:

ω(q⃗) = ω (−q⃗) .
2. The squaredmodulus of thematrix elements |⟨ñ|Ĥint|m̃⟩|2 are easy to calculate

using formula (2.132) for matrix elements of the interaction operator of the electron
Bloch functions and by the formulas:

⟨0| â |1⟩Φ = 1 , ⟨0| â+ |1⟩Φ = 0 .

After doing simple calculations, we come up with:

󵄨󵄨󵄨󵄨󵄨⟨k⃗1, k⃗2, 0 󵄨󵄨󵄨󵄨󵄨Ĥint
󵄨󵄨󵄨󵄨󵄨 k⃗1 − q⃗, k⃗2, 1⟩ 󵄨󵄨󵄨󵄨󵄨2 = 󵄨󵄨󵄨󵄨󵄨⟨k⃗1, k⃗2, 0 󵄨󵄨󵄨󵄨󵄨Ĥint

󵄨󵄨󵄨󵄨󵄨 k⃗1, k⃗2 + q⃗, 1⟩ 󵄨󵄨󵄨󵄨󵄨2 = 󵄨󵄨󵄨󵄨󵄨gk⃗1 ,k⃗1−q⃗󵄨󵄨󵄨󵄨󵄨2 .

For free electrons in a potential box, the index s of the function gsk⃗1,sk⃗1−q⃗ should be
omitted. This is because it corresponds to the number of the energy band, and the
bands appear only when we take the periodic potential of the crystal into account.

3. By virtue of the law of conservation of energy, we have:

ε0(k⃗1) + ε0(k⃗2) = ε0(k⃗󸀠1) + ε0(k⃗󸀠2) ,
or

ε0(k⃗1) − ε0(k⃗󸀠1) = − [ε0(k⃗2) − ε0(k⃗󸀠2)] , (3.10)

where k⃗󸀠i (i = 1, 2) are the wave vectors of electrons in the final state.
According to the law of conservation of momentum, for the free electrons (see

Figure 3.7), we get:
k⃗󸀠1 = k⃗1 − q⃗ , k⃗󸀠2 = k⃗2 + q⃗ . (3.11)

Therefore, the formulas (3.10), (3.11) yield:

ε0(k⃗1) − ε0(k⃗1 − q⃗) = − [ε0(k⃗2) − ε0(k⃗2 + q⃗)] . (3.12)

The above claims simplify the correction form to the two electron energy (3.9) that
is due to the electron-phonon interaction:

∆ε = − 2|gk⃗1 ,k⃗1−q⃗|2ℎω(q⃗)(ℎω(q⃗))2 − [ε0(k⃗1) − ε0(k⃗1 − q⃗)]2 . (3.13)

At low electron energies, this is:

(ℎω)2 ≫ [ε0(k⃗1) − ε0(k⃗1 − q⃗)]2
when the lattice manages to follow the ion motion, we have:

∆ε = −2|gk⃗1 ,k⃗1−q⃗|2ℎω(q⃗) < 0 . (3.14)
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The estimation of the matrix element (2.137) gives rise to:

|gk⃗1 ,k⃗1−q⃗|2 ≈ ℎNq2e4a4
2ωV2M

.

Using the formulas:

n = N
V , na3 ∼ 1 , ω2 = s2q2 , s = √ α

M a , α ∼ e2

a3
,

we arrive at:

∆ε = −2|gk⃗1 ,k⃗1−q⃗|2ℎω ≈ − nℎ
ωV

q2e4a4
Mℎω ≈ − q2e4a

VMω2 ≈ − 1V e4a
M (e2/aM) ≈ − e2a2V . (3.15)

The electron-phonon interaction is long range, extending over the whole crystal
volume. Therefore, we can treat the correction to the two electron energy as an average
of certain effective potential energy of their interaction Ueff over the crystal volume:

∆ε ≈ 1
V ∫Ueffd3 ⃗r = −a2e2V . (3.16)

Formula (3.16) implies that the electron-electron interaction transmitted by phonons
is equivalent to a point interaction:

Ueff = −e2a2δ( ⃗r) , (3.17)

with its sign corresponding to attraction.
With the effective interaction being independent on the rotation angle of the mo-

menta ℎk⃗1 and ℎk⃗2 of the electrons, the electron pair has the orbital angular momen-
tum equal to l = 0.

The interaction found is equivalent to attraction of particles as their coordinates
coincide. In this case, the coordinate two electron wave function |k1⟩|k2⟩ turns to be
symmetricalwith respect to the permutation of the quantumnumbers k⃗1 and k⃗2 of the
two electrons. However, electrons are the Fermi particles. This means that their total
wave function |k1⟩|k2⟩χ12 must be antisymmetric with respect to the permutation of
all quantum numbers of electrons, including spin ones. It follows that the calculation
proposed is fair only when the spin part of the total two electron wave function is
antisymmetric with respect to the permutation of their spin projections:

χ12 = 1√2 ( | ↑⟩1 | ↓⟩2 − | ↓⟩1 | ↑⟩2) . (3.18)

The spin function χ12 (3.18) corresponds to the singlet state of the electron systemwith
total spin S = 0.

Previously, we have shown that the screened Coulomb repulsion is equivalent to
the effective point interaction e2a2δ( ⃗r). Now we have just proved that the effective
phonon attraction is the same order of magnitude: −e2a2δ( ⃗r).
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Let us give some estimates which are useful for further analysis. In metals, the
Coulomb energy of two electron interactions is about their kinetic energy:

e2
a ∼ p2F

m ,

where a is the interatomic distance. According to the uncertainty relation, pFa ∼ ℎ.
This brings us to the chain of equalities:

e2a2 ≈ p2F
m a3 ≈ ℎ3

mpF
= ℎ2
mkF

. (3.19)

3.4 Cooper Pairs

In 1956, Cooper put forward an assumption that, at low temperatures, the ground state
of a normalmetal with the Fermi sphere filled upwith electrons becomes energetically
unfavorable, and therefore unstable. A superconducting phase where electrons form
bound states, later called Cooper pairs, has less energy.

The Cooper pair formation is caused by the effective electron-electron attraction
involving virtual phonon exchange. The pairing origin can be understood through a
simple model problem that illustrates the mutual electron interaction by means of
a two-particle potential U( ⃗r1, ⃗r2) [4, 10]. The essential point here is the fact that the
model takes into account the interaction of only two electrons. The rest of them form
a ground state of a normal metal. In other words, the other electrons fill up all the
energy levels inside the Fermi sphere. It appears that the Fermi sphere, when filled
completely, substantially affects the binding of electrons in pairs.

We write the Schrödinger equation for two quasiparticles:

[Ĥ0( ⃗r1) + Ĥ0( ⃗r2) + U( ⃗r1, ⃗r2)]Ψ( ⃗r1, ⃗r2) = EΨ( ⃗r1, ⃗r2) . (3.20)

Here, Ĥ0( ⃗r) is the free quasiparticle Hamiltonian:

Ĥ0( ⃗r)Ψk⃗( ⃗r) = ε0(k⃗)Ψk⃗( ⃗r) . (3.21)

For simplicity, we consider an isotropic case when the problem is (3.21) where
eigenfunctions and eigenvalues have the form:

Ψk⃗(r) = exp (ik⃗ ⋅ ⃗r)√V , ε0(k⃗) = ℎ2k2
2m ≥ εF .

The system is thought to be in a volume V and is thought to satisfy the Born–Karman
boundary conditions.

Suppose an electron pair of the system has the least energy. Then its total wave
function needs to be sought in the following form:

Ψ( ⃗r1s1, ⃗r2s2) = ∑
󵄨󵄨󵄨󵄨󵄨k⃗
󸀠
󵄨󵄨󵄨󵄨󵄨>kF

ck⃗󸀠 exp (ik⃗󸀠 ⋅ ⃗r) exp (−ik⃗󸀠 ⋅ ⃗r2) χ12 , (3.22)
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where ck⃗󸀠 = c−k⃗󸀠 , χ12 = 1/√2(| ↑⟩1| ↓⟩2 − | ↓⟩1| ↑⟩2). It is important that all the coef-
ficients ck⃗󸀠 are different from zero only when |k⃗󸀠| > kF. We assume that the electrons
with opposite spins and wave vectors are “more ready” to pair. The total wave func-
tion (3.22) is antisymmetric with respect to the permutation of electrons.

We substitute formula (3.22) into formula (3.20). Then,wemultiply the result of the
left-hand side by the function exp(−ik⃗ ⋅ ⃗r1) exp(ik⃗ ⋅ ⃗r2) and integrate it over ⃗r1 and ⃗r2
considering the orthogonality conditions:

∬
V

d3 ⃗r1d3 ⃗r exp {−i(k⃗ − k⃗󸀠) ⋅ ( ⃗r1 − ⃗r2)} = V2δk⃗,k⃗󸀠 .

Finally, we get: [E − 2ε0(k⃗)] ck⃗ = ∑
󵄨󵄨󵄨󵄨󵄨k⃗
󸀠
󵄨󵄨󵄨󵄨󵄨>kF

Uk⃗k⃗󸀠ck⃗󸀠 , (3.23)

where
Uk⃗k⃗󸀠 = 1

V2 ∬
V

d3 ⃗r1d3 ⃗r2 exp {−i(k⃗ − k⃗󸀠) ⋅ ( ⃗r1 − ⃗r2)}U( ⃗r1, ⃗r2) .
In accordance with the qualitative picture just previously set forth, we put:

Uk⃗k⃗󸀠 = 1
V
{{{
−g , for εF ≤ ε0(k⃗) ≤ εF + ℎωD , εF ≤ ε0(k⃗󸀠) ≤ εF + ℎωD ,
0 , in the rest of cases .

(3.24)

Formula (3.24) takes into account the fact that the attraction between the electrons
occurs only when their energies fall into the interval [εF, εF + ℎωD]. At the same time,
the parameter is g ∼ ℎ2/kFm ∼ e2a2, i.e., it is close to our previous estimates.

The potential (3.24) is rather a simple model of existing effective attractions be-
tween electrons. Therefore, the outcomes, depending on the potential type, should
not be treated too seriously. Fortunately, the theory yields a number of relations not
dependent on the phenomenological parameter g. These results are in good agree-
ment with experimental data for a wide range of superconductors.

Given an explicit form of the matrix element Uk⃗k⃗󸀠 (3.24) we solve equation (3.23)
for ck⃗󸀠 :

ck⃗ = gI
V [2ε0(k⃗) − E] , (3.25)

where
I = ∑
εF≤ε0(k⃗󸀠)≤εF+ℎωD

ck⃗󸀠 . (3.26)

Nowwe find a two electron bound state, corresponding to the eigenvalue E that is
less than the two free electron energy 2εF. Suppose E is designated as 2εF − 2∆. Then
we insert formula (3.25) into (3.26). After canceling the commonmultiplier I, we come
to an equation for calculating ∆:

1 = ∑
εF≤ε0(k⃗󸀠)≤εF+ℎωD

g
2V[ε0(k⃗󸀠) − εF + ∆] . (3.27)
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We simplify the equation (3.27) by replacing the summation (or integration) in
three-dimensional k-space through integration over the electron energy ε within the
interval [εF, εF + ℎωD]:

1
V
∑⃗
k

. . . = 1(2π)3 ∫d3k⃗ . . . = 1
2
ν(εF) ∫ dε . . . . (3.28)

This is a mathematical method that reduces the three-dimensional problem in the k-
space to the equivalent one-dimensional problem on the axis ε. Formula (3.28) in-
volves ν(εF) as the density of the energy levels at the Fermi sphere. Let us once again
draw our attention to the multiplier 1/2 in (3.28). The latter appears because of the
summation over the allowed states of a quasiparticle, whose spin projection is given.
As previously determined, the density of states has taken both spin projections into
account. Transformed by the rule (3.28), the equality (3.27) becomes:

1 = gν(εF)
4

εF+ℎωD∫
εF

dε
ε − εF + ∆ = gν(εF)

4 ln ℎωD + ∆
∆ ≈ gν(εF)

4 ln ℎωD
∆ . (3.29)

In the right-hand side of (3.29) we have used the approximation 0 < ∆ ≪ ℎωD to be
justified later.

From equation (3.29), we find the binding energy of the electrons:

∆ = ℎωD exp [− 4
ν(εF)g ] > 0 . (3.30)

So, in a pair of quasiparticles, the electrons have a finite binding energy. At T = 0K all
the pairs of electrons must form a Bose condensate.

Note that the binding energy (3.30) is not an analytic function of the phonon at-
traction constant g (it has an essential singularity when g = 0). Therefore, Cooper’s
result cannot be derived by perturbation theory, i.e., it cannot be expanded in a series
in powers of g. It should be especially emphasized that we have used the perturbation
theory earlier, only to make an estimate the parameter g.

Now we give numerical estimates for the binding energy ∆. Since, for free elec-
trons:

g ∼ ℎ2
kFm

, ν(εF) = m(πℎ)2 kF ,
we get gν ∼ 1/π2 < 1. There are arguments in favor of the inequality 0 < gν < 1,
which turns out to hold true in general cases. Therefore, we have 4/gν(εF) > 1. The
exponent in (3.30) contains this number with a negative sign. As a result, the estimate
0 < ∆ ≪ ℎωD proved to be justified. Since ∆ ∼ kBTc, ℎωD ∼ kBTD, we come up with
the result:

∆ℎωD
= Tc
TD

≪ 1 .
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We have shown that the superconducting transition temperature is much below than
the Debye temperature. More accurate estimates yield the following outcome:

Tc
TD

= exp [− 4
gν(εF) ] ∼ 10−2 .

We evaluate the radius of the resulting bound state – the size of a Cooper pair. By
analogy with the estimates for hydrogen atom, we think that the uncertainty of the
kinetic energy of an electron in the pair is of the order of the binding energy ∆:

∆ ∼ kBTc ∼ δ( p2
2m) = pFδp

m = VFδp .

Hence we arrive at δp ∼ kBT/VF. The uncertainty relation ξ0δp ∼ ℎ for the position
and momentum of an electron leads us to an estimate of the characteristic size of a
Cooper pair:

ξ0 ∼ ℎVF
kBTc

∼ εF
kF

1
kBTc

.

At Tc ≈ 10K, we have kBTc ≈ 10−4εF. Recall that kF ∼ 10−8cm at any temperature.
Ultimately, we obtain a numerical estimate of the size of a Cooper pair:

ξ0 ∼ 10−4cm ∼ 104a ≫ a .

Thus, the size of a Cooper pair amounts to tens of thousands of interatomic dis-
tances (tens of nanometers). The pairs are very loose formations. The question arises
of how the bound pairs can be placed in metals without interfering with each other if
the distance between electrons in a normal metal, in fact, is of the order of a.

The Cooper pairs cannot be interpreted as a classical gas of particles because the
distance between them ismuchgreater than their size. The pairs penetrate each other.
At the same time, they are free as gas particles and almost never interact between
themselves. Such a situation is possible only in quantummechanics. To point out this
feature of the Cooper pairs, the strict theory talks not about pairs having a certain
size, but about a pair electron correlation spread over a certain distance – namely, the
“correlation length.” It is in the order of:

ξ0 ∼ ℎVF
∆ .

The above reasoning covers a single Cooper pair of electrons in the presence
of conventional, nonsuperconducting electrons obeying the Fermi distribution. The
Bardeen–Cooper–Schrieffer (BCS) theory takes a considerable step forward: it allows
the building of the ground state of a superconductor in which all the electrons (not
only two) form bound pairs.
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3.5 The Bardeen–Cooper–Schrieffer Theory (Qualitative Results)

Proceeding from the idea that electrons with opposite momenta can form coupled,
overlapping pairs, we choose the wave function of the entire collective of the electrons
in the BCS theory as a single wave function:

ΨBCS( ⃗r1s1, . . . , ⃗rNsN) = Â {φ( ⃗r1s1, ⃗r2s2) ⋅ φ( ⃗r3s3, ⃗r4s4) ⋅ . . . ⋅ φ( ⃗rN−1sN−1, ⃗rN sN)} .
(3.31)

The action of the antisymmetrization operator Â on a function reduces to adding(N! − 1) functions obtained through all possible permutations of the arguments⃗r1s1, ⃗r2s2, . . . ⃗rNsN . Besides, these functions are multiplied by the number +1 or−1, depending on if a given permutation is a result of an even or odd number of
paired permutations. The wave function describing a single pair takes the form:

φ( ⃗r1s1, ⃗r2s2) = ∑⃗
k

ck⃗ exp [ik⃗ ⋅ ( ⃗r1 − ⃗r2)] χ12 . (3.32)

where ck⃗ = c−k⃗. The total spin of the pair is assumed to be zero, because the spin part
χ12 of the function (3.32) is antisymmetric:

χ12 = 1√2 ( | ↑⟩1 | ↓⟩2 − | ↓⟩1 | ↑⟩2) .
At the same time, the coordinate part in (3.32) is symmetric and, moreover, it corre-
sponds to the zero angular momentum of the pair.

Comment

Aquestion can arise about the pairing of quasiparticleswith spin 1/2 in the states with
l ̸= 0 and S = 1. How is it possible? In general, such pairings are possible. However,
they lead to magnetic properties which are not observed in conventional metals and
alloys, and which have been studied before, prior to discovering high temperature
metal ceramics. The triplet pairing with l = 1 and S = 1 is observed in liquid 3He. It
can be emphasized that the case in hand is the helium isotope with an atomic mass
of three. In contrast to the 4He, 3He atoms are not bosons but fermions. At very low
temperatures, 3He atoms form aBose condensate of pairswith spin S = 1,which turns
out to be superfluid. However, it is an electrically neutral liquid.

Among metals, the pairing with nonzero orbital angular momentum and parallel
spins is possible in the so called “heavy”-fermionsystems. However, to date, this issue
hasnotbeenadequately investigated. Thedifficulty is that pairingwith thenonzeroor-
bital angular momentum stands for the nonlocal electron-electron interaction. There-
fore, only a new nonphonon mechanism of electron attraction can be considered (the
phonon mechanism corresponds to the local interaction).
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The structure of the wave function chosen in the BCS theory implies that:
a) The wave function contains all electrons as Cooper pairs.
b) Electron pairs existing in a superconductor correlate with each other.

It can be pointed out that the wave function of a single pair cannot be changed with-
out completely destroying the whole superconducting state. The wave function (3.31)
for the ground state of a superconductor assumes the following: if this state really ex-
ists, i.e., its energy is lower than the energy of the ground state of a normal metal, the
superconductivity cannot be easily destroyed.

As to the form of the Hamiltonian of the electron system in a metal, there are two
rough assumptions underlying the BCS theory:
1. Effects related to the band structure are not taken into account. The free electron

approximation is used.
2. Effective electronpair attractionhaving a complicated form is replaced by amodel

potential with the following matrix elements:

Uk⃗k⃗󸀠 = 1
V
{{{
−g , when 󵄨󵄨󵄨󵄨󵄨ε(k⃗) − εF

󵄨󵄨󵄨󵄨󵄨 < ℎωD , 󵄨󵄨󵄨󵄨󵄨ε(k⃗󸀠) − εF
󵄨󵄨󵄨󵄨󵄨 < ℎωD ,

0 , in the rest of cases ,

where g ∼ ℎ2/(kBm) ∼ e2a2. Such a potential takes into account themain features
of the electron-phonon attraction and allows all the calculations to be carried out
completely.

General Conclusions

Suppose the wave function ΨBCS is a testing one to evaluate the energy of the ground
state of an electron collective by means of the variation principle. It is claimed that,
for arbitrarily small g > 0 (the electron-electron attraction is arbitrarily small), it cor-
responds to lower system energy as compared to functions chosen in the free electron
approximation.

At T = 0K, the total energy FS per unit volumeof theBCS ground state is below the
total energy FN per unit volume of the ground state in a normal metal. The electrons
in the energy band width ∼∆(0) (their number is ∼ν(εF)∆(0)) are coupled in pairs and
the pairing energy is ∼(−∆). This process diminishes the energy per unit volume in a
metal by magnitude of the order of ν(εF)∆2(0). The exact calculation within the BCS
theory yields:

FS − FN = −14 ν(εF)∆2(0) ,
where εF is the Fermi energy of a normal metal.

∆(0) = 2ℎωD exp(− 4
gν(εF))
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Δ(   )T

Δ(0)

cT Fig. 3.8: ∆(T)-dependence.

is the binding energy of two electrons. It differs from the findings of Cooper (3.30) only
by a factor equal to 2. The additional factor takes the tuning of the energy spectrum
and the ground state of the entire electron collective into account.

In the ground state of a superconductor, all states are filled pairwise. If the state
with the wave vector k⃗ and spin-downwards is occupied, the state with the wave vec-
tor (−k⃗) and spin-upwards is occupied as well. Being broken, the pair gives birth to
two unpaired electrons – quasiparticles with the same energy:

E(k⃗) = √(ε0(k⃗) − εF)2 + ∆2 .

The energy of each quasiparticle is E(k⃗) ≈ ε0(k⃗) − εF only when |ε0(k⃗) − εF| ≫ ∆.
Theminimumenergy required for breaking the pair and transferring the two elec-

trons into the normal state is given by:

min {E(k⃗) + E(k⃗󸀠)} = 2∆(0) .
The magnitude of the energy gap is affected by increasing the temperature ∆ = ∆(T)
(Figure 3.8).

A more accurate mathematical calculation was carried out by Bogolyubov and
Gor’kov. Bogolyubov developed a special method of canonical transformations.
Gor’kov proposed a new method of Green’s functions to calculate properties of su-
perconductors.

It is natural to assume that the temperature, at which the energy spectrum gap
∆(T) of superconductors disappears, corresponds to the temperature of the supercon-
ducting transition. Carrying out a particular calculation, Bardeen, Cooper and Schrief-
fer get [11]:

kBTc = 1.14 ℎωD exp(− 4
gν(εF)) . (3.33)

Since ωD ∼ 1/√M, this explains the isotope effect:

Tc ∼ 1/√M ,

where M is mass of the crystal lattice ions.
Note the universal relation:

∆(0)
kBTc

= 1.76 (3.34)

that holds up to 10% for most superconducting metals and alloys.
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The BCS theory gives the following expression for the specific heat of a supercon-
ductor at low temperatures. It does not depend on the parameter g:

cs
γTc

= 1.34(∆(0)kBT
) 3

2
exp(−∆(0)kBT

) , (3.35)

Here, γ is the coefficient of the linear term in the temperature dependence of the heat
capacity of a metal in the normal state: cn ≈ γT. The result obtained is in strongly
supports experimental data. The temperature dependence of the specific heat of a
superconductor is of an exponential nature, and is ascertained by the energy gap
width ∆(0).
The Existence of a Critical Current in Superconductors

In normal metals, the electrons scattering by impurities, defects, and vibrating lat-
tice ions transfer their kinetic energy to the crystal, leading to the conductor heating
up. This lost energy is compensated by an external source whose removal makes the
current decay.

In superconductors, the current does not disappear, even without an external en-
ergy source until it exceeds a certain critical value. Let us estimate the critical current
in a superconductor.

If the mean quasimomentum of a Cooper pair moving directionally is ℎK⃗0, the
wave vectors of the pair of electrons are equal to (k⃗ + K⃗0/2) and (−k⃗ + K⃗0/2). When
scattered by lattice irregularities, due to energetic profitability, the electron with the
momentum ℎ(k⃗+ K⃗0/2) passes to a state with the momentum ℎ(−k⃗+ K⃗0/2) to diminish
its kinetic energy by the magnitude:

ℎ2
2m

(k⃗ + K⃗0/2)2 − ℎ2
2m

(−k⃗ + K⃗0/2)2 = ℎ2
m
k⃗ ⋅ K⃗0 . (3.36)

It is clear that the energy gain is possible only when the angle between the vectors k⃗
and K⃗ are acute.

At the same time, the change in the state of one electron out of the pair is equiv-
alent to breaking the pair, which requires the energy expenditure ∼2∆(0). Conse-
quently, destroying the pair is possible only if the following energy relation is fulfilled:

ℎ2
m k⃗ ⋅ K⃗0 ≥ 2∆(T) . (3.37)

Using (3.37), we can estimate the maximum possible total momentum of the pair. Set-
ting k ∼ kF, we find the critical momentum of the pair as a whole:

ℎK0 ∼ 2m∆(T)ℎkF .
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Hence, it follows that the estimate of the critical current density of the superconductor
is given by:

jc = − |e| (ℎK02m ) ns = −ns |e| ∆(T)ℎkF ∼ (106 ÷ 107) A
cm2 , (3.38)

where ns is the concentration of superconducting electrons.
When j < jc, the pair breakings and the scattering of the electrons forming the

pairs by the irregularities are energetically impossible. The scattering does not occur
because of “mutual support” of the electrons in Cooper pairs, such that the Cooper
pairs “flow around” the defects without energy loss. Since the crystal does not receive
the superconducting current energy, switching off an external source of electromotive
force does not entail the decay of the superconducting current.

With increasing temperature, phonons emerge and their energies are sufficient
enough to break the pairs. The breakings of the Cooper pairs lead to a decrease in
the superconducting electron concentration ns. In addition, the energy gap decreases
with increasing temperature. According to formula (3.38), the factors listed above are
the reason for a decrease in the critical current jc.

In general, at T < Tc, a unit volume of the superconductor has ns normal elec-
trons – quasiparticles with energy E(k⃗) and ns/2 Cooper pairs (ns superconducting
electrons). The total number of electrons per unit volume remains unchanged: ns +
nn = const. The total current in the superconductor is the sumof superconducting and
normal currents. The superconducting current is carriedby ns/2 Cooper pairswith the
charge −2|e|. The normal current is associated with the density of ordinary electrons.
In contrast to the superconducting current, the normal current decays when switch-
ing off an external source of emf. The coexistence of the normal and superconducting
components of the total current in the superconductor is interdependent and insepa-
rable.

In 1972, Bardeen, Cooper and Schrieffer were awarded the Nobel Prize for the ex-
planation of the phenomenon of superconductivity.

3.6 The Ginzburg–Landau Theory – The London Penetration Depth

In 1958, Lev Gor’kov generalized the microscopic BCS theory. However, the equations
derived by him are complicated and rarely used for solving practical problems.

In 1950, long before the formulation of the BCS theory, Ginzburg and Landau
came up with a simple, semiclassical theory, which perfectly reproduces the main
results of the microscopic theory of superconductivity. As Gor’kov showed in 1959,
the Ginzburg–Landau equations are an exact limit of consistent microscopic theory



3.6 The Ginzburg–Landau Theory – The London Penetration Depth | 175

under two conditions:

|Tc − T| ≪ Tc ; (3.39)
δ(T) ≫ ξ0 , (3.40)

where δ(T) is the depth of penetration of an external magnetic field in a superconduc-
tor and ξ0 is the correlation length at T = 0K:

ξ0 ∼ ℎVF
∆(0) .

The Ginzburg–Landau theory assumes that the condensate of Cooper pairsmoves
as a whole and is described by a single stationary wave function Ψ( ⃗r) even under a
static external magnetic field. To calculate Ψ( ⃗r), they proposed a relatively simple set
of differential equations involving temperature as a parameter.

One of the theory’s assumptions is of particular interest: the assumption that the
current density in a superconductor under an external magnetic field is defined by the
usual quantum-mechanical formula for a particlewith the charge −2|e| andmass 2m:

⃗j = − |e|
2m [Ψ∗ (−iℎ∇⃗ + 2 |e|

c
A⃗)Ψ + Ψ (iℎ∇⃗ + 2 |e|

c
A⃗)Ψ∗] , (3.41)

where A⃗ is the vector potential to be introduced for solving one of the Maxwell equa-
tions.

Consider the case when the modulus of the wave function Ψ( ⃗r) remains constant,
but only the phase changes:

Ψ( ⃗r) ≈ |Ψ| exp [iφ( ⃗r)] , (3.42)

where |Ψ| = const. Then an expression for the current density in the superconductor
is simplified and takes the form:

⃗j = −[2e2mc A⃗ + |e| ℎ
m ∇⃗φ] ns , (3.43)

where ns = |Ψ|2 is the density of superconducting electrons (with proper normaliza-
tion of the wave function).

Gor’kov demonstrated that |Ψ( ⃗r)| ∼ ∆( ⃗r) in terms of the microscopic theory. It
follows that, generally, the energy gap in the spectrum of the superconductor is a
function of coordinates. Within the Ginzburg–Landau equations, the density of su-
perconducting electrons is thought to be linearly temperature dependent at T < Tc:
ns = |Ψ|2 ∼ (T−Tc). In this case, the temperature dependencies of the energy gap and
the correlation length have the form:

∆(T) ∼ (Tc − T) 12 , ξ(T) = ℎVF/∆(T) ∼ (Tc − T)− 12 .
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The quantity ∆(T) serves as the order parameter. Its temperature dependence
shown in Figure 3.8 is typical of phase transitions of the second kind.

According toMaxwell’s equation, in the stationary case themagnetic field and the
superconductor current are related as follows:

rot B⃗ = 4π
c

⃗j (the CGS system)

Let us take the curl of both sides of this equation. Given formula (3.43), with the iden-
tities

rot(rot B⃗) ≡ −∆B⃗ + ∇⃗ divB , rot ∇⃗φ ≡ 0 ,

and the equalities
rot A⃗ = B⃗ , div B⃗ = 0 ,

we come to the closed equation:

∆B⃗ = δ−2B⃗ , δ = √ 2mc2
4πns(2e)2 . (3.44)

Equation (3.44) allows us to theoretically describe the picture of penetration of a weak
magnetic field deep into a flat boundary superconductor.

Suppose a superconductor is in an external magnetic field B⃗ = (0, 0, B0) and is
occupying a half space x ≥ 0 (Figure 3.9). The field inside the superconductor is de-
scribed by the solution of the boundary problem:

d2Bz
dx2

= δ−2Bz , Bz(x = 0) = B0 (3.45)

that has the form:
Bz(x) = B0 exp(−x/δ) . (3.46)

This implies that the applied magnetic field penetrates into the superconductor only
at the distance:

δ = √ 2mc2
4πns(T)(2e)2 . (3.47)

At T = 0K, we have δ(0) ∼ (10−5 − 10−6) cm.

O

z

x

B

Fig. 3.9: Schematic representation of a superconductor in a mag-
netic field.
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In the Ginzburg–Landau theory, the density of superconducting electrons is equal
to ns(T) ∼ (Tc − T), so the penetration depth amounts to δ(T) ∼ (Tc − T)−1/2. Since
δ(T) → ∞ as T → Tc, then one of the conditions of applicability of the Ginzburg–
Landau theory δ(T) ≫ ξ0 holds for all superconductors near the phase transition tem-
perature.

In 1935, the London brothers were the first to enter the quantity δ, without delving
into the microscopic causes of superconductivity. Therefore, the parameter δ is called
the London penetration depth.

3.7 Quantization of a Magnetic Flux

From the equation: ⃗j = −[2e2mc A⃗ + |e| ℎ
m ∇⃗φ] ns (3.48)

we can get another interesting consequence. Consider a ring shaped superconductor
placed in a constant magnetic field directed along the axis of the ring (Figure 3.10).

Let us integrate expression (3.48) for the current density over an arbitrary closed
contour C lying inside the ring. Since appreciable currents can flow only near the sur-
face of the sample, then ∫C ⃗j ⋅ d ⃗l = 0. This is equivalent to:

2e2

mc ∫
C

A⃗ ⋅ d ⃗l + |e| ℎ
m ∫

C

∇⃗φ ⋅ d ⃗l⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
dφ

= 0 . (3.49)

According to Stokes’ theorem, we have:

∫
C

A⃗ ⋅ d ⃗l = ∫
S

rot A⃗⏟⏟⏟⏟⏟⏟⏟⏟⏟
B⃗

⋅ dS⃗ = ∫
S0

B⃗ ⋅ dS⃗ = Φ . (3.50)

Because B⃗ = 0 inside the superconductor, in formula (3.50), Φ is the magnetic flux
through the hole in the ring; S is a surface based on the contour C; S0 is a part of the
surface S, covering the hole in the ring.

Now the wave function of the Cooper pairs, having the form

Ψ( ⃗r) = √ns exp (iφ)

C
B

S0

Fig. 3.10: A superconductor in the form of the ring being in an ex-
ternal constant magnetic field; a surface S0 covering the hole in
the ring.
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should be clearly defined. In doing so its phase, when traversing along the contour C,
must be incremented by 2πn, where n is an integer. Emanating from this, we have:

∮
C

dφ = 2πn . (3.51)

According to (3.49)–(3.51), the magnetic flux through the hole in the ring must be
quantized:

Φ = − nhc2 |e| = −nΦ0 , Φ0 = hc
2 |e| = 2.07 ⋅ 10−7 Gs/cm2 . (3.52)

The quantity Φ0 is referred to as a fluxon or a quantum of magnetic flux.
Macroscopic quantization of the magnetic flux can be observed experimentally

and serves as a convincing argument in favor of the Ginzburg–Landau theory.

3.8 The Microscopic Nature of Two Types of Superconductors –
Vortex Lattices and Superconducting Magnets

Let us discuss the coexistence of normal and superconducting phases in a critical ex-
ternal magnetic field Hc(T). The superconductor itself is assumed to be nonmagnetic.
That is, B⃗ = H⃗ in the CGS system.

Electron states in the superconductor are correlated at distances of the order
ξ(T) = hVF/∆(T). That iswhy theparameter ∆ cannot change sharply from thevalue ∆0
in a superconductor to the value ∆ = 0 in a normal metal. There is a transition region
of size ∼ξ(T) where ∆ is close to zero (Figure 3.11). This region has no magnetic field,
so it is already in the normal phase.

In the normal phase, a unit volume of the substancemust have the energy H2
c /8π.

In the absence of a magnetic field, the boundary layer of a thickness ξ possesses an
excess energy:

H2
c

8π ξS ,

where S is area of the boundary.

x

(   )δ T
(   )ξ T

H
Hc

(   )Δ T
Δ0

n s

1 1

Fig. 3.11: Boundary between normal and super-
conducting phases of a conductor placed in a
critical external magnetic field.
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On the other hand, amagnetic field nevertheless penetrates into the superconduc-
tor to a depth of δ due to the Meissner effect. This reduces the boundary layer energy
of the superconductor by the magnitude

H2
c

8π δS .

As a result, the total energy per unit surface separating the normal and superconduct-
ing phases has the form:

σsurf ∼ H2
c

8π
(ξ − δ) . (3.53)

If ξ > δ, then σsurf > 0 and we have a type-I superconductor. If ξ < δ, the surface
energy is negative; it stands for a type-II superconductor. From amicroscopic point of
view, the existence of two types of superconductors is due to the difference in the δ
and ξ parameters.

It should be noted that ξ(T) ∼ δ(T) ∼ (Tc − T)−1/2 as T → Tc. This means that the
ratio of the characteristic parameters near Tc does not depend on temperature:

δ(T)
ξ(T) ∼ O(1) .

Thus, temperature is not the cause of dividing superconductors into type-I and type-II.
A negative surface energy is energetically favorable for the magnetic field to pen-

etrate deep into the superconductor, not abruptly but gradually due to the increase
in the total number of magnetic flux filaments in the sample. Each filament carries
a magnetic flux quantum Φ0 = ch/(2|e|) (a fluxon of the same magnitude as that
penetrates into the hole in the superconducting ring). The filament is surrounded by
superconducting currents tending to shield the magnetic field inside the filament.

Ginzburg–Landau’s approach proved to be perfect for describing type-II su-
perconductors with vortex filaments. With the Ginzburg–Landau equations, Alexei
Abrikosov, a Russian physicist, has succeeded in building the theory of type-II super-
conductors.

Near the center of the vortex filament in the plane perpendicular to it, the de-
pendence of the wave function of a Bose condensate of Cooper pairs on the spatial
coordinates is of the form:

Ψ ∼ ρ exp(iθ) , (3.54)

where ρ = √x2 + y2 is the distance to the filament center, θ = arg(x + iy) (Figure 3.12).
It follows that the wave function vanishes in the points located in the vortex fila-

ment. The velocity of the vortex motion of superconducting pairs around the filament
decreases in inverse proportion to the distance to the center of the filament:

V ∼ 󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨Ψ
∗(−iℎ∇⃗Ψ)
2m |Ψ|2

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 ∼ ℎ
2mρ

. (3.55)
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Fig. 3.12: A vortex filament and a plane perpendicular to it.

It can be seen that the velocity Vs tends towards infinity as ρ → 0. Remarkably, in
this case the superconducting current ⃗j ≈ −(ℎ|e|/m)|Ψ|2∇⃗φ is finite because |Ψ|2 ∼ ρ2

and |∇⃗φ| ∼ 1/ρ as ρ → 0.
The wave function of the condensate of Cooper pairs is restored to its equilibrium

value at distances ρ > ξ .
Each filament tends to push off the other filament. Abrikosov showed that, in an

isotropic crystal, the mutual repulsion of the filaments is minimal in a triangular lat-
tice of filaments. Under the influence of the anisotropy of the crystal, it is possible, for
example, to reconstruct the triangular vortex lattice in the square.

It is important that the balance between the δ and ξ parameters can always be
changed by adding nonmagnetic impurities. Any type-I superconductor canbe turned
into a type-II superconductor by increasing the concentration of impurities. It is in-
teresting, and important, that type-II superconductors have the highest critical fields
and temperatures. It is worth noting that recently discovered high temperature super-
conductors, whose conduction mechanism is not yet clear, are also type-II supercon-
ductors. Thus, beyond a shadow of a doubt, type-II superconductors are one of the
greatest discoveries of the second half of the twentieth century, and the leading role
in the development of the theory was played by Abrikosov.

It should be kept inmind that, in practical use, the critical current flowing through
type-II superconductors is limited by the vortex lattice motion. This is because when
interacting with currents appearing around Abrikosov filaments, an external current
loses its energy. However, there is a way to overcome this difficulty. In order to do so,
vortex pinning centers need to be produced inside the superconductor, for example,
by irregularities of the crystal. These centers formapotential relief for the vortex lattice
andmake it difficult for the latter to move. Nevertheless, at a finite temperature, there
are always thermalfluctuation transitions of the vortex lattice,whereby so called creep
arises. This phenomenon involves fluctuation jumps of the vortex lattice. Although
the creep occurs at any temperature, fortunately the resistance caused by the creep is
so low that the current through the superconductor does not change significantly for
about a hundred years.
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The creep creates another problem. If a superconductor has vortex bundle jump-
ing, it heats up in this segment and can convert to the normal state, which, in turn,
entails further heat release to destroy the superconductingwire ormagnet. To prevent
and avoid this, superconducting cables are stranded. Copper and superconducting
wires alternate. Copper (normal metal) plays a role of an insulator. A superconductor
has low thermal conductivity, but copper conductsheat away from the superconductor
when the latter is suddenly heated. In addition, in the casewhen the superconducting
current ceases to flow, the normal conductor connected in parallel acts as a bypass.

Note that electrons with opposite spins in a magnetic field have the energy dif-
ference 2μB|B|, where μB is the Bohr magneton. The magnetic field tends to rotate
electron spins so as to make their directions and the magnetic field coincide. The de-
struction of a Cooper pair occurs when the difference in energies of electrons in the
pair in an external magnetic field is of the order of the binding energy: 2μB|B| ∼ ∆,
i.e., when |B| ∼ ∆/2μB.

For the same reason, doping of magnetic impurities reduces superconductivity,
and ferromagnetic ordering completely suppresses it. The coexistence of antiferro-
magnetic ordering and superconductivity is a debatable issue today. It should also
be pointed out that, against ferromagnetic conductors, antiferromagnetic metals are
extremely rare.

Abrikosov and Gor’kov showed that in contrast to conventional nonmagnetic im-
purities, an increase in the concentration of magnetic impurities gives rise to lower-
ing of Tc and binding energy of some part of Cooper pairs. As a result, at a limited
temperature range there is so called gapless superconductivity. Pairs with low binding
energy prove to be broken, which eliminates the gap but, nevertheless, the remaining
of Cooper pairs continue carrying the superconducting current.

There is another reason for the destruction of Cooper pairs by a magnetic field:
momenta of electrons in a Cooper pair are oppositely oriented, so the electrons are
affected by the oppositely directed Lorentz forces. This causes the Larmor twisting of
the pairs (Figure 3.13).

Next we estimate the Larmor radius R of an electron in an external magnetic field
within classical physics:

mV2
F

R
= VF

c |eB| ⇒ R = mcVF|eB| .

B

p

–p

FL

FL
–

Fig. 3.13: Larmor twisting of a Cooper pair in a magnetic field with in-
duction B⃗: ⃗FL and − ⃗FL are the Lorentz forces, p⃗ and −p⃗ are electron mo-
menta.
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In the calculation we have taken into account that the electron velocity is of the order
of VF.

A Cooper pair can exist as long as the Larmor radius exceeds its size:

R = mcVF|eB| > ξ . (3.56)

The Larmor radius can be extended by increasing the effective mass of the charge car-
riers, which in turn causes the critical magnetic field value to grow.

In 2003, Abrikosov and Ginsburg became the Nobel Prize winners for the devel-
opment of theory of superconductors.

3.9 Possible Physical Mechanisms of High Temperature
Conductivity

The BCS theory contains prerequisites for the explanation of physical mechanisms of
high temperature conductivity. This theory yields the formula

kBTc = 1.14 ℎωD exp(− 4
gν(εF)) , (3.57)

which indicates the possible directions for improving the critical temperature. Let us
discuss some of them [4, 10].

I. In the BCS theory, the parameter gν(εF)/4 < 1. In other words, the electron-
phonon interactions are assumed to be weak. The generalization of the theory to the
case of strong electron-phonon coupling with gν(εF)/4 ≈ 1 has been carried out by
Eliashberg. It hasbeen turned that theapproximationhas takenonly thermalphonons
with frequencies ℎω ∼ kBTc into account to describe the electron-electron attraction,
which is a rough estimate. It has been found that the electron-electron interaction is
affected by virtual phonons with all frequencies, with the main role being played by
phononswith frequencies lying near extrema of the functionω(q⃗). The fact of themat-
ter is the regions lying near the extrema correspond to the maximum phonon density
(the Van Hove singularities in the phonon spectrum are important).

The theory of strong coupling for the critical superconducting transition temper-
ature brings the formula to:

kBTc = ℎω̃ exp (−1/g(ω̃)) . (3.58)

It differs from the formula derived in the BCS theory, in that:
a) ω̃ is not the Debye frequency but a characteristic frequency. Its calculation re-

quires knowledge of the entire vibrational spectrum.
b) The coupling constant g(ω̃) depends strongly on frequency: g(ω̃) ∼ ω̃−2. This

means that a high temperature Tc corresponds to low frequencies.
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Eliashberg’s theory provides two conclusions:
1. In the normal state, strong electron-phonon coupling corresponds to great resis-

tance. Consequently, superconductors with high temperatures Tc in the normal
state must conduct an electric current poorly.

2. There is a probability of finding superconductors with high Tc among “soft”-
phonon spectrum structures whose ω̃ are low.

However, although decreasing ω̃ corresponds to increasing the exponential factor
in (3.58), at the same time, it leads to a reduction of the coefficient ℎω̃ before the
exponent. Besides, the lattices with low ω̃ are structurally unstable. Ultimately, the
Eliashberg theory gives little hope of improvement of Tc above 30K.

II. Letusdiscuss thepossibility of increasing Tc due to thepre-exponential factor.
Since ωD ∼ 1/√M, high Tc can be obtained by reducing the mass of the lattice atoms.

Solid hydrogen, if it were metal, could be a unique opportunity in this regard. Un-
fortunately, under normal conditions, hydrogen is a dielectric crystal of H2 molecules.
According to theoretical calculations, molecular hydrogen must pass to the atomic
phase under high pressure. The phase bears similarities to the phase for alkali met-
als. However, the transition pressure is extremely high and amounts to 2.5Mbar. The
question arises of whether this phase remains in a metastable state after the removal
of the pressure.

At first, these difficulties were overcome by producing hydrides, i.e., metal-
hydrogen compounds to generate high frequency branches in the phonon spectrum.
These frequencies had to correspond to proton oscillations. Getting metastable solid
solutions with a high concentration of hydrogen became possible by means of special
methods. However, the substances obtained had Tc < 10K.

Abrikosov suggested another ideawhichwould give the same advantages as solid
hydrogen did. Imagine a substance containing an equal number of electrons and
holes. Suppose the mass of the hole was much greater than the mass of the electrons,
and that the potential energy of the former exceeds the kinetic one. Theholes can then
form a periodic structure, i.e., “a lattice in a lattice.” The substance resembles solid
hydrogen, but protons are replaced by heavy holes. In this medium, phonons prop-
agate with the Debye frequency ten times greater than the Debye frequency ℎω̃D for
solid hydrogen. To produce high Tc, it is also necessary that such substances should
have a high charge carrier density but the dielectric constant is small. Unfortunately,
at the present time, such substances are not synthesized, and it is unclear whether it
is possible to create them.

III. Are there other more powerful interaction mechanisms which can lead
to electron pairing and superconductivity phenomenon other than the interaction
through a vibrating crystal lattice? In principle, there are.
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The overall scheme of interaction between electrons and a transmission medium
A can be represented as follows:

e1 + A → e󸀠1 + A∗, e2 + A∗ → e󸀠2 + A , (3.59)

where ei corresponds to the electron (i = 1, 2); A is the ground state and A∗ is an
excited state of the transmission system. Such“adouble response” results in returning
the system A to its original state, and the electrons e1 and e2 change their momenta
(that is, as if they scatter by each other). It can be shown that such an interaction is
necessarily the attraction. If the interaction is not too great, it yields the following
formula for calculating the Tc:

kBTc ∼ ∆E exp (−1/λ) , (3.60)

where ∆E is the energy difference for the states A and A∗, and λ depends on the inter-
action between the electrons and the system A. In fact, the above mechanism bears
similarity to the phonon attraction.

In this case, the most promisingmechanism is thought to be the so called exciton
mechanism. An exciton in amolecular crystal can be regarded as electronic excitation
of one of the molecules propagating through the lattice due to the presence of transla-
tional symmetry (the Frenkel exciton). In a semiconductor, an exciton is a bound state
of an electron and a hole that resembles a hydrogen atom. The bound state is free to
migrate through the lattice (the Wannier–Mott exciton). The radius of such a quasi-
atomic formation can be as much as tens of times larger than the lattice constant. It
should be pointed out that the Wannier–Mott excitons, being bound states of an elec-
tron and a hole, may be at different lattice sites. At the same time, the Frenkel excitons
can be interpreted as theWannier–Mott limit: an electron and a hole reside at one and
the same site.

The exciton energy ∆E = kBθexiton corresponds to a temperature of about θexiton ∼
104 K. Formula (3.60) gives an estimation of Tc even for λ = 1/4: Tc ∼ 300K.

However, the exciton mechanism is extremely difficult to implement in practice.
The fact is that the excitons exist in molecular crystals, semiconductors or dielectrics
due to these being poor conductors of electric current under normal conditions. Su-
perconductivity, at least before the discovery of high temperature superconductors,
was observed experimentally in materials with metallic conductivity. Therefore, the
electron-electron attraction through the exciton exchange was expected to be brought
about in a quantum system consisting of two subsystems – a metal and a dielectric
(semiconductor) one. In 1964, Ginzburg came up with an idea of producing hetero-
geneous structures of alternating metal and dielectric films. Due to the quantum tun-
neling effect, electrons of the metal would go inside the dielectric to be exchanged
by excitons. This would lead to an effective attraction between the electrons and, ul-
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timately, to the phenomenon of high temperature superconductivity in the metallic
system.

The limiting caseof theheterogeneous structures is quasi-two-dimensional super-
conductors with one single molecule thick conductive layer, separated by relatively
thick nonconductive space. Generally, superconductivity in both two-dimensional
and one-dimensional lattices is impossible to exist due to its destruction by thermal
fluctuations. However, it turns out that even a slight interaction between the conduc-
tive layers or chains suppresses the fluctuations and restores superconductivity. In
addition, low dimensionality of the system stabilizes the exciton states, making them
more stable under a broader range of temperatures and external electric fields. De-
spite not reaching high Tc in “sandwiches,” layered and filamental structures, these
materials and the mechanism itself should be still deemed as promising.

3.10 High Temperature Superconductors

High temperature superconductivity was found where it seemed absurd to look for
it – in metal oxide ceramics, most of which are known to be good insulators at room
temperatures [8, 10, 12].

Let us discuss the properties of compounds of the type La2−x(Ba, Sr)xCuO4 with
Tc ∼ 40K. It is these that were the first materials where high temperature super-
conductivity was discovered. The optimum composition corresponds to the order
of x ≈ 0.2 of Ba or Sr impurities. Here, x indicates the proportion of Ba (or Sr) atoms,
which replaced La in some lattice sites. All ions in such compounds form a crystal
lattice through ionic-covalent bonds rather than metallic one. Taking into account
the valence state, a chemical formula of La2−xBaxCuO4 should be written in the form
La3+2−xBa

2+
x Cu3+x Cu2+1−xO

2−
4 . It is worth pointing out that the copper ions appear in two

different valence states. There is an approach that links high temperature supercon-
ductivity with this fact.

The unit cell of the compound is a right prism with a square base. Such a crystal
system is called a tetragonal crystal system. Its structure is shown in Figure 3.14. The
structure can be represented as flat layers of oxygen octahedra, intergrown together
through common oxygen ions at the position I (Figure 3.15). Neighboring layers of the
octahedra are separated by two atomic planes containing La atoms. In the La planes,
La is partially substituted for Ba atoms. Furthermore, each flat layer of the oxygen
octahedra is shifted relative to the adjacent plane layer. The vertices of the pyramids
of the upper layer face the pits formed by the pyramids of the lower layer (Figure 3.15).

It turns out that it is the layers of oxygen octahedra with Cu-O atoms which are
responsible for the superconducting properties of the structure. The conductivity of
the layer is explained by the overlap of the wave functions of the Cu and O atoms. The
Cu and O ions are coupled via strong Coulomb interaction.
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Fig. 3.14: The unit cell of La2−xBaxCuO4 is a rectangular parallelepiped with a height of c = 13.25Å
and a square base with side a = 3.78Å. On the right cross sections of the parallelepiped and the
arrangement of atoms. On the left from the parallelepiped – the number of the cross sections.
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Fig. 3.15: Each Cu atom is the center of an octahedron elongated along
the axis c; two oxygen atoms at position II and four oxygen atoms at
position I share its vertices.

Let us focus on the layered, quasi-two-dimensional and anisotropic nature of the
structure: the conductive layers are separated by nonconductive planes where atoms
of La are partially and randomly replaced by Ba atoms.
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The band structure calculation in the case of x = 0 shows that the La2CuO4 com-
pound has an exactly half filled conduction band. The Fermi surface is almost like
a square cross section pipe with an axis parallel to the axis c (in the extended zone
scheme). Thus, the electronic structure of the crystal is highly anisotropic. Such an
electronic structure makes the metal semiconductor phase transition energetically fa-
vorable (the Peierls transition). A soft mode ω(q⃗) ≈ 0 with q⃗ ̸= 0 appears in the spec-
trum of lattice vibrations. As a result, the lattice symmetry reduces to rhombic and the
unit cell converts into a cuboid with unequal edge lengths. The changes give rise to
the appearance of a gap in the conduction band. The lower edge of the gap coincides
with the Fermi surface of electrons. The phase transition forms two zones: one is filled
with electrons, and the other, separated by the gap, is completely free. The crystal
becomes a semiconductor. A phase transition of the type of a metal/an insulator in
La2CuO4 is indeed observed. However, even partly replacing trivalent La by divalent
Ba lowers the Fermi level and violates conditions for realizing the transition. Then
the lattice stabilizes in the tetragonal metallic phase. It occurs due to the decrease of
the total number of electrons. The stabilization takes place even when x = 0.07 and
eliminates the soft mode and, thus, weakens the impact of the electrons on the lattice
vibrations. But there are physical reasons for the electron-phonon interaction to still
be strong enough to be taken into account when discussing the possible mechanisms
of electron pairing in high temperature superconductors. Let us list the main reasons
leading to a large electron-phonon coupling constant.

First, a layered crystal structure of high temperature cuprates has a sufficiently
high density of electron states at the Fermi surface, despite a very small number of
electrons per unit cell. Secondly, the major role in electron pairing is assumed to be
played by intense (because of small mass) oscillations of the oxygen octahedra cen-
tered on the copper atoms. Besides, strong hybridization of the wave functions of the
Cu and O atoms in the Cu-O plane allows even the electrons bonded to a light oxygen
atom to participate in the electron-phonon interaction.

Furthermore, sufficiently weak screening directed perpendicularly to the Cu-O
planes results in a significant fraction of the ionic bond in the cuprates and strong
electron-phonon effects on these planes. This is because the potential energy of the Cu
and O atoms changes as the O ions in the position II and even La and Ba ions vibrate.

Next we proceed to discussing other superconducting ceramics, such as
ABa2Cu3O7−x, where A can be any element, beginning with yttrium and ending with
heavier, rare earth trivalent elements:

A = Y, La, Nd, Sm, Eu, Gd, Ho, Er, Lu .

For all of these compounds Tc is 90–98K, which is higher than that of compounds
considered. Their lattice is orthorhombic but close to tetragonal. For A = Y, we have
c = 11.70Å, a = 3.83Å, b = 3.89Å (the unit cell is a cuboid with uneven edge
lengths). These compounds are also layered anisotropic materials with flat sequences
of oxygen octahedra surrounding copper atoms. Conductive Cu-O layers in such com-
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pounds are more separated from each other (not two but three nonconductive atomic
planes). Perhaps it is this difference in structure that explains the almost threefold
increase in their Tc.

These compounds possess a small isotopic effect: Tc ∼ 1√M, whereM is the mass
of the 16O and 18O oxygen isotopes.

The measurement of the value of magnetic flux quanta passing through the hole
in a superconducting ring shows that the superconducting current in the ceramics is
carried by Cooper pairs with a charge−2|e|. It has been found that the effective mass
of electrons in ceramics, as measured by the London penetration depth, is unusually
large; about a hundred electron masses.

At the same time, estimation of the Debye temperature yields normal values
of TD ∼ (20–400)K. It can be concluded that the BCS theory with weak electron-
phonon coupling cannot explain such a high Tc. The standard approach to strong
electron-phonon coupling is based on the idea of isotropic (singlet) electron pairing
and on the Eliashberg equations. This way also does not explain much of the su-
perconducting properties, including the d-type symmetry of the energy gap. There
must be something else that defines, together with the electron-phonon interaction,
a complete mechanism of high temperature superconductivity.

Todate, there arenumerous schemesof electronpairing. Various systemsof quasi-
particle electron excitations are most often discussed. Only instead of phonons and
excitons leading to electron-electron attraction and electron pairing, other carriers of
the interaction can be considered. This may be: a) antiferromagnetic spin fluctuations
(in the Cu-Oplanes, spins 1/2 of the copper atoms are antiferromagnetic ordered state),
b) specifics of the band structure, so called “nesting”, etc. Nesting is the coincidence
of individual segments of a circuit bounding the cross section of the cylindrical Fermi
surface of cuprates after being displaced by a certain wave vector. So Gor’kov put for-
ward a hypothesis of forming Bose particles – bipolarons in the crystal even in the
normal phase at T > Tc. Bipolarons are bound states of two heavy Fermi quasiparti-
cles (polarons).

A polaron is an electron placed in a potential well formed by electron induced
polarization of the crystal lattice. A bipolaron is a pair of two electrons surrounding
the lattice ions polarized by the pair.

Local bipolarons of small spatial extension may appear due to strong electron-
phonon interaction. Superfluidity of charged Bose particle bipolarons is expected to
occur at low temperatures. Thismeans superconductivity. Such superconductivity dif-
fers principally from the BCS superconductivity, but namely the bipolaron destruc-
tion temperature is much higher than their condensation temperature. That is to say,
against Cooper pairs, bipolarons “live” at temperatures above Tc as well. In this case,
a bipolaron gas canbe treated as a nearly ideal Bose gas. Its condensation temperature
(m∗ = 100m, where m is the mass of a free electron):

T0 = 3.31ℎ2
m∗kB

(ns
2
)2/3 ∼ 100K
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must be identified with a superconducting transition temperature. As can be seen, the
Gor’kov point of view provides, at least, the correct order of magnitude of Tc.

The copper-oxygen planes of cuprate compounds build up a strongly correlated
two-dimensional electron system. In this system, the main role is played by a single
electron band, and Coulomb repulsion of electrons at one and the same site is domi-
nant. In cuprates, kinetic and potential energies of interaction between particles have
the same order of magnitude. Therefore, there is no small parameter for consistent
theoretical description of such systems. The absence of a smallness parameter limits
the possibility to use the simplest approximations of strongly or weakly interacting
electrons to describe even the dielectric phase. Such a phase is observed in the lack of
substitutional impurities (the terminology commonly used is “in the absence of dop-
ing”). It is interesting and important that the superconductivitymechanismsgoverned
by direct electron correlations can be realized in cuprates. Most theoretical studies in
this direction deal with the Hubbard model. The latter takes into account both the
electron transfer from a site to a site in a crystal lattice and strong Coulomb repulsion
of two electrons with opposite spins at a single site. It is the Hubbard model and its
related models have helped to propose the two most “exotic” ideas concerning the
nature of high temperature superconductivity.

According to the first of them, in cuprates, an electron having a charge and spin
ceases to be a well-defined elementary excitation. It is assumed that the electronic
system of cuprates, both in the normal and in the superconducting states, is theo-
retically described in terms of new weakly interacting quasiparticles – “holons” and
“spinons.” Holons are spinless collective excitations of cuprates; they carry a charge.
Spinons are noncharged Fermi quasiparticles carrying spin. A weakly nonideal gas
of spinons and holons is called the Luttinger liquid. Simultaneous Bose condensation
of holons and spinons (analog of Cooper pairs) corresponds to the superconducting
state.

The second idea constitutes a hypothesis proposed by Robert Betts Laughlin. His
statement says that collective excitations in high temperature systems are neither
bosons nor fermions and are described by special quasiparticles, “anions,” that obey
fractional statistics.

Both ideas are quite radical and constantly undergo modification. Their legiti-
macy is the subject of lively debates due to the absence of any well-established find-
ings and conclusions in the research.

The Hubbard model offers insight into other possible occurrences of supercon-
ductivity in a strongly correlated two-dimensional electron-electron repulsion system.
It has been found that although the interaction between two electrons of the copper
ion is great and repulsive, the interaction between electrons of the copper and elec-
trons of the nearest neighboring oxygen ions turns out to be attractive and can lead to
the superconducting state with anisotropic d-electron pairing. The emergence of the
anisotropic energy gap is in qualitative agreement with experimental data.
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Interestingly, if one leaves aside the complicating factors associated with the
specifics of high temperature samples studied, their magnetic properties are fully
described in terms of the Ginzburg–Landau theory for type-II superconductors.

Currently there is no common point of view about the nature of high tempera-
ture superconductivity. This is explained by the fact that the oxide compounds are
complex: they are composed of a huge number of the lattice atoms whose location
significantly affects the physical properties of the compounds. Moreover, the metal
oxides are unsuitable for producing single crystals because their melting point lies in
the temperature range (~1000 °C), where chemical degradation of the compounds be-
gins to take place. There are difficulties in controlling the degree of doping and the
homogeneity of the samples, etc.

The discovery of high temperature superconducting compounds has helped to
provide a powerful impetus for the development of fundamental research in con-
densed matter physics. As a result of these investigations, not only does new knowl-
edge originate but novel and unique superconductors with high critical parameters
appear. As long as the high temperature materials are technologically difficult to
apply, their use is very limited but some progress is already evident.



4 Quantum Coherent Optics: Interaction of Radiation
with Matter

4.1 Maxwell’s Equations and Natural Oscillations of an
Electromagnetic Field in a Closed Cavity

In classical physics, electromagnetic phenomena inmatter are described byMaxwell’s
equations. The electromagnetism equations are written differently in the CGS and SI
systems. Earlier,wehave used the CGS systemwhen considering electromagnetic phe-
nomena. In what follows, we present Maxwell’s equations as applied to optical phe-
nomena in the SI system of units. This is because all the recommended literature
widely uses the SI system. The conversion from the CGS to the SI system does notmeet
any difficulties. We also recall the form of the electromagnetism laws in the CGS and
the SI systems of units.

WebeginwithMaxwell’s equations in termsof truephysical fields B⃗ and E⃗. The lat-
ter are average values over physically small periods of time and macroscopic medium
volumes ofmicroscopic fields. We call the B⃗ and E⃗ fields true because they define force
F⃗ as acting on a charge q from the direction of the electromagnetic field in themedium.

SI CGS
Lorentz Force F⃗

F⃗ = qE⃗ + q [V⃗ × B⃗] (4.1a) F⃗ = qE⃗ + q
c [V⃗ × B⃗] (4.1a’)

Maxwell’s Equations

rot E⃗ = −∂B⃗∂t (4.2a) rot E⃗ = −1c ∂B⃗∂t (4.2a’)

rot B⃗ = μ0 { ⃗jext+ ⃗jpol+ ⃗jmol+ε0 ∂E⃗∂t } (4.2b) rot B⃗ = 4π
c { ⃗jext+ ⃗jpol+ ⃗jmol}+ 1c ∂E⃗∂t (4.2b’)

div E⃗ = 1
ε0

{ρext + ρpol} (4.2c) div E⃗ = 4π {ρext + ρpol} (4.2c’)

div B⃗ = 0 (4.2d) div B⃗ = 0 (4.2d’)

Here, ε0 and μ0 are the electric and magnetic constants, respectively; ε0μ0 = 1/c2,
where c is the speed of light in a vacuum.

Medium properties are characterized by the electric polarization vector P⃗ (dipole
moment per unit volume of medium) and the magnetization vector M⃗ (magnetic mo-
ment per unit volume ofmedium). To simplifyMaxwell’s equations, two auxiliary vec-
tor fields H⃗ and D⃗ are defined. They are related to the M⃗ and P⃗ vectors, and the B⃗ and E⃗
physical fields, as follows.

https://doi.org/10.1515/9783110586183-004
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SI CGS
Electric Displacement Vector D⃗

D⃗ = ε0 E⃗ + P⃗ (4.3a) D⃗ = E⃗ + 4πP⃗ (4.3a’)

Magnetic Field Strength H⃗

H⃗ = 1
μ0

B⃗ − M⃗ (4.4a) H⃗ = B⃗ − 4πM⃗ (4.4a’)

M⃗ = 0 in vacuum and nonmagnetic media. As a result, the B⃗ and H⃗ fields coincide in
the CGS, system but differ by the factor μ0 in the SI system.

SI CGS

H⃗ = 1
μ0

B⃗ (4.5a) H⃗ = B⃗ (4.5a’)

Therefore, we can say that the intensity of the magnetic field H⃗ characterizes the mag-
netic field without considering the influence of a medium.

With the P⃗ and M⃗ vectors, the polarization charge density ρpol, the density of po-
larization currents ⃗jpol, and the density of the so called molecular currents ⃗jmol can be
calculated in both of the systems of units:

SI CGS
ρpol = −div P⃗ (4.6a) ρpol = −div P⃗ (4.6a’)

⃗jpol = ∂P⃗
∂t (4.6b) ⃗jpol = ∂P⃗

∂t (4.6b’)⃗jmol = rot M⃗ (4.6c) ⃗jmol = c ⋅ rot M⃗ (4.6c’)

Then the system of Maxwell’s equations for the true fields E⃗ and B⃗ and (4.2) can be
rewritten in another form:

SI CGS

rot E⃗ = −∂B⃗
∂t

(4.7a) rot E⃗ = −1
c
∂B⃗
∂t

(4.7a’)

rot H⃗ = ⃗jext + ∂D⃗
∂t (4.7b) rot H⃗ = 4π

c
⃗jext + 1

c
∂D⃗
∂t (4.7b’)

div D⃗ = ρext (4.7c) div D⃗ = 4πρext (4.7c’)
div B⃗ = 0 (4.7d) div B⃗ = 0. (4.7d’)

As a consequence, these transformations of the Maxwell equations in the SI system
eliminate the fundamental constants ε0 and μ0. Now the Maxwell equations (in both
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systems) include only the external charge density ρext and the density of external cur-
rents ⃗jext.

The system of equations (4.6) and (4.7) is common but is not closed. It must be
supplemented by the so called constitutive equations as expressing P⃗ and M⃗ via their
inducing fields E⃗ and B⃗. When E⃗ and B⃗ slowly change in time and space and are rela-
tively small, the constitutive equations are given by:

Pi = αijEj , Mi = χijHj , (4.8)

where αij is the tensor of the dielectric susceptibility of a medium, χij is the tensor
of the magnetic susceptibility of a medium; i, j = 1, 2, 3. The indices repeated twice
imply summation.

Equation (4.8) allows one to eliminate P⃗ and M⃗ from equations (4.3a) and (4.4a):

Di = εijEj , Bi = μijHj , (4.9)

Where εij = ε0δij+αij is the tensor of the dielectric permeability of amediumand μij =
μ0(δij + χij) is the tensor of the magnetic permeability of a medium.

Generally, D⃗ and B⃗ aremore complex functions of E⃗ and H⃗. The particular form of
the constitutive equations to be established is beyond the frame of electrodynamics.
The issue refers to the microscopic quantum theory that takes the atomic molecular
structure of matter into account.

To begin with, we have a look at Maxwell’s equations for charge and current free
space (in a vacuum): ρext = 0, ⃗jext = 0, M⃗ = P⃗ = 0 (χij = αij = 0). In this case,
Maxwell’s equation has the following closed form:

rot E⃗ = −μ0 ∂H⃗∂t , (4.10a)

rot H⃗ = ε0
∂E⃗
∂t , (4.10b)

div E⃗ = 0 , (4.10c)

div H⃗ = 0 . (4.10d)

In a vacuum:
B⃗ = μ0H⃗ . (4.11)

Acting by the curl operator on both sides of equation (4.10a) and using equa-
tion (4.10b), we find:

rot rot E⃗ = −μ0 ∂ rot H⃗∂t = −μ0ε0 ∂2E⃗∂t2
. (4.12)

Given that the speed of light in a vacuum is c = 1/√ε0μ0, and taking into account the
equation (4.10c) and the identity:

rot rot E⃗ = ∇⃗div E⃗ − ∆E⃗ ,
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we arrive at a closed wave equation for the vector E⃗:

∆E⃗ = 1
c2

∂2 E⃗
∂t2

. (4.13)

It is easy to verify that the field H⃗ satisfies the same equation:

∆H⃗ = 1
c2

∂2H⃗
∂t2

. (4.14)

Possible solutions of the wave equations (4.13) and (4.14) are running flat mono-
chromatic waves:

E⃗( ⃗r, t) = E⃗0 exp [ik⃗ ⋅ ⃗r − iωt] + c.c. , H⃗( ⃗r, t) = H⃗0 exp [ik⃗ ⋅ ⃗r − iωt] + c.c. , (4.15)

where E⃗0, H⃗0 are constant complex vectors. Here andbelow, the symbol “c.c.”denotes
a “complex conjugate” term. The wave vector k⃗ can be arbitrarily oriented in space,
and its modulus is related with the frequency ω: ω = kc.

If one inserts (4.15) into the Maxwell equations (4.10), we obtain:

[k⃗ × E⃗0] = ωμ0H⃗0 , [k⃗ × H⃗0] = −ωε0 E⃗ , k⃗ ⋅ E⃗0 = k⃗ ⋅ H⃗0 = 0 . (4.16)

From (4.16), it is easy to establish that the vectors E⃗0, H⃗0, k⃗ form a right-handed triple
of orthogonal vectors (Figure 4.1), and modules of the vectors E⃗0 and H⃗0 are related
by:

H0 = √ ε0
μ0

E0 . (4.17)

The position of the vector E⃗ in a plane perpendicular to the vector k⃗ canbe charac-
terized by two independent polarization directions, such as two real orthogonal unit
vectors e⃗k⃗λ (λ = 1, 2):

e⃗k⃗λ ⋅ e⃗k⃗λ󸀠 = δλλ󸀠 . (4.18)

For further analysis, the vectors e⃗k⃗1, e⃗k⃗2, n⃗k⃗ = k⃗/|k⃗| are convenient to choose as they
should form a right-handed triple (Figure 4.2). This allows the following equalities to
hold true: [e⃗k⃗1 × e⃗k⃗2] = n⃗k⃗ , n⃗k⃗ ⋅ e⃗k⃗λ = 0 . (4.19)

Given these remarks, we can write equation (4.15) for the linearly polarized flat
monochromatic waves E⃗ and H⃗ in a particular form:

E⃗k⃗λ = ie⃗k⃗λ√ ℎωk
2Vε0

{ak⃗λ exp [ik⃗ ⋅ ⃗r − iωkt] − c.c.} ,

H⃗k⃗λ = i [n⃗k⃗ × e⃗k⃗λ]√ ℎωk
2Vμ0

{ak⃗λ exp [ik⃗ ⋅ ⃗r − iωkt] − c.c.} .

(4.20)
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Fig. 4.3: Volume element d3 k⃗
in reciprocal space.

Here, ak⃗λ are arbitrary complex numbers (dimensionless amplitudes) and V is the vol-
ume of the region containing the electromagnetic field; ωk = kc.

A cavity contains the field if it is large enough. The properties of the electromag-
netic field inside the cavity does not depend on its size, shape, and nature of thewalls.
To significantly simplify the calculations, we choose the cavity in the form of a cube:

0 ≤ x, y, z ≤ L , (4.21)

where L is the length of the cube edge, and takes the Born–Karman boundary condi-
tions:

E⃗(x + L, y, z) = E⃗(x, y, z) , E⃗(x, y + L, z) = E⃗(x, y, z) ,
E⃗(x, y, z + L) = E⃗(x, y, z) . (4.22)

These boundary conditions isolate discrete values of the wave vector components:

ki = 2π
L ni , (4.23)

where ni are arbitrary integers (i = x, y, z). The set of numbers (nx , ny , nz) defines the
mode of the electromagnetic field.

For large L, the allowed values of the vector k⃗ are quasicontinuously distributed
and form a lattice in reciprocal space. Each lattice site occupies the volume (2π)3/L.
The small volumed3 k⃗ centered at thepointwith thewavevector ⃗k (Figure4.3) contains

d3 k⃗ : (2π)3
L3

= Vd3 k⃗(2π)3 (4.24)

allowed wave vectors (V = L3 is the cavity volume where the electromagnetic field is).
Whatever k⃗ is, there are two independent electromagnetic waves differing in po-

larization directions, e⃗k⃗λ (λ = 1, 2). Therefore, the total number of electromagnetic
modes with wave vectors lying near a point with the radius vector k⃗ within the vol-
ume d3k⃗ (Figure 4.3) is given by:

dn = 2Vd3 k⃗(2π)3 . (4.25)



196 | 4 Quantum Coherent Optics: Interaction of Radiation with Matter

ky

kz

kx

dk

O

Fig. 4.4: Spherical shell capturing allowed wave vectors.

To calculate the number of the electromagnetic modes with wave vectors whose
lengths are ranged from k to (k + dk), we should assume that all such vectors are
within a thin spherical shell:

d3k⃗ = 4πk2dk . (4.26)

Here, 4πk2 is the area of the sphere and dk is the thickness of the spherical shell (Fig-
ure 4.4). Substituting formula (4.26) into (4.25), we obtain the number of electromag-
neticmodeswhose wave vectors fall within the range (k, k+dk), i.e., in the thin spher-
ical shell:

dn = 2Vd3 k⃗(2π)3 = 8πVk2dk(2π)3 . (4.27)

The number of modes with frequencies in the interval (ν, ν +dν) is our concern in
many ways. The wave number k and frequency 𝑣 are related as follows:

k = 2πν
c . (4.28)

After inserting (4.28) into (4.27), we can calculate the number of modes per unit vol-
ume of the cavity in the frequency interval (ν, ν + dν):

dn
V ≡ D (ν) dν = 8πν2dν

c3
. (4.29)

The quantity D(ν) is called the density of modes, or sometimes, the density of states or
the number of states per unit frequency interval.

The electromagnetic modes E⃗k⃗λ and H⃗k⃗λ (4.25) form a complete set. Therefore any
field inside the cavity can be represented as a superposition of the electromagnetic
modes E⃗k⃗λ and H⃗k⃗λ:

E⃗( ⃗r, t) = i ∑⃗
k,λ

e⃗k⃗λ√ ℎωk
2Vε0

{ak⃗λ(t) exp (ik⃗ ⋅ ⃗r) − c.c.} ,

H⃗( ⃗r, t) = i ∑⃗
k,λ

[n⃗k⃗ × e⃗k⃗λ]√ ℎωk
2Vμ0

{ak⃗λ(t) exp (ik⃗ ⋅ ⃗r) − c.c.} ,

(4.30)

where ak⃗λ(t) = ak⃗λ exp (−iωkt).
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Using the representation (4.30), we can compute the energy of electromagnetic
waves in the cavity:

W = 1
2 ∫

V

d3 ⃗r [ε0 E⃗2( ⃗r, t) + μ0H⃗2( ⃗r, t)] . (4.31)

After substituting the series (4.30) into (4.31), the integrand of formula (4.31) contains
terms of two types. The former are the products of the terms with wave vectors k⃗ ̸=∓k⃗󸀠. They include the multipliers exp[i(k⃗ ± k⃗󸀠) ⋅ ⃗r] vanishing when integrated over the
volume. A typical integral of this type has the form:

L∫
0

exp [2π
L

(n ± n󸀠) x]dx = 0 (4.32)

when n ± n󸀠 ̸= 0. The latter contains the products of the terms with wave vectors
k⃗ = ∓k⃗󸀠. The exponential factors drop out, so their integration over ⃗r yields the vol-
ume of the cavity. Note also that:

([n⃗k⃗ × e⃗k⃗λ] ⋅ [n⃗±k⃗ × e⃗±k⃗λ󸀠]) = ± (e⃗k⃗λ ⋅ e⃗±k⃗λ󸀠) . (4.33)

As a result, the electromagnetic field energy in the cavity can be expanded as follows:

W = ∑⃗
k,λ

ℎωka∗k⃗λ(t)a ⃗kλ(t) . (4.34)

Next, we proceed from the mode variables ak⃗λ and a∗
k⃗λ

to the real variables Qk⃗λ
and Pk⃗λ:

Qk⃗λ(t) = √ ℎ
2ωk

[a∗
k⃗λ
(t) + ak⃗λ(t)] . (4.35)

Pk⃗λ(t) = Q̇k⃗λ = −i√ℎωk
2 [ak⃗λ(t) − a∗

k⃗λ
(t)] . (4.36)

Using formulas (4.35) and (4.36), we represent the electromagnetic field energy (4.34)
in the form of Hamiltonian’s functions for a set of independent real harmonic oscilla-
tors:

W ≡ H = ∑⃗
k,λ

Hk⃗λ = ∑⃗
k,λ

1
2 [P2

k⃗λ
+ ω2

kQ
2
k⃗λ
] . (4.37)

The first of Hamilton’s equations has the form

Q̇k⃗λ = ∂H
∂Pk⃗λ

= Pk⃗λ (4.38)

and is consistent with the equality (4.36) that, thus, is a corollary of the equation
of motion. This is achieved by appropriately choosing the coefficients in (4.35),
and (4.36). The second Hamiltonian equation:

Ṗk⃗λ = − ∂H
∂Qk⃗λ

= −ωkQk⃗λ , (4.39)
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taking (4.38) into account, acquires the form:

Q̈k⃗λ + ω2
kQk⃗λ = 0 . (4.40)

Thus, the equations of the electromagnetic field in the cavity boil down to a set
of independent equations for harmonic oscillators. Eachmode of the electromagnetic
oscillation corresponds to an oscillator.

4.2 Quantization of a Free Electromagnetic Field

In the previous section, we have succeeded in representing the electromagnetic field
energy in a cavity as the sum of the energies of independent harmonic oscillators.
Therefore, the quantization of the electromagnetic fieldmaybe carried out in the same
way as in the quantummechanics course for a classical harmonic oscillator. For this,
we replace the dynamic variables Qk⃗λ and Pk⃗λ by the Hermitian operators:

Qk⃗λ → q̂k⃗λ , Pk⃗λ → p̂k⃗λ , (4.41)

that satisfy the commutation relations, typical for the operators of coordinates and
momenta:

[q̂k⃗λ , p̂k⃗󸀠λ󸀠] = iℎδk⃗k⃗󸀠δλλ󸀠 , [q̂k⃗λ , q̂k⃗󸀠λ󸀠] = [p̂k⃗λ , p̂k⃗󸀠λ󸀠] = 0 . (4.42)

As is the case for the harmonic oscillator, it is useful to introduce the annihilation âk⃗λ
and creation â+

k⃗λ
operators to quantize a free electromagnetic field:

â
k⃗λ
= (2ℎωk)− 12 (ωkq̂k⃗λ + ip̂k⃗λ) , â+

⃗kλ
= (2ℎωk)− 12 (ωkq̂k⃗λ − ip̂k⃗λ) . (4.43)

From formulas (4.43) we can express the q̂k⃗λ and p̂k⃗λ operators through âk⃗λ and â
+
k⃗λ
:

q̂
k⃗λ
= √ ℎ

2ωk
(â

k⃗λ
+ â+

k⃗λ
) , p̂k⃗λ = −i√ℎωk

2 (â
k⃗λ
− â+
⃗kλ
) . (4.44)

The operators âk⃗λ and â+
k⃗λ
are not Hermitian so they do not correspond to the values

observed, in contrast to q̂k⃗λ and p̂k⃗λ.
The commutation relations for the operators âk⃗λ and â

+
k⃗λ
are derived from the cor-

responding relations for q̂k⃗λ and p̂k⃗λ:[â
k⃗λ
, â

k⃗󸀠λ󸀠
] = [â+

k⃗λ
, â+

k⃗󸀠λ󸀠
] = 0 , [â

k⃗λ
, â+
⃗k󸀠 λ󸀠
] = δk⃗k⃗󸀠δλλ󸀠 . (4.45)

Substituting formula (4.44) into (4.37), we find the Hamiltonian operator describ-
ing the quantized electromagnetic field in the cavity:

Ĥ = ∑⃗
k,λ

Ĥ
k⃗λ
= ∑⃗

k,λ

1
2 (p̂2

k⃗λ
+ ωkq̂2k⃗λ) = ∑⃗

k,λ

ℎωk
2 (â+

k⃗λ
â ⃗kλ + â

k⃗λ
â+
⃗kλ
) =

= ∑⃗
kλ

ℎωk (â+⃗kλ âk⃗λ
+ 1
2) = ∑⃗

kλ

ℎωk (n̂k⃗λ
+ 1
2) .

(4.46)
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Here we have used the last of the commutation relations (4.45).
The Hermitian operator n̂k⃗λ = â+

k⃗λ
âk⃗λ has eigenvectors:󵄨󵄨󵄨󵄨{nk⃗λ}⟩ = 󵄨󵄨󵄨󵄨󵄨nk⃗1λ1⟩ 󵄨󵄨󵄨󵄨󵄨nk⃗2λ2⟩ . . . 󵄨󵄨󵄨󵄨󵄨nk⃗l λl⟩ . . . . (4.47)

These are constructed in the form of a direct product of the eigenvectors of the indi-
vidual harmonic oscillators and satisfy the equations:

n̂ ⃗kl λl
󵄨󵄨󵄨󵄨{nk⃗λ}⟩ = nk⃗l λl

󵄨󵄨󵄨󵄨{nk⃗λ}⟩ , (4.48)

where nk⃗λ = 0, 1, 2 . . . .
The operator n̂k⃗λ may be interpreted as an operator of the number of quantum

fluctuations of the electromagnetic field in the cavity. They are called photons. Let us
clarify the origin of the name. The states |{nk⃗λ}⟩ are eigenvectors of the Hamiltonian
operator

Ĥk⃗λ
󵄨󵄨󵄨󵄨{nk⃗λ}⟩ = En 󵄨󵄨󵄨󵄨{nk⃗λ}⟩ . (4.49)

They meet the energy spectrum of the electromagnetic field of the following form:

En = ∑⃗
k,λ

ℎωk [nk⃗λ + 1
2] . (4.50)

Therefore, it can be said that the cavity has nk⃗1λ1 quasiparticles (photons) with the
energy ℎωk1 of the first mode of the electromagnetic field fluctuations, nk⃗2λ2– of the
secondmode, nk⃗l λl– of the l-th, etc. On the one hand, each number nk⃗λ gives the num-
ber of photons, and on the other hand, it characterizes the degree of excitation of the
electromagnetic mode with the wave vector k⃗ and polarization λ.

When the states |{nk⃗λ}⟩ are orthonormal:

⟨nk⃗l λl 󵄨󵄨󵄨󵄨󵄨nk⃗mλm⟩ = δk⃗l k⃗m δλlλm ,

the following relations are fulfilled:

â+
⃗kl λl

󵄨󵄨󵄨󵄨󵄨. . . , nk⃗l λl , . . .⟩ = (nk⃗l λl + 1) 1
2 󵄨󵄨󵄨󵄨󵄨. . . , nk⃗l λl + 1, . . .⟩ ,

â
⃗kl λl

󵄨󵄨󵄨󵄨󵄨. . . , nk⃗l λl , . . .⟩ = (nk⃗l λl) 1
2 󵄨󵄨󵄨󵄨󵄨. . . , nk⃗l λl − 1, . . .⟩ .

(4.51)

The latter allow the âk⃗λ and â+
k⃗λ

operators to be called as creation and annihilation
operators of quasiparticles, photons.

Any state of the electromagnetic field in the cavity can be represented as a super-
position of the eigenstates |{nk⃗λ}⟩:
|Ψ⟩ = ∑

nk⃗1 λ1

∑
nk⃗2 λ2

. . . ∑
nk⃗l λl

. . . Cnk⃗1 λ1 ,nk⃗2 λ2 ,...,nk⃗l λl ,...
󵄨󵄨󵄨󵄨󵄨nk⃗1λ1 , nk⃗2λ2 , . . . , nk⃗l λl , . . .⟩ ≡

≡ ∑{nk⃗λ} C{nk⃗λ}
󵄨󵄨󵄨󵄨{nk⃗λ}⟩ . (4.52)
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It is obvious that many photons can be in one energy state. This means that the
photons are bosons. A more detailed analysis shows that the photon has spin of s = 1
(in units of ℎ). However, the projection of the photon spin on the direction of itsmotion
(on the direction of the vector k⃗) takes only two values: ±1 as the phonon has three
such projections: 0, ±1, with the transversality condition for electromagnetic waves
excluding the zero value of the projection of the photon spin.

In classical theory, the states of a photon with the projections ±1 on the direction
of its motion correspond to two circular polarized monochromatic electromagnetic
waves. Within the quantum theory, circular waves may also be quantized as we have
done the same with linear polarized waves. For each value of the wave vector k⃗, there
are only two independent waves with alternate circular polarizations.

Suppose that we are in a certain point of space and have a look from the end of
the vector k⃗ at the plane perpendicular to it. Then, in one case, the strength vector
of the electromagnetic field E⃗k⃗μ rotates clockwise without changing its length. In an-
other case, the vector rotates counterclockwise. These rotations correspond to the two
projections of the photon spin on the direction of the vector k⃗. They are called the pho-
ton helicity: μ = ±1. The value μ = −1 corresponds to rotation of the vector E⃗k⃗μ in a
clockwise direction, and the value μ = +1 – to counterclockwise rotation. Nowwewill
explain this in detail.

Like any other particle, a photon can have a certain angular momentum. The di-
vision of the angular momentum into orbital (associated with motion of a photon in
space) and spin (intrinsic angular momentum of a photon at rest) parts is, generally
speaking, physicallymeaningless. The speed of a photon is alwaysdifferent from zero.
Therefore there is no frame of reference where a photon would be at rest. Neverthe-
less, to facilitate calculations, it is useful to formally represent the ĵα components of
the angular momentum operator for a single photon as a sum of the “orbital” and
“spin” momentum operator components:

ĵα = l̂α + ŝα , (4.53)

where α = 1, 2, 3.
Formula (4.53) is not difficult to derive. For this, it is sufficient to remember that

a) a free photon is theoretically delineated in terms of only one vector potential A⃗( ⃗r, t),
b) the angular momentum operator for the photon coincides, up to a factor i, with the
infinitesimal transformation operator for the field A⃗( ⃗r, t) under spatial rotations of the
coordinate system. In any inertial reference system, a photon moves at the speed of
light. Therefore, there is always a preferred direction in space for it tomove, coinciding
with the direction of the wave vector k⃗. As such, the transformation laws for the vector
potential of the photon are easier to discuss in k-space. Since the fields A⃗( ⃗r) and A⃗(k⃗)
are connected through a Fourier integral:

A⃗( ⃗r) = ∫d3k⃗ A⃗(k⃗) exp (ik⃗ ⋅ ⃗r) ,
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the rotation of axes of the Cartesian coordinate system

⃗r → ⃗r󸀠 = DT (θ) ⃗r , DTD = DDT = I , detD = 1

is equivalent to rotation of the k–space:

k⃗ → k⃗󸀠 = D (θ) k⃗ .
Here, D is an orthogonal matrix for rotation. The symbol “T” denotes transposition.

Under an infinitesimal rotation of the k-space, the vector potential A⃗(k⃗) can be
transformed by the rule:

A⃗(k⃗) → A⃗󸀠 (k⃗ + δk⃗) = A⃗(k⃗) + [δθ⃗ × A⃗(k⃗)] , (4.54)

where δk⃗ is a change of k⃗ rotated by the angle δθ:

δk⃗ = [δθ⃗ × k⃗] . (4.55)

The vector δθ⃗ simultaneously defines both a rotation angle and an axis, around that
the k-space revolves. According to (4.54), the vector A⃗(k⃗) rotated by the angle |δθ⃗| is
transferred at the point with the radius vector (k⃗ + δk⃗).

Using (4.54) and (4.55), we can calculate the change of the vector potential at the
point with the radius vector k⃗:

δA⃗(k⃗) = A⃗󸀠(k⃗) − A⃗(k⃗) = A⃗ (k⃗ − δk⃗) + [δθ⃗ × A⃗(k⃗)] − A⃗(k⃗) =
= −δk⃗ ⋅ ∇⃗k⃗ A⃗(k⃗) + [δθ⃗ × A⃗(k⃗)] = − [δθ⃗ × k⃗] ⋅ ∇⃗k⃗⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

−(δθ⃗⋅[k⃗×∇⃗k⃗])

A⃗(k⃗) + [δθ⃗ × A⃗(k⃗)] ≡
≡ −iδθα [(̂lα + ŝα ) A⃗(k⃗)] ≡ −iδθα ĵαA⃗(k⃗) .

(4.56)

In what follows, the indices α (repeated here) mean summation.
In the long run, we have substantiated the representation (4.53) for the photon

angular momentum:
ĵα = l̂α + ŝα .

The operators:
l̂α = −i [k⃗ × ∇⃗k⃗]α , (4.57)

coincide with the components of the conventional quantum mechanical operator for
the orbital momentum of a particle in the momentum representation (in units of ℎ).

The operators ŝα may be treated as the photon spin operator components. The
action of the operator ŝα on the vector A⃗ is given by:

(ŝα A⃗)β ≡ (ŝα)βγ Aγ ≡ −iεαβγAγ , (4.58)

where α, β, γ = 1, 2, 3.
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In a more detailed component wise form, the l̂α and ŝα operators can be written
as:

l̂α = −iεαβγkβ ∂
∂kγ

, (ŝα)βγ = −iεαβγ .
It is easy to check that the l̂α and ŝα operators commutewith eachother, areHermi-

tian, and satisfy commutation relations, typical of the angular momentum operators:

[̂lα , l̂β] = iεαβγl̂γ , [ŝα , ŝβ ] = iεαβγŝγ .

In the formula
ĵα A⃗ = (̂lα + ŝα) A⃗ ,

the operator ŝα acts only on the vector index of the field A⃗(k⃗), transforming various
components of the vector A⃗ through each other and does not affect coordinates of the
vector k⃗. This is the formal basis for the introduction of the photon spin operator. The
operator l̂α, in contrast, acts on the vector field A⃗(k⃗) as on a function of k⃗.

Since the state of a photon is characterized by the three-dimensional vector A⃗, the
number of different functions transformed through each other (degeneracy multiplic-
ity) is: 2s + 1 = 3. Consequently, the photon corresponds to spin s = 1.

The peculiarity of the problem is that the vector potential A⃗(k⃗) obeys the gauge
condition:

div A⃗( ⃗r) = 0 or k⃗ ⋅ A⃗(k⃗) = 0 . (4.59)

The latter leads to further relationships between the components of the vector A⃗ and
does not allow one to distinguish the orbital angular momentum of the photon from
the spin one.

Consider the state of a photon with a certain wave vector k⃗ (with momentum ℎk⃗).
In such a situation, the parameters of the photon are not invariant with respect to
all transformations of the three-dimensional rotations group. Here, we can talk only
about the axial symmetry of the photon around the axis defined by the vector k⃗. In
particular, the state of a photon with a certain wave vector has no certain angular
momentum. This is because the k⃗ and ĵα operators do not commute with each other.
However, the photon may have a certain value of the angular momentum projection
on the direction of k⃗. Indeed, using (4.57), we have the following:

kα l̂α = 0 .

Then, from (4.53), we find:
kαĵα = kαŝα . (4.60)

Since the ̂⃗k and ŝα operators commute, then, according to (4.60), the k⃗, kα ĵα operators
observed commute as well. Thus, the equality (4.60) stands for coincidence of the an-
gular momentum and spin projections of the photon on its motion direction. Also it
means that they can be measured simultaneously with the photon wave vector.
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In virtue of the limitation of (4.59), only two components of the vector A⃗, lying in
a plane perpendicular to the vector k⃗, are transformed through themselves under the
action of the operators ŝα . Therefore, the spin projection of the photon on the direction
of itsmotionmayhave only two values μ = ±1; the value μ = 0 is impossible. It should
be noted that, in the above formalism, the photon states with the spin projections μ =±1 correspond to two types of the circular polarized electromagnetic wave matched
to the photon. As mentioned earlier, these states are called spiral and the quantity is
called μ-helicity. The main property of helicity is its invariance under space rotations,
and under Lorentz transformations that do not change the direction of the vector k⃗.
The helicity changes sign when spatially reflected.

4.3 Zero point Energy

To start with, we discuss the state of an electromagnetic field without photons:

nk⃗1λ1 = nk⃗2λ2 = . . . = 0 . (4.61)

Such a state is called a vacuum. The vacuum state corresponds to a ket-vector |0⟩,
satisfying the condition

âk⃗λ |0⟩ = 0 (4.62)

for any âk⃗λ.
The vacuum state has an amazing property: despite the absence of photons, its

total energy is not zero:

Ĥ |0⟩ = 1
2
∑⃗
k,λ

ℎωk |0⟩ ≡ ε0 |0⟩ . (4.63)

The quantity ε0 = ∑k⃗λ ℎωk/2 is referred to as the zero point energy. Its existence owes
to the uncertainty relations for the position and momentum of every harmonic oscil-
lator: ∆pk⃗λ∆qk⃗λ ∼ ℎ/2. Even in their ground state, systems undergo fluctuations of the
electromagnetic field, and they correspond to the energy of the oscillators:

∑⃗
k,λ

1
2 (∆p2

k⃗λ
+ ω2

k∆q
2
k⃗λ
)
min

≈ 1
2 ∑⃗

k,λ

(∆p2⃗kλ + ω2
kℎ2

4∆p2⃗kλ
)
min

= ε0 .

Since the energy of one quantum of the field is equal to ℎωk = hν, and the volume
V = 1m3 within the frequency ranges from ν to (ν + dν), have

D (ν) dν = 8πν2dν
c3

allowed field states, the total zero point energy per unit volume of a cavity can be
written in the form of an integral:

ε0 = 1
2

∞∫
0

hνD(ν)dν = 4πh
c3

∞∫
0

ν3dν = πh
c3

ν4
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∞

0
→ ∞ . (4.64)
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The integral (4.64) diverges because the permitted frequencies do not have the upper
limit (this is the difference between photons and phonons).

In quantum theory, the above difficulty canusually be avoided as follows. There is
no experiment where instruments would register a response proportional to the zero
point energy. In practice, the response is always proportional to a change in total en-
ergy of an electromagnetic field relative to the zero point energy:

E󸀠 = E − ε0 = ∑⃗
k,λ

ℎωknk⃗λ , (4.65)

and this value is finite. In other words, the difficulties can be overcome by counting
off the energy system from the zero point energy level. We will come across this as we
go along.

4.4 Amplitude and Phase Operators for Single-Mode Quantum
States of a Radiation Field

There is no reason to believe that the electromagnetic field of real light beams cor-
responds to any one of the quantum states |{nk⃗λ}⟩. Our immediate goal is to find a
superposition of the states |{nk⃗λ}⟩ that would correspond to an electromagnetic wave
of classical physics.

We restrict ourselves to considering a single mode of the electromagnetic field
with a wave vector k⃗. Suppose the mode had certain polarization λ. Taking the above
into account, we omit the indices k⃗, λ of all the variables that describe the mode and
write the field vectors E⃗, H⃗ as scalars.

In the classical theory of electromagnetic waves, the complex amplitude of the
wave a is represented as the product of its module and the phase factor:

a = |a| exp (iφ) . (4.66)

This is followed by proceeding to the real observed fields E and H.
Recall that the expressions for the electromagnetic field operators Ê and Ĥ for-

mally become classical after replacing: â → a, â+ → a∗. To comply with classical
physics, the amplitudeandphaseoperators shouldbe separated from the creationand
annihilation photon operators, i.e.,we should seek an analogue to operation (4.66). In
quantum theory, there is no exact way to carry out this procedure. Therefore, the de-
termination of the amplitude and phase quantum mechanical operators suffers from
a large degree of arbitrariness. The main reasons lie in the fact that the quantum me-
chanical amplitude and phase must have the same values in the corresponding limit,
as in classical physics. Also, theymust be related to Hermitian operators to be (at least
in principle) observed quantities.

As working formulas, we take the ratios:

â = √n̂ + 1 exp (iφ̂) , â+ = exp (−iφ̂)√n̂ + 1 . (4.67)
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Formula (4.67) implies that the Hermitian operator √n̂ + 1 is an amplitude operator.
It should be emphasized that the expressions exp(iφ̂) and exp(−iφ̂) do not possess
the properties of exponents of the operators iφ̂ and −iφ̂. They are designated so only
because of their modification into the phase factors of classical physics within the
appropriate limit.

According to (4.67), the ratios below are the definitions of the exp(iφ̂) and
exp(−iφ̂) operators:

exp (iφ̂) = (n̂ + 1)−1/2 â , exp (−iφ̂) = â+(n̂ + 1)−1/2 . (4.68)

Using formula (4.68), we can derive the properties of these operators from the known
properties of creation and annihilation operators. For example using the identity:

ââ+ = n̂ + 1 ,
following from the formulas:

[â, â+] = 1 , n̂ = â+ â ,

we find a relationship that confirms, at first sight, the validity of the designations
exp(iφ̂) and exp(−iφ̂):
exp (iφ̂) ⋅ exp (−iφ̂) = (n̂ + 1)−1/2 â ⋅ â+(n̂ + 1)−1/2 = (n̂ + 1)−1/2(n̂ + 1)(n̂ + 1)−1/2 = 1 .

At the same time, it is easy to check that:

exp (−iφ̂) ⋅ exp (iφ̂) ̸= 1 .

The formulas

n̂ |n⟩ = â+ â |n⟩ = n |n⟩ , â |n⟩ = n1/2 |n − 1⟩ , â+ |n⟩ = (n + 1)1/2 |n + 1⟩ (4.69)

allow one to easily calculate the actions of the operators exp(iφ̂) and exp(−iφ̂) on the
state |n⟩:

exp (iφ̂) |n⟩ = (n̂ + 1)−1/2(â |n⟩) = (n̂ + 1)−1/2 n1/2 |n − 1⟩ =
= n1/2(n̂ + 1)−1/2 |n − 1⟩ = {{{

|n − 1⟩ , n ̸= 0
0 , n = 0 ;

exp (−iφ̂) |n⟩ = â+ (n̂ + 1)−1/2 |n⟩ = (n + 1)−1/2(â+ |n⟩) == (n + 1)−1/2(n + 1)1/2 |n + 1⟩ = |n + 1⟩ .

(4.70)

As a result, only the following matrix elements of the operators exp(iφ̂) and
exp(−iφ̂) do not vanish:

⟨n − 1| exp (iφ̂) |n⟩ = 1 , ⟨n + 1| exp (−iφ̂) |n⟩ = 1 . (4.71)
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According to (4.71), these operators do not satisfy the relations of the type

⟨i| Q̂ |j⟩ = ⟨j| Q̂ |i⟩∗ . (4.72)

Therefore they are not Hermitian operators and do not depict the observed proper-
ties of the electromagnetic field. However, they can be used to build a new pair of the
operators:

cos φ̂ = {exp (iφ̂) + exp (−iφ̂)} /2 ,
sin φ̂ = {exp (iφ̂) − exp (−iφ̂)} /2i . (4.73)

The nonzero matrix elements of the operators (4.73) acquire the form:

⟨n − 1| cos φ̂ |n⟩ = ⟨n| cos φ̂ |n − 1⟩ = 1/2 ,⟨n − 1| sin φ̂ |n⟩ = − ⟨n| sin φ̂ |n − 1⟩ = 1/2i . (4.74)

Theymeet the condition (4.72). Thus, theoperators (4.73) prove tobeHermitian. There-
fore, they will be taken as quantum mechanical operators describing the observed
properties of the electromagnetic field phase.

Because [n̂, â+] = â+ , [n̂, â] = −â ,
the following commutation relation holds:

[n̂, exp (iφ̂)] ≡ [n̂, (n̂ + 1)−1/2 â] = (n̂ + 1)−1/2[n̂, â]⏟⏟⏟⏟⏟⏟⏟⏟⏟
−â

+ [n̂, (n̂ + 1)−1/2]⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
0

â =
= −(n̂ + 1)−1/2 â = − exp (iφ̂) .

Similarly we can argue that:

[n̂, exp (−iφ̂)] = exp (−iφ̂) .
Hence, in turn, we arrive at:

[n̂, cos φ̂] = −i sin φ̂ , [n̂, sin φ̂] = i cos φ̂ . (4.75)

The commutation relations (4.75) show that the particle number and phase oper-
ators do not commute with each other. Consequently, the radiation field states, being
simultaneously eigenstates of the operators, are impossible to find. Therefore, both
the amplitude of the electromagnetic wave associated with n̂ and the phase associ-
ated with cos φ̂ and sin φ̂ cannot be accurately computed.

The results of measurements of the amplitude and phase are subject to the uncer-
tainty relations that follow from (4.75):

∆n∆ cos φ ≥ 󵄨󵄨󵄨󵄨⟨sinφ⟩󵄨󵄨󵄨󵄨 /2 , ∆n∆ sin φ ≥ 󵄨󵄨󵄨󵄨⟨cosφ⟩󵄨󵄨󵄨󵄨 /2 . (4.76)

Inwhat follows, the symbols ⟨f⟩and ∆f stand for theaverageof theobservedquantity f
and its variance in the quantum mechanical state |α⟩:

⟨f ⟩ = ⟨α| f̂ 󵄨󵄨󵄨󵄨󵄨 α⟩⟨α|α⟩ , ∆f = √⟨f 2⟩ − ⟨f ⟩2 .
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Thus, the attempt to separate the amplitude and phase operators from the cre-
ation and annihilation photon operators leads to the phase and amplitude operators
not commuting among themselves. In doing so, the resulting uncertainty relations are
typical of a quantized electromagnetic field.

4.5 Coherent Photon States: Their Properties and Relationship
with Classical Electromagnetic Waves

Let us introduce the state vectors of a quantized radiation field to describe electro-
magnetic waves of classical physics in the limit of large amplitudes. These states, des-
ignated as |α⟩, are called coherent states of the radiation field. The coherent states|α⟩ are important, not only because they, of all the quantum states, most correctly de-
tail classical electromagnetic waves, but also because a laser discussed further below
generates coherent state radiation.

Neither the amplitude nor the phase of the electromagnetic wave in the coherent
state |α⟩ are precisely defined. However, both these quantities have the least mean
square deviations that correspond to the signs of equality in (4.76). In the mechanics
of microparticles, the analogous quantum state that most fully corresponds to a mass
point in classical physics is a wave packet.

Next, we proceed to discussing the properties of a set of the coherent states {|α⟩}.
We define each state as a linear superposition of the eigenstates {|n⟩} of the particle
number operator:

|α⟩ = exp{−|α|22 } ∞∑
n=0

αn√n! |n⟩ . (4.77)

Here, α is an arbitrary complex number.
It is easy to verify that the states {|α⟩} are normalized:

⟨α |α⟩ = exp (− |α|2) ∞∑
n=0

[(α∗α)n/n!]⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
exp(|α|2)

= 1 . (4.78)

At the same time, different coherent states |α⟩ and |β⟩ are nonorthogonal:
⟨α 󵄨󵄨󵄨󵄨β⟩ = exp{−|α|22 − 󵄨󵄨󵄨󵄨β󵄨󵄨󵄨󵄨2

2 } ∞∑
n=0

(α∗β)n
n! = exp(−|α|22 − 󵄨󵄨󵄨󵄨β󵄨󵄨󵄨󵄨2

2 + α∗β) .

This implies that 󵄨󵄨󵄨󵄨⟨α| β⟩󵄨󵄨󵄨󵄨2 = exp (− 󵄨󵄨󵄨󵄨α − β󵄨󵄨󵄨󵄨2) ̸= 0 . (4.79)

The complex number α is parameterized by two arbitrary real numbers. As a re-
sult, the coherent states {|α⟩} form a double continuum. Their number is much larger
than the number of the states {|n⟩}. Various states {|α⟩}make up an overfilled set. That
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is why they are not orthogonal. According to (4.79), different states |α⟩ and |β⟩ become
nearly orthogonal when the magnitude of |α − β| is much greater than unity.

It is important that the ket-vectors of |α⟩ are eigenvectors of the annihilation op-
erator:

â |α⟩ = exp (− |α|2 /2) ∞∑
n=0

αn√n!√n |n − 1⟩ = ↕n → n + 1 ↕=
= α exp (− |α|2 /2) ∞∑

n=0

αn√n! |n⟩ = α |α⟩ . (4.80)

By (4.80), the complex number α is an eigenvalue of the operator â. Note that the
ket-vector of |α⟩ is not an eigenvector of the creation operator because the expression
â+|α⟩ cannot be converted so as to obtain an expression of the form λ|α⟩.

At the same time, since:
â |α⟩ = α |α⟩ , (4.81)

we have: ⟨α| â+ = ⟨α| α∗ . (4.82)

In other words, the bra vector of ⟨α| is an eigenvector of the creation operator â+ with
its eigenvalue α∗.

An equivalent way of entering the coherent states is as follows. The relation (4.81)
is taken as the definition of a coherent state. Then the expansion (4.77) is a conse-
quence of the new definition.

Although the coherent states are not orthogonal, they can be used as basic func-
tions with the completeness relation:

1
π ∫d2α |α⟩ ⟨α| = ∞∑

n=0
|n⟩ ⟨n| = Î , (4.83)

where d2α = d(Reα)d(Imα). To prove the relations (4.83), we should express the com-
plex number α through the real amplitude |α| and phase θ:

α = |α| exp(iθ) , (4.84)

and use the identity:

∫d2α(α∗)nαm exp (− |α|2) = ∫d |α|⋅|α|m+n+1 exp (− |α|2) 2π∫
0

dθ exp[i(m−n)] = πn!δnm

(4.85)
Assume |f⟩ is a state of the electromagnetic field of the form:

| f ⟩ ≡ f (â+) | 0⟩ ,

where f(x) is any function that can be expanded in a Taylor series in powers of x. Let
us argue that the ket-vector of |f⟩ can be represented as a superposition of coherent
states.
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We have the chain of equalities:

|f ⟩ = Î |f ⟩ = 1
π ∫d2α |α⟩ ⟨α| f(â+) |0⟩ = ↕taking into account that ⟨α| â+ = ⟨α| α∗↕ =

= 1
π ∫d2α |α⟩ ⟨α| f(α∗) |0⟩ = 1

π ∫d2α |α⟩ f(α∗) ⟨α|0⟩⏟⏟⏟⏟⏟⏟⏟⏟⏟
exp(−|α|2/2) =

= 1
π |α⟩∫d2α ⋅ f(α∗) exp (− |α|2 /2) .

As can be seen, the arbitrary vector |f⟩ can be expanded by the vectors of {|α⟩}:
|f ⟩ = 1

π ∫d2αf(α∗) exp (− |α|2 /2) |α⟩ . (4.86)

We may reverse the expansion (4.86) and find the function f(α∗) in the known
vector of |f⟩. To be sure of this, it should be noted that:

π−1 ∫d2α exp [β∗α − |α|2] (α∗)n = (β∗)n ,
and so the identity is valid:

π−1 ∫ d2α exp [β∗α − |α|2] f(α∗) = f(β∗) . (4.87)

For arbitrary functions, f(x) is represented as a power series in the variable x.
The relations (4.86) and (4.87) easily result in:

⟨β|f⟩ = exp (− 󵄨󵄨󵄨󵄨β󵄨󵄨󵄨󵄨2 /2) f(β∗) ,
where ⟨β| is the vector of a coherent state.

Thus, there is a one-to-one correspondence between the vector of the state |f⟩ and
the functions f(a∗). The latter play the role of the expansion coefficients of the vector
of |f⟩ in the basis of the coherent states {|α⟩}.

The expansion of the operators of observed quantities in the coherent states is
brought about in a similar way, and it also turns out to be unambiguous.

Now, we calculate the average number of photons in the coherent state |α⟩.
⟨n⟩ ≡ ⟨α| n̂󵄨󵄨󵄨󵄨 α⟩ = exp (− |α|2) ∞∑

n=0

(α∗α)n
n! n = ↕n → n + 1↕ =

= exp (− |α|2) |α|2 ∞∑
n=0

(α∗α)n
n!⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

exp(|α|2)
= |α|2 . (4.88)

According to (4.88), the average number of photons ⟨n⟩ is greater with the larger |α|.
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Analogously, we find:

⟨n2⟩ ≡ ⟨α| n̂2 󵄨󵄨󵄨󵄨 α⟩ = exp (− |α|2) ∞∑
n=0

(α∗α)n
n!

n2 =
= exp (− |α|2) ∞∑

n=0

α2n

n! {n(n − 1) + n} = |α|4 + |α|2 . (4.89)

Using formulas (4.88) and (4.89), we compute the variance ∆n:

∆n = √⟨n2⟩ − ⟨n⟩2 = |α| . (4.90)

Hence, the relative uncertainty of the number of photons in the coherent state

∆n/ ⟨n⟩ = |α|−1 = ⟨n⟩−1/2 (4.91)

is much less than unity for |α| ≫ 1. The relative uncertainty of the number of photons
in the coherent state decreases with an increasing number of photons that form this
state.

It canbe illustrated that, with the average number of photons in the coherent state
being large, the following approximate equalities hold [13]:

⟨cosφ⟩ ≈ cos θ , ⟨sinφ⟩ ≈ sin θ ,

where |α| ≫ 1, α = |α| exp(iθ).
For a large average number of photons, the coherent state |α⟩ has a minimum

product of uncertainties allowed by quantummechanics:

∆n∆ cos φ = (sin θ)/2 , ∆n∆ sin φ = (cos θ)/2 . (4.92)

Compare formulas (4.76) and (4.92).
For |α| ≫ 1 the relative uncertainties of the number of photons and phase

∆n⟨n⟩ ≈ 1|α| , ∆ cosφ⟨cosφ⟩ ≈ tgθ
2 |α| (4.93)

are proportional to |α|−1 = ⟨n⟩−1/2. The increase in the average number of photons in
the coherent state enhances accuracy in determining the amplitude and phase of the
electromagnetic wave. The assertion made above can be more clearly evident if one
calculates the average value of the electric field strength in the coherent state:

⟨E⟩ ≡ ⟨α| Ê󵄨󵄨󵄨󵄨󵄨 α⟩ =
= i( ℎω

2ε0V
)1/2 {⟨α| â󵄨󵄨󵄨󵄨 α⟩ exp[−iωt + ik⃗ ⋅ ⃗r] − ⟨α| â+ |α⟩ exp[iωt − ik⃗ ⋅ ⃗r]} =

= i( ℎω
2ε0V

)1/2 {α exp[−iωt + ik⃗ ⋅ ⃗r] − α∗ exp[iωt − ik⃗ ⋅ ⃗r]} =
= −2( ℎω

2ε0V
)1/2 |α| sin (k⃗ ⋅ ⃗r − ωt + θ) . (4.94)
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In calculating this, we have taken into account that:

⟨α| â |α⟩ = ⟨α| (â |α⟩) = ⟨α| α| α⟩ = α
1⏞⏞⏞⏞⏞⏞⏞⏞⏞⟨α|α⟩ = α , ⟨α| â+ |α⟩ = ⟨α| â |α⟩∗ = α∗ .

According to (4.94), the average value of the electric field strength ⟨E⟩ in the coherent
state corresponds to a classical monochromatic traveling wave with the amplitude:

|E0| = 2( ℎω
2ε0V

)1/2 |α| ,
and the phase (θ + π):

⟨E⟩ = 2( ℎω
2ε0V

)1/2 |α| sin (k⃗ ⋅ ⃗r − ωt + θ + π) . (4.95)

Similarly, we calculate the average square of the electric field strength:

⟨E2⟩ = ℎω
2ε0V

{1 + 4 󵄨󵄨󵄨󵄨󵄨α2󵄨󵄨󵄨󵄨󵄨 sin2 (k⃗ ⋅ ⃗r − ωt + θ)} . (4.96)

As a result, the dispersion of the average value of the electric field strength is con-
stant:

∆E ≡ √⟨E2⟩ − ⟨E⟩2 = ( ℎω
2ε0V

)1/2 = const .

The relative uncertainty of the average value of the electric field strength ∆E/⟨E⟩
is proportional to |α|−1 and, therefore, it is small for: |α| = ⟨n⟩1/2 ≫ 1.

General Conclusions

1. In the coherent state, the amplitude and phase of the electromagnetic wave are
not exactly determined, but their uncertainties are finite, and the product of the
uncertainties is minimal.

2. The coherent state |α⟩ is a type of quantum mechanical state of the electromag-
netic field, directly related with a classical electromagnetic wave. Quantum me-
chanical uncertainty effects become unimportant when the average number of
photons in the coherent state is much greater than unity.

3. A laser running in the states, far exceeding a certain threshold value, generates
coherent state radiation with a very high average number of photons.

4.6 Equilibrium Thermal Radiation and Its Properties

Electromagnetic radiation is the only type of radiation that can be in equilibriumwith
matter. Equilibrium electromagnetic radiation can be observed in a closed cavity of
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volume V at a constant temperature T of the cavity walls. For thermal equilibrium to
be established in the radiation, even a small amount ofmatter in the cavity ormaterial
cavitywalls is essential. This is because photons are thought to benoninteractingwith
each other. In this case, the mechanism of establishing equilibrium between the radi-
ation and the wall substance is absorption and emission of photons (electromagnetic
waves) by atoms of the cavity walls. The substance of the walls and the electromag-
netic field inside the cavity exchange among themselves by photons in such away that
the dynamic equilibriumestablishes at a given temperature. Themount of electromag-
netic field energy that is absorbed by the walls returns back into the cavity due to the
reflection of previous photons or emissions of new photons by atoms of the matter.

It is possible for thermal radiation to exist at any temperature. All bodies above
absolute zero temperature emit thermal radiation.

The properties of equilibrium electromagnetic radiation are listed below:
1. uniformity (coordinate independent radiation)
2. isotropy (direction independent radiation)
3. nonpolarizability
4. radiation characteristics do not depend on the material the cavity walls are made

of, and are defined only by temperature

As far back as 1913, Lorenz showed that the failure of, at least, one of these properties
leads to the possibility of constructing a perpetualmotionmachine of the second kind.

Photons are bosons as particleswith integer spin. Consequently, the average num-
ber of thermally equilibrium photons with the energy ℎω = hν in an ideal gas is deter-
mined by the Bose–Einstein distribution:

f(ν) = 1
exp[(hν − μ)/kBT] − 1 , (4.97)

where μ is the chemical potential.
Here, it is worth noting the following circumstance. In some respects, photons are

called quasiparticles because they do not behave like normal particles. In particular,
the chemical potential μ of real particles is regulated by the condition of conservation
of the total number of particles in the system. In the case of electromagnetic radia-
tion, it makes no sense to talk about conservation of the total number of photons;
their number is not constant and may vary. When interacting with atoms of cavity
walls, photons appear and disappear. The closed radiation cavity of volume V and at
a given temperature T contains the average number of photons N driven by the laws
of thermodynamics. The condition of thermodynamic equilibrium corresponds to the
minimum free energy F of the electromagnetic field:

∂F
∂N

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨T,V=const = 0 .
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Fig. 4.5: The dependence of the Bose–Einstein photon distribution
on the parameter kBT/hν.

On the other hand, according to the laws of thermodynamics, the chemical potential
of photons is:

μ = ∂F
∂N

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨T,V=const .
Thus, the thermal equilibrium of photons meets the vanishing of the chemical poten-
tial μ. As for an ideal Bose gas of free particles, the chemical potential is not equal to
zero (μ ̸= 0).

Eventually, the Bose–Einstein distribution for the photon system takes the form
(Figure 4.5):

f(ν) = 1
exp(hν/kBT) − 1 . (4.98)

The unit volume of the electromagnetic field in the frequency range (ν, ν + dν)
comprises

D(ν)dν = 8πν2dν/c3 (4.99)

allowed states for photons.
Since f(ν) is the average number of photons with energy ε = hν at a given temper-

ature T, the total number of the photons per unit volume at the temperature T in the
frequency range of the electromagnetic radiation from ν to (ν + dν) can be calculated
as:

dN
V = f(ν)8πν2dν/c3 . (4.100)

To derive the relation (4.100), we have multiplied expression (4.98) by (4.99).
The total number of photons in the cavity can be obtained by integrating the rela-

tion (4.100) over all frequencies:

N
V = 8π

c3

∞∫
0

ν2dν
exp (hν/kBT) − 1 = ( kBTℎc )3 1

π2

∞∫
0

x2dx
exp(x) − 1⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
0.244

.

Thus, the total number of photons in the cavity of volume V is determined by the re-
lation:

N = 0.244V (kBT/ℏc)3 .
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If one multiplies the equality (4.100) by a single photon’s energy hν, we obtain the
energy of the thermal radiation per unit volume of the cavity in the frequency range(ν, ν + dν):

ρ(ν)dν = 8πhν3dν
c3 [exp (hν/kBT) − 1] . (4.101)

The function ρ(ν) is called the spectral density of the energy of thermal electromagnetic
radiation.

Suppose a small body be inside the cavity with equilibrium electromagnetic ra-
diation. This would not change the velocity of propagation of electromagnetic waves
outside the body. The body would reflect and absorb incident photons andwould also
radiate away new ones. All in all, the body comes into equilibriumwith the radiation.
Due to isotropy of thermal radiation, each element of the volume radiates away uni-
formly in all directions.

Fig. 4.6:Model of a black body.

Moreover, as an additional idealization, we assume that the body is absolutely black.
That is, it completely absorbs all the incident photons (Figure 4.6). Under dynamic
equilibrium conditions in the system, the black body must emit exactly the same
amount of photons as absorbed. Consider a small area dS in the surface of the black
body with the outer normal n⃗. We calculate the number of photons emitted by the
area back into the cavity in a direction that forms an angle θ with the normal for a
time dt. The emission of photons towards the cavity rather than inside the material is
our concern. Therefore, the angle θ ranges within 0 ≤ θ ≤ π/2.

Since the photons move outside the body at the speed c, they will find themselves
within the inclined cylinder depicted in Figure 4.7 in the time dt. The volume of the
cylinder is Vcyl = dSh = dScdt cos θ.

k

n

θ

c td

c td cosθh =

Sd

Fig. 4.7: Area dS in the surface of an absolute black body emitted
photons: n⃗ is the outer normal to the area, k⃗ is the wave vector of a
photon, θ is an angle between the vectors n⃗ and k⃗, h = cdt cos θ is
the high of the cylinder.
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Thedensity of thephotonswithin the frequency range (ν, ν+dν) is givenby (4.100).
Therefore, the area emits

dÑ = Vcyl
dN
V = dScdt cos θ [8πν2/c3] f(ν)dν

photons in the specified direction for the time dt.
The number of photons emitted per unit area of the body surface per unit time

along the direction corresponding to the angle θ is equal to:

dÑ
dtdS = cos θ[8πν2/c3]f(ν)dν . (4.102)

The energy radiated in this direction can be obtained by multiplying formula
(4.102) by the energy of one photon hν:

[8π/c3] cos θhν3 f(ν)dν . (4.103)

To calculate the energy radiated by the area in all directions, we should average
expression (4.103) over all possible values of the angle θ. For this we note that the
photon wave vector k⃗ corresponding to the angle θ lies within a narrow solid angle
dΩ = sin θdθdφ, where the angle φ controls the position of the projection of the pho-
ton wave vector k⃗ in the area dS (Figure 4.8). The angles θ and φ vary in the following
interval:

0 ≤ φ ≤ 2π, 0 ≤ θ ≤ π/2 .
The full solid angle that surrounds the area dS amounts to 4π. The probability of drop-
ping the photon wave vector into the angle dΩ is equal to dΩ/4π. Hence we can get an
average value of cos θ:

⟨cos θ⟩ = ∫ cos θdΩ4π = 1
4π

2π∫
0

dφ
π/2∫
0

cos θ sin θdθ = 1
4 . (4.104)

After averaging expression (4.103) over the possible values of the angle θ, we de-
rive the final formula for the energy emitted per unit area of a black body for 1 sec in
the frequency range (ν, ν + dν):

I(ν)dν = 2πhν3dν
c2 [exp(hν/kBT) − 1] . (4.105)

The function I(ν) is referred to as the spectral intensity of thermal radiation. Formula
(4.105) is the famous Planck formula.

Classical physics faced insurmountable difficulties in trying to theoretically ex-
plain the experimentally obtained curve of the spectral intensity of the thermal radia-
tion. The graph of the function I(ν) (Figure 4.9) highlights two features: I(ν) → 0when
ν → 0 and I(ν) → 0 when ν → ∞.
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Fig. 4.8: Photon wave vector k⃗ lies
within the solid angle dΩ.
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Fig. 4.9: Spectral intensity of thermal radiation I
as a function of the parameter hν/kBT .

The reason for I(ν) as ν → 0 declining is simple enough and can be understood
without resorting to quantum theory. The radiation wavelength and its frequency are
linked by the ratio λ = c/ν. When ν → 0, the length of the electromagnetic wave tends
to infinity (λ → ∞). So, radiation is hard to “push” into a volume which has a size
smaller than the wavelength. However, classical physics gave no explanations regard-
ing the experimental fact that I(ν) → 0 as ν → ∞. The theory imposed no restrictions
to radiation at high frequencies (short wavelengths) and resulted in a catastrophically
false outcome: I(ν) → ∞ as ν → ∞. This paradox was called the “ultraviolet catas-
trophe.”

According to quantum theory, the number of very high energy photons in radia-
tion at any given temperature is low (4.98). Ultimately, it is the reason that I(ν) → 0
as ν → ∞.

The frequency νmax, when the function I(ν) has amaximum, and temperature are
related as:

hνmax/kBT = 2.82 . (4.106)

Expression (4.106) is one of the ways of writingWien’s displacement law (1893).
The total energy radiated by a black body for 1 sec within the entire frequency

range can be estimated through the following integral:

I0 = ∞∫
0

I(ν)dν = 2π (kBT)4
c2h3

∞∫
0

x3dx
exp(x) − 1⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
π4/15

= π2k4B
60ℎ3c2 T4 ≡ σT4 . (4.107)

The quantity I0 is called the total intensity of emission of a black body. The proportion-
ality of I0 to the fourth power of temperature provides the Stefan–Boltzmann law for
radiation (1879).

The theoretically calculated value of the constant σ is equal to:

σ ≡ π2k4B
60ℎ3c2 = 5.67 ⋅ 10−5 erg

sm2 ⋅ sec ⋅ K4 ,

and in good agreement with experimental data.
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4.7 The Einstein Coefficients: Spontaneous and Induced Energy
Transitions of an Atomic System Under an Electromagnetic
Field

Speculating about the Planck formula, Einstein came to a curious conclusion. To do
so, he needed no formalism of quantum mechanics. Let us reproduce a logical se-
quence of his mental reasoning.

Assume that the cavity contains a gas consisting of identical atoms, with each
atom being in only two quantummechanical states with energies ε1 and ε2 (ε1 < ε2).
Imagine N1(N2) is the total number of the atoms per unit volume with energy ε1 (ε2).
In thermal equilibrium, the atoms are distributed over the energy levels ε1 and ε2, in
accordance with the Boltzmann formula:

N2
N1

= exp [− ε2 − ε1
kBT

] . (4.108)

If ε1 < ε2, then N1 > N2.
Simultaneously, in thermal equilibrium the total number of atoms transitioning

from the energy level two to level one for 1 sec must be equal to the number of atoms
traveling backwards (Figure 4.10).

ε

A Bρ(  )ν Bρ(  )ν

N1

N2

ε1

ε2

Fig. 4.10: Scheme of atomic energy levels and three ways to
change the state of an atom.

The aforementioned follows from the fact that, in equilibrium, the numbersN1 andN2
are unchangeable over time. The specified requirements donot contradict the inequal-
ity N1 > N2 only if the probability of down transition of an individual atom for 1 sec
(2 → 1) is greater than the probability of its up transition for 1 sec (1 → 2). Here-
inafter, for the sake of simplicity, the probability of the transition of an atom for 1 sec
will be called the transition rate.

Einstein guessed that the formulas for the atomic transition rates have the follow-
ing algebraic structure:

W2→1 = Bρ(ν) + A , W1→2 = Bρ(ν) . (4.109)

Such a form of writing, as expected, yields the transition rate from the second level to
the first one. It is found to be greater than the reverse transition rate by a positive con-
stantA. Fromaphysical point of view, Einstein revealed two types of energy transitions
of atoms: spontaneous and induced by an electromagnetic field.
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If an atom is in the excited state 2, even in the absence of an electromagnetic field
in the cavity, there is a finite probability A of its spontaneous transition for 1 sec to
the ground state 1. Vacuumfluctuations make the atom go from the excited state to its
ground state, emitting a photon with the energy hν = ε2 − ε1.

Electromagnetic thermal radiation with the spectral density ρ(ν) in the cavity, if
any, causes additional field induced atomic energy transitions; both downwards and
upwards. Moreover, according to Einstein, the transition rates are equal and propor-
tional to the field characteristic ρ(ν) with the proportionality coefficient B. Thus, the
field induced transition rates are the same, and equal to Bρ(ν).

At this point it is worth emphasizing that the Einstein coefficients A and B are
defined so that they do depend only on the properties of atomic states rather than the
function ρ(ν).

Let us try to reproduce the Planck formula using the relations (4.109). In thermal
equilibrium, the population of the levels N1 and N2 is constant. In this case, the up-
ward transition rate of all of N1 atoms N1W1→2 = N1Bρ(ν)must be equal to the down-
ward transition rate of all of N2 atoms: N2W2→1 = N2[A + Bρ(ν)]. Hence, we arrive at
the equality:

N1Bρ(ν) = N2[A + Bρ(ν)] . (4.110)

Since hν = ε2 − ε1, the relation (4.108) can be rewritten as:

N2
N1

= exp [− hν
kBT

] . (4.111)

Formulas (4.110) and (4.111) imply that:

ρ(ν) = A/B
exp(hν/kBT) − 1 . (4.112)

This result should be consistent with Planck’s formula (4.101) for the spectral density
of the thermal energy of electromagnetic radiation. Expressions (4.112) and (4.101) co-
incide at all temperatures T if the ratio of the Einstein coefficients A and B satisfies
the condition:

A
B = 8πhν3

c3
. (4.113)

The chain of Einstein’s reasoning is valuable because it discloses the existence of
two types of energy transitions in a photon system and atoms of matter. In thermal
equilibrium, these transitions are balanced, but what happens when the balance is
disturbed? To illustrate this, we consider a beam of electromagnetic waves passing
through the material inside the cavity. We discuss two possible cases.

1. Suppose all the atoms of matter are initially in their ground state. After pass-
ing a beamof electromagnetic waves through thematerial, a part of the induced atoms
rises up from the ground state to an excited one. Other induced transitions may help
these matter atoms go back to the ground state, and thereby return the energy quanta
to the electromagnetic wave. In addition, the atoms ofmatter maypass spontaneously
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from the excited state to the ground one. The spontaneous transitions have nothing to
do with the beamof the external electromagnetic waves. Therefore, the resulting pho-
tons are scattered in a randomdirection. As a consequence, the electromagnetic wave
beam leaves the cavity, losing a part of its energy. Such a situation is not abnormal;
the matter absorbs the electromagnetic wave energy. In truth, the chosen event name
is not very good, because the atoms of matter, in fact, dissipate the electromagnetic
wave energy rather than absorb it.

2. Let us present a more interesting case. Imagine a beam of electromagnetic ra-
diation is targeted in pre-excited matter atoms. We choose the frequency ν of the ex-
ternal electromagnetic radiation so that the condition hν = ε2 − ε1 should be fulfilled.
Then, even weak external radiation causes induced energy transitions of the matter
atoms. The atoms pass into the ground state and enrich the electromagnetic wave by
energy quanta hν = ε2 − ε1. Since the induced transition rate Bρ(ν) is proportional to
the electromagnetic field energy in the material, more andmore atoms of the material
will transfer their energy to the beam. As a result, the matter releases a powerful elec-
tromagnetic pulse, even if the input external radiation were initially weak. This was
the general idea of a laser that belonged to Einstein.

Here, it is worth pointing out that the Einstein coefficient A is easy to measure. Let
us look at doing it.

Suppose all the atoms of the substance to be initially excited (the state 2) in the
absence of an external electromagnetic field is (ρ(ν) = 0). Since the matter atoms can
only spontaneously transition from state 2 to state 1, the mean population of the ex-
cited atoms should decay according to the law:

dN2
dt = −N2A . (4.114)

The solution of the differential equation (4.114) appears as:

N2(t) = N2(0) exp(−t/tspont) , (4.115)

where tspont = 1/A; N2(0) is the mean population of the atoms at the initial time.
Thus, the Einstein coefficient A is equal to the inverse lifetime tspont of an excited

atom with respect to the spontaneous transition. Since each transition is accompa-
nied by spontaneous emission of a photon with the frequency ν = (ε2 − ε1)/h, the
change in the number N2 may be traced. Consequently, the coefficient A can be mea-
sured. The main idea of the method is to put a large number of atoms into the excited
state followed by determination of the time dependence of the spontaneous emission
intensity:

I(t) = constN2(t) . (4.116)
From formulas (4.115) and (4.116) we get:

ln I = −At + const . (4.117)

The coefficient A can be calculated from the angular coefficient of the linear depen-
dence of ln I on t: tgφ = A (Figure 4.11).
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Fig. 4.11: The dependence of the natural logarithm of the sponta-
neous emission intensity ln I on time.

4.8 Interaction Between a Quantized Electromagnetic Field and a
Two Level Atom – the Electric Dipole Approximation

To clarify the operating conditions for a quantum generator of radiation (laser), we
should be familiar with the foundations of quantum theory that describe the photon-
matter interaction.

Consider the model problem on the interaction of a quantized electromagnetic
fieldwith a single atom. For simplicity, the Hamiltonian Ĥatom is assumed to have only
two eigenvectors |i⟩ (i = 1, 2). The latter correspond with two quantum mechanical
states of the atom; the ground state with the energy ε1 and the excited state with the
energy ε2 (ε2 > ε1):

Ĥatom |i⟩ = εi |i⟩ (i = 1, 2) .
The state vectors of the atom are assumed to be orthonormalized: ⟨i|j⟩ = δij.

The use of the completeness condition for eigenvectors of the atom Hamiltonian

∑
i=1,2

|i⟩ ⟨i| = |1⟩ ⟨1| + |2⟩ ⟨2| = Î

leads to the identity:

Ĥatom = Î ⋅ Ĥatom ⋅ Î = ∑
i=1,2

|i⟩ ⟨i| Ĥatom ∑
j=1,2

|j⟩ ⟨j| = ∑
i,j=1,2

|i⟩ ⟨i| Ĥatom |j⟩⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
εiδij

⟨j| =
= ∑

i=1,2
εi |i⟩ ⟨i| .

Consider the action of the operator |i⟩⟨j| on a certain state |l⟩ of the atom. In virtue
of the orthonormality of eigenvectors we have:

| i⟩ ⟨j|l⟩ = | i⟩ δjl . (4.118)

Consequently, the application of the operator |i⟩⟨j| to the atom state |l⟩ gives the state|i⟩ providing that the initial state is |j⟩ and zero in all the rest of the cases. In other
words, the operator |i⟩⟨j| generates the state |i⟩ anddestroys the state |j⟩. By this ideol-
ogy, the operator |i⟩⟨j| is usually denoted similarly to creation and annihilation opera-
tors of photons. Let us designate the creation and annihilation operators of the atomic
state |i⟩as b̂+i and b̂i, and introduce themultiplicative combination b̂+i b̂j ≡ |i⟩⟨j|. Equa-
tion (4.118) can be written as:

|i⟩ ⟨j|l⟩ ≡ b̂+i b̂j |l⟩ = |i⟩ δji . (4.119)
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Note that the commutator of the bilinear combinations b̂+i b̂j gives the same oper-
ators. This is easily demonstrated by the chain of equalities:

[b̂+i b̂j , b̂+r b̂s] = |i⟩ ⟨j|r⟩ ⟨s| − |r⟩ ⟨s|i⟩ ⟨j| = |i⟩ δjr ⟨s| − |r⟩ δsi ⟨j| = b̂+i b̂sδjr − b̂+r b̂jδsi .

The atom-photon interaction in the visible spectrum gives birth to no new elec-
trons and does not annihilate the old ones. In this case, only the electron transition
from one state to another is possible. Emanating from the foregoing, any atomic oper-
ators can always be written in terms of combinations of b̂+i b̂j. In particular,

Ĥatom = ∑
i=1,2

εi |i⟩ ⟨i| = ∑
i=1,2

εi b̂+i b̂i = ∑
i=1,2

εi n̂i . (4.120)

According to (4.119), the eigenvalues of the operator n̂i = b̂+i b̂i = |i⟩⟨j| are equal to
0, 1. This provides a reason for treating the operator n̂i as the operator of the number of
quasiparticles (fermions).We are now at the stage where we can theoretically describe
the energy states of a system of isolated atoms in terms of an ideal fermion gas.

The transformation of the initial Hamiltonian to the form (4.120) is called second
quantization of a Hamiltonian. The name reflects the fact that, to obtain such a repre-
sentation, the usual procedure first needs to be carried out for determining the quan-
tum mechanical stationary states of the system and its energy levels. This procedure
can be regarded as first quantization of electronmotion in an atom. The second quan-
tizationwrites down theHamiltonian throughknown stationary states. Ultimately, the
quasiparticle creation and annihilation operators b̂+i b̂j appear.

The atom Hamiltonian in the form of the second quantization is suitable for cal-
culating the interaction of an atomwith any physical system, such as a radiation field.
Recall that the Hamiltonian of a radiation field has the following form:

Ĥrad = ∑
λ,k⃗

ℎωkâ+k⃗λ âk⃗λ . (4.121)

Here, we have omitted the zero point energy of vacuum fluctuations as the measure
level for the photon field energy.

So, the second quantization delineates both the photons and the atomic states in
terms of creation and annihilation operators of some quasiparticles. With the quasi-
particles being different, the groups of the operators {â+

k
󸀠
λ󸀠
, âk⃗λ} and {b̂+i , b̂j} commute

with each other.
The full Hamiltonian that describes the system, “an atom + radiation,” should be:

Ĥ = Ĥatom + Ĥrad + Ĥint .

Before writing down the atom-electromagnetic field interactionHamiltonian Ĥint,
we turn first to classical physics. Consider an atom consisting of a nucleus with a pos-
itive charge Z|e| surrounded by Z-electrons, each of which has a charge −|e|. Typical
values of the radii of atomic electron orbits are determined by the magnitude of the
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Bohr radius: aB = 4πε0ℎ2/(me2) ≈ 5⋅10−11m (in theSI system),wherem is themassof
an electron. If the frequency of the external electromagnetic wave incident on an atom
does not exceed 1018 Hz, its wavelength is much larger than aB. Therefore, the spatial
variation of the electric and magnetic fields within the atom can be neglected. Also,
the main interaction between the atomic electrons and electromagnetic radiation re-
duces to the electron-electric field radiation interaction. The impact of the magnetic
field of the wave on the electrons is weak enough. It amounts to O(𝑣/c) of the electric
field interaction, where 𝑣 is typical velocity of an electron in an atom and c is speed
of light. Thus, the influence of the magnetic field of the electromagnetic wave on the
atom in the main approximation can be ignored.

Here is a shortcut derivation of the expression for the atom-radiation interaction
energy within the electric dipole approximation. Suppose the atom’s nucleus, with
the charge Z|e|, be located at the origin of the Cartesian coordinate system and that
electrons have radius vectors ⃗ri (i = 1, 2, . . . , Z). According to the laws of electrostat-
ics, the potential energy of interaction between electrons and an external electric field
can be calculated as the work done by an external force acting to pull each of the Z
negative charge −|e| (originally located at the point of the nucleus) towards their ac-
tual positions along the radius vectors ⃗r (Figure 4.12). In the calculations, the Coulomb
interactions between the charges are, of course, left aside because only the potential
energy of the system of charges in the external field E⃗( ⃗r, t) needs to be determined:

Hint = Z∑
i=1

( ⃗ri ⋅ F⃗) = |e| Z∑
i=1

( ⃗ri ⋅ E⃗(0, t)) .

Note that here we have used Newton’s third law. For the i-th electron to move, the
external force F⃗ = |e|E⃗ is necessary to apply. This is because the force −|e|E⃗ of the
electromagnetic field alreadyacts on the electron. Calculating the energyHint , wehave
taken into account the fact that the electric field E⃗ weakly changes within the atom.
Therefore, the field can be thought of, with good accuracy, as being calculated at a
single point – at the point that corresponds to the radius vector ⃗r = 0 of the atomic
nucleus. The quantity P⃗ = −|e| ∑Z

i=1 ⃗ri is called the dipole moment of an atom. For
further analysis, we separate the coordinate dependence and write down the atom’s

O x

z

y

r1
r2

r3

r4

k
H0 cosωt

E0 cosωt

Fig. 4.12: The coordinate system used to describe an atom
and an electromagnetic wave.
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dipole moment in the form:

P⃗ = − |e| D⃗ , D⃗ = Z∑
i=1

⃗ri .
Thus, classical physics gives the following Hamiltonian of the interaction between an
atom and an electromagnetic field:

Hint = − (P⃗ ⋅ E⃗) ≡ |e| (D⃗ ⋅ E⃗) . (4.122)

Proceeding to quantum theory, we should replace the dynamic variables D⃗ and E⃗
by the operators ̂⃗D and ̂⃗E. In doing so, we express these operators in terms of the cre-
ation and annihilation operators {â+

k
󸀠
λ󸀠
, âk⃗λ} and {b̂+i , b̂j}. According to the results ob-

tained previously, we have the following for the electric field operator ̂⃗E:
̂⃗E(0, t) = i ∑⃗

k,λ

√ ℎωk
2ε0V

e⃗k⃗λ (âk⃗λ − â+
k⃗λ
) .

The summation runs over all the wave vectors by taking two possible polarizations of
each mode: λ = 1, 2.

By applying the completeness condition for the atomic states twice, we obtain the
following representation of the operator ̂⃗D:

̂⃗D = Î ⋅ ̂⃗D ⋅ Î = ∑
i=1,2

|i⟩ ⟨i| ̂⃗D ∑
j=1,2

|j⟩ ⟨j| = ∑
i,j=1,2

D⃗ij |i⟩ ⟨j| = ∑
i,j=1,2

D⃗ij b̂+i b̂j ,

where D⃗ij = ⟨i|̂⃗D|j⟩.
Note that the quantity D⃗ = ∑Z

i=1 ⃗ri changes its sign under spatial inversion (when
changing ⃗ri → − ⃗ri, where i = 1, 2, . . . , Z). Suppose each of the quantum states of the
atom possessed certain evenness. In other words, suppose it either changes its sign or
does not, under the inversion of all the electron coordinates, with the state evenness|1⟩ and |2⟩ being opposed. This would result in the equalities ⟨1|̂⃗D|1⟩ ≡ D⃗11 = 0,⟨2|̂⃗D|2⟩ ≡ D⃗22 = 0 being valid. In this case, the off diagonal matrix elements of the
operator ̂⃗D do not have to be necessarily zero:

⟨1| Z∑
k=1

⃗rk |2⟩ = ⟨2| Z∑
k=1

⃗rk |1⟩∗ =
= ∫ d3 ⃗r1d3 ⃗r2 . . . d3 ⃗rZΨ∗1( ⃗r1, ⃗r2, . . . ⃗rz) Z∑

k=1
⃗rkΨ2( ⃗r1, ⃗r2, . . . ⃗rz) =

= D12 = D∗21 .

Here, Ψi( ⃗r1, ⃗r2, . . . , ⃗rZ) = ⟨ ⃗r1, ⃗r2, . . . , ⃗rZ |i⟩ (i = 1, 2) are the wave functions of the
atomic states in the coordinate representation. The integration is performed over the
coordinates of all the electrons in the atom.
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Furthermore, to simplify the analysis, we input D⃗12 = D⃗21. This is true for the real
wave functions Ψ1, Ψ2, which imposes no limits on the generality of the discussion.

Once we have made the specified simplifications, the interaction operator for the
two level atom and the electromagnetic field takes the form:

Ĥint = i |e| ∑⃗
k,λ

√ ℎωk
2ε0V

(e⃗k⃗λ ⋅ D⃗12) (âk⃗λ − â+
k⃗λ
) (b̂+1 b̂2 + b̂+2 b̂1) . (4.123)

Eventually, we find the complete Hamiltonian of the “atom + radiation” system:

Ĥ = Ĥatom + Ĥrad + Ĥint ≡ Ĥ0 + Ĥint ,

where Ĥ0 = Ĥatom + Ĥrad is the Hamiltonian of an isolated atom and a free electromag-
netic field, respectively.

Comments

1. An alternative description of two level atom states can be effected by introduc-
ing an energyspin vector operator ̂⃗R (pseudospin). It is defined by three component
R̂1, R̂2, R̂3:

R̂1 = |2⟩ ⟨1| + |1⟩ ⟨2| , R̂2 = i (|2⟩ ⟨1| − |1⟩ ⟨2|) , R̂3 = |1⟩ ⟨1| − |2⟩ ⟨2| .
It is easy to verify that these operators satisfy the algebraic and commutation relations
characteristic of the angular momentum operator for spin 1/2:

[R̂s , R̂p] = 2iεspqR̂q , R̂21 = R̂22 = R̂23 = Î .

Here, εspq is the unit completely antisymmetric Levi–Civita pseudotensor and Î =|1⟩⟨1| + |2⟩⟨2| is the unit operator.
In terms of pseudospin, we have:

Ĥatom = ∑
i=1,2

εi |i⟩ ⟨i| = ε1 + ε2
2 Î + ε1 − ε2

2 R̂3 ,

Ĥint = |e| (D⃗12 ⋅ ̂⃗E) (|2⟩ ⟨1| + |1⟩ ⟨2|) = |e| (D⃗12 ⋅ ̂⃗E) R̂1 .
It follows that, from a mathematical point of view, the interaction of a two level atom
with a radiation field and the behavior of a particle with spin 1/2 in an external mag-
netic field can be described in an equivalent way. It should be emphasized that, in this
case, the physical meaning of the operator ̂⃗R is quite different. The vector operator ̂⃗R
acts in the energy space of the atom rather than in the ordinary coordinate space, or
in the space of spin states.
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2. When analyzed, the atom-electromagnetic field interactions can be set forth
in terms of classical physics, only when the resulting energy change of the system is
large, as compared with the energy of each emitted or absorbed photon. Providing
the amount of photons is huge at high intensities and low frequencies of the field, the
discrete nature of the energy exchange between the atom and the radiationmaybe left
aside. For example, a static electromagnetic field or a radiowave field can be outlined
as a given external classical field.

4.9 The Rates of Spontaneous and Induced Atomic Transitions
When Electromagnetic Waves Travel through a Medium as
Well as Under Thermal Radiation Conditions

Now we illustrate how the quantum interaction Hamiltonian can be applied by cal-
culating the rate of absorption and emission of photons by an atom that may make
transitions between the states |1⟩ and ⟨2|.

The Schrödinger equation that determines the vector states |χ⟩ of the “atom + ra-
diation” system has the form:

iℎ ∂
∂t |χ⟩ = (Ĥ0 + Ĥint) |χ⟩ . (4.124)

With no interaction between the atom and the electromagnetic field, the equation
(4.124) has the stationary states acting as the eigenvectors of the operator Ĥ0 = Ĥatom+
Ĥrad:

Ĥ0
󵄨󵄨󵄨󵄨i, n ⃗kλ⟩ = (εi + ℎωknk⃗λ) 󵄨󵄨󵄨󵄨i, nk⃗λ⟩ , 󵄨󵄨󵄨󵄨i, nk⃗λ⟩ = |i⟩ 󵄨󵄨󵄨󵄨nk⃗λ⟩ .

Since the state vectors are |i⟩ (i = 1, 2) and {|nk⃗λ⟩} for the isolated atom and the radi-
ation field, respectively, we have chosen orthonormalized

⟨i|j⟩ = δij , ⟨nk⃗,λ|nk⃗󸀠λ󸀠⟩ = δk⃗k⃗󸀠 ,λλ󸀠 ,

the vectors {|i, nk⃗λ⟩} also prove to be orthonormalized:

⟨i, nk⃗λ|j, nk⃗󸀠λ󸀠⟩ = δk⃗k⃗󸀠 ,λλ󸀠δij .

Furthermore, for simplicity, we confine ourselves to the consideration of the in-
teraction of the atom with only a single mode of the electromagnetic field. The quan-
tum numbers k⃗ and λ (the wave vector of the electromagnetic wave and its polariza-
tion) characterize this mode. Suppose nk⃗λ is a certain number of photons in the mode.
Moreover, suppose the electromagnetic wave frequency ν is close to the frequency(ε2−ε1)/h of the atomic transition between the two states. Such transitions play ama-
jor role in energy benefits. For the atom-electromagnetic wave interaction, there are
two ways of solving the equation (4.124), due to the energy closeness (hν ≈ ε2 − ε1).



226 | 4 Quantum Coherent Optics: Interaction of Radiation with Matter

Variant 1: |χ(t)⟩ = c1(t) 󵄨󵄨󵄨󵄨1, nk⃗λ⟩ + c2(t) 󵄨󵄨󵄨󵄨2, nk⃗λ − 1⟩ , (4.125)

where
c1(0) = 1, c2(0) = 0 .

The approximation (4.125) is suitable when the “atom + radiation” system, originally
(t = 0) in the state |1, nk⃗,λ⟩, undergoes an induced transition into the state |2, nk⃗,λ−1⟩
as t > 0. The superposition (4.125) contains ket-vectors of |1, nk⃗λ⟩ and |2, nk⃗λ −1⟩with
their weights ci(t) (i = 1, 2). They allow one to find the probability of detecting the
atom and the radiationmode in the appropriate quantum states.

Variant 2: |χ(t)⟩ = c1(t) 󵄨󵄨󵄨󵄨1, nk⃗λ + 1⟩ + c2(t) 󵄨󵄨󵄨󵄨2, nk⃗λ⟩ . (4.126)

The approximation (4.126) suggests the initial condition

c2(t = 0) = 1, c1(t = 0) = 0 .

Formula (4.126) is used when the atom is initially (t = 0) in the excited state |2⟩, and
the electromagnetic field contains nk⃗λ photons. Following on, the atompasses into the
ground state |1⟩ as t > 0, and the electromagnetic field acquires an additional photon.

The ket-vector |χ(t)⟩ is assumed to be normalized in both cases:

⟨χ(t)|χ(t)⟩ = |c2(t)|2 + |c1(t)|2 = 1 . (4.127)

Formula (4.127) has limitations for the functions ci(t). Further calculations make it
possible to trace these limitations.

As we describe the interaction of the atom with a single mode of the electromag-
netic field, the operator Ĥint has the form:

Ĥint = i |e| √ ℎωk
2ε0V

(D⃗12 ⋅ e⃗k⃗λ) (âk⃗λ − â+
k⃗λ
) (b̂+1 b̂2 + b̂+2 b̂1) ,

where ωk = kc does not depend on the parameter λ. For simplicity we denote:

ℎgk⃗ = |e| √ ℎωk
2ε0V

(D⃗12 ⋅ e⃗k⃗λ) .

Then we have:
Ĥint = iℎgk⃗ (âk⃗λ − â+

k⃗λ
) (b̂+1 b̂2 + b̂+2 b̂1) . (4.128)

Further analysis requires employing matrix elements of the operator Ĥint over the
states |i, nk⃗λ⟩. Among them we have only four nonzero elements:

⟨2, nk⃗λ − 1󵄨󵄨󵄨󵄨 Ĥint
󵄨󵄨󵄨󵄨1, nk⃗λ⟩ , ⟨1, nk⃗λ󵄨󵄨󵄨󵄨 Ĥint

󵄨󵄨󵄨󵄨2, nk⃗λ − 1⟩ ,⟨2, nk⃗λ󵄨󵄨󵄨󵄨 Ĥint
󵄨󵄨󵄨󵄨1, nk⃗λ + 1⟩ , ⟨1, nk⃗λ + 1󵄨󵄨󵄨󵄨 Ĥint

󵄨󵄨󵄨󵄨2, nk⃗λ⟩ .
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As an example, we calculate the first matrix element:

⟨2, nk⃗λ − 1󵄨󵄨󵄨󵄨 Ĥint
󵄨󵄨󵄨󵄨1, nk⃗λ⟩ = iℎgk⃗ ⟨2, nk⃗λ − 1󵄨󵄨󵄨󵄨 (âk⃗λ − â+

k⃗λ
) 󵄨󵄨󵄨󵄨2, nk⃗λ⟩ == iℎgk⃗ ⟨2, nk⃗λ − 1󵄨󵄨󵄨󵄨 âk⃗λ 󵄨󵄨󵄨󵄨2, nk⃗λ⟩ == iℎgk⃗√nk⃗λ ⟨2, nk⃗λ − 1|2, nk⃗λ − 1⟩ = iℎgk⃗√nk⃗λ . (4.129)

The values of the rest are easy to obtain in a similar way:

⟨2, nk⃗λ󵄨󵄨󵄨󵄨 Ĥint
󵄨󵄨󵄨󵄨1, nk⃗λ + 1⟩ = iℎgk⃗√nk⃗λ + 1 = − ⟨1, nk⃗λ + 1󵄨󵄨󵄨󵄨 Ĥint

󵄨󵄨󵄨󵄨2, nk⃗λ⟩ ,

⟨1, nk⃗λ󵄨󵄨󵄨󵄨 Ĥint
󵄨󵄨󵄨󵄨2, nk⃗λ − 1⟩ = −iℎgk⃗√nk⃗λ . (4.130)

Next, we consider four successively conceivable cases with met interactions be-
tween an atom in the ground or excited state and an electromagnetic wave or heat
radiation.

Interaction Between an Atom in the Ground State and an Electromagnetic Wave

Substituting the state vector (4.125) into the Schrödinger equation (4.124), we obtain:

iℎ ∂
∂t (c1(t) 󵄨󵄨󵄨󵄨1, nkλ⃗⟩ + c2(t) 󵄨󵄨󵄨󵄨2, nk⃗λ − 1⟩) = (Ĥ0 + Ĥint) (c1(t) 󵄨󵄨󵄨󵄨1, nk⃗λ⟩ +

+c2(t) 󵄨󵄨󵄨󵄨2, nk⃗λ − 1⟩) . (4.131)

Next we scalarly multiply the equation (4.131) by the bra vectors ⟨1, nk⃗λ| and⟨2, n⃗k⃗λ − 1|. The account of formulas (4.129) and (4.130) yields a set of differential
equations to define the functions ci(t):

iℎ ∂
∂t c1(t) = (ε1 + ℎωknk⃗λ)c1(t) − iℎgk⃗√nk⃗λc2(t) ,

iℎ ∂
∂t
c2(t) = [ε2 + ℎωk(n ⃗kλ − 1)] c2(t) + iℎgk⃗√nk⃗λc1(t) . (4.132)

It should be solved with the initial condition c1(0) = 1, c2(0) = 0.
The system (4.132) can be simplified by substituting:

c1(t) = exp{− iℎ [ε1 + ℎωknk⃗λ] t} s1(t), c2(t) = exp{− iℎ[ε2 + ℎωk(nk⃗λ − 1)]t} s2(t).
After that, it becomes:

∂
∂t
s1(t) = −gk⃗√nk⃗λ exp {−i (ω21 − ωk) t} s2(t) ,

∂
∂t s2(t) = gk⃗√nk⃗λ exp {i (ω21 − ωk) t} s1(t) , (4.133)

where ω21 = (ε2 − ε1)/ℎ. The initial condition for the new system coincides with the
former one:

s1(0) = 1 , s2(0) = 0 . (4.134)
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Using the first equation (4.133), we find the derivative ∂s2/∂t and plug it into the sec-
ond equation. This gives a closed equation for calculating s1(t):

∂2

∂t2
s1(t) + g2

k⃗
nkλ⃗s1(t) + iγ ∂

∂t s1(t) = 0 , (4.135)

where γ = ω21 − ωk. The solution of the equation (4.135) appears as:

s1(t) = a1 exp(k1t) + a2 exp(k2t) ,
where k1,2 = −(i/2)[γ ∓ β], β = √γ2 + 4g2

k⃗
nk⃗λ. We express the function s2(t) via s1(t)

from the first equation (4.133). The multiplicative constants a1 and a2 can be deter-
mined from the initial conditions (4.134):

a1 = 1
2 (1 + γ

β) , a2 = 1
2 (1 − γ

β) .

As a result, we arrive at the following formula:

s1(t) = exp(− iγ2 t) [cos βt2 + iγ
β
sin βt

2 ] ,

s2(t) = 2gk⃗√nk⃗λ
β

exp( iγ2 t) sin βt
2

.
(4.136)

By the means of formulas (4.136), we derive the probability of transitioning the
“atom + radiation” system from the state |1, nk⃗λ⟩ to the state |2, nk⃗λ − 1⟩:

|c2(t)|2 = |s2(t)|2 = 4g2
k⃗
nk⃗λ

β2
sin2 βt

2 = (1 − γ2

β2
) sin2 βt2 ,

as well as the reverse transition probability:

|c1(t)|2 = |s1(t)|2 = cos2 βt
2

+ γ2

β2
sin2 βt

2
.

The probability of finding the system in any of the states |1, nk⃗λ⟩ or |2, nk⃗λ − 1⟩
corresponds to a sure event and is equal to unity. This is in full accordance with the
normalization condition (4.127) of the functions ci(t).

A change of filling the atom’s levels as a result of its interaction with the electro-
magnetic wave is described by a periodic function of time:

|c1(t)|2 − |c2(t)|2 = β−2 [γ2 + 4g2
k⃗
nk⃗λ cos(βt)] , (4.137)

i.e., there are so called Rabi oscillations. When Rabi oscillations take place, an atom
under the influence of an electromagnetic wave makes periodic transitions between
the ground |1⟩ and excited |2⟩ states. In other words, the atom periodically absorbs
and emits photons with the energy hν = ε2 − ε1.
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It should be especially emphasized that the “oscillatory” behavior of the atom
(4.137) can be observed only under very special conditions. The fact is that the calcu-
lation that led to formula (4.137) is generally inconsistent. It is based on the assump-
tion that the interaction between an individual atom and the radiation field is never
interrupted, and is always described by the atom-single radiation mode interaction
Hamiltonian (4.128). Indeed, the atom interacts with all of the electromagnetic field
modes. Moreover, the radiation field is subject to the influence of the atom changing
itself. Even in a vacuum, an atom interacts with zero fluctuations of an electromag-
netic field. As a result, each of its energy level splits into a narrow band of width ∆ε0.
The latter is related to the lifetime τ0 of the excited atom by the uncertainty relation:

∆ε0 ⋅ τ0 ≥ ℎ .
The broadening of the spectral lines of atoms due to vacuum fluctuations is called the
natural broadening.

The quantummechanical reasonmentioned above is not the only reason why the
Rabi oscillations are interrupted. There are other, more serious reasons for that: ther-
malmotionof atomsand theirmutual collisions. TheRabi oscillations canbeobserved
only when the atompasses between the |1⟩ and |2⟩ statesmany times before interrupt-
ing its “oscillatory” behavior by the above processes (formulas (4.136) and (4.137) do
not take them into account). In what follows, we call a time τcoll, during which our
calculation is valid, the time between collisions of the atom.

Thus, the Rabi oscillations occur only in the collisionless regime, when the oscil-
lation frequency is much higher than the frequency of collisions:

β = √γ2 + 4g2
k⃗
nk⃗λ ≫ τ−1coll . (4.138)

A more precise formulation of the conditions necessary for the Rabi oscillations
to be observed requires estimating the parameter

4g2
k⃗
nk⃗λ = 2e2ωk

ε0Vℎ (D⃗12 ⋅ e⃗k⃗λ)2 nk⃗λ
in formula (4.138). Given that the mean square of the electric field amplitude of the
wave, as the number of photons is large, satisfies the relationship:

⟨n| Ê2 |n⟩ ≈ 2ℎωk
ε0V

nk⃗λ ,

and the matrix element |D⃗12| is of the order of the atomic Bohr radius aB, we get:
4g2

k⃗
nk⃗λ ∼ e2a2Bℎ−2 ⟨n| Ê2 |n⟩ . (4.139)

It follows that the inequality (4.138) is fulfilled at high intensities of the radiationfield:

|e|ℎ aB√⟨n| E2 |n⟩ ≫ τ−1coll . (4.140)
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With the advent of lasers emitting high intensity electromagnetic radiation with
large quantity ⟨n|Ê2|n⟩, it is currently possible to reveal the Rabi oscillations experi-
mentally in a laboratory.

At the same time, the vast majority of modern optoelectronics devices, including
laser resonators, use the collision regime. In this case, the difference in the atomic
energy levels (ε2 − ε1) is not precisely determined and so great that, in the formula for
the probability of transitioning the “atom + radiation” system from the state |1, nk⃗λ⟩
to the state |2, nk⃗λ − 1⟩, we can put:

β = √γ2 + 4g2
k⃗
nk⃗λ ≈ γ = ω21 − ωk .

As a result, it simplifies and becomes:

|c2(t)|2 = g2
k⃗
nk⃗λ

sin2[(ω21 − ωk)t/2][(ω21 − ωk)/2]2 , ω21 = ε2 − ε1ℎ . (4.141)

It should be stressed that formula (4.141) can be applicable only for periods of time
t less than the time between collisions: t < τcoll. Therefore, the Rabi oscillations are
never observed in reality.

When uncertainty in the atomic energy difference ε = (ε2 − ε1) is relatively large
and is not exactly known, the line shape function appears to be useful. For this, the
quantity g(ε)dε should be entered; it yields the probability of finding the value of ε in
the range between ε and ε + dε. Since the probability of finding ε in the entire energy
axis corresponds to a trustworthy event, we have:

+∞∫
−∞

g (ε) dε = 1 .

The use of the line shape function is no more than a good trick to mathematically
take into account the inaccuracy in the atomic energy difference. Rather than looking
into the atomic transitions from the rigorously defined state |1⟩ to the corresponding
allowed state |2⟩, we focus on atomic transitions into a group of states close in energy
value to the difference ε = ε2 − ε1. Mathematically, this reduces the integration of the
equality (4.141) over all the possible values of ε with the weight function g(ε):

⟨|c2(t)|2⟩ ≡ ∞∫
−∞

|c2(t)|2 g(ε)dε = 2πtg2⃗k nk⃗λ

∞∫
−∞

dεδ ( εℎ − ωk , t) g(ε) , (4.142)

where
δ(ω, t) = 1

2π
sin2(ωt/2)
ω2t/4 . (4.143)

Figure 4.13 represents the plots of the functions δ(ε/ℎ − ωk , t) and g(ε).
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Fig. 4.13: Plots of the functions δ(ε/ℎ − ωk , t) (a dashed line) and g(ε) (a solid line).

As canbe seen from the figure above, both of themhave a dome shape, but the “width”
∆ε of the function g(ε) ismuch larger than the “width” h/t of the function δ(ε/ℎ−ωk , t)
over periods of the real times t ∼ τcoll:

h/t ≪ ∆ε . (4.144)

This circumstance makes it possible to approximately evaluate the integral in (4.142).
Putting forward the argument that the function g(ε) is a smooth function, we ex-

pand it into a Taylor series near the maximum of the “acute” function δ(ε/ℎ − ωk , t):
g(ε) = g(ℎωk) + (ε − ℎωk) dg(ε)dε

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨ε=ℎωk

+ ⋅ ⋅ ⋅ .
Given that:

∞∫
−∞

δ ( εℎ − ωk , t) dε = ℎ
π

∞∫
−∞

sin2 ξ
ξ2

dξ⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
π

= ℎ , (4.145)

and confining ourselves to the first term of the expansion, we come to the formula:

⟨|c2(t)|2⟩ = 2πtℎg2⃗k nk⃗λg(ℎωk) . (4.146)

As a result, we have a linear time dependence that holds true only for times t satisfying
the limitation: ⟨|c2(t)|2⟩ ≪ 1 , (4.147)

because |c1(t)|2 ≈ 1 and |c2(t)|2 + |c1(t)|2 = 1.
Finally, in perturbation theory, the applicability conditions of calculations in the

collisional regime offer the top and bottom limitations for the time t:

2πℎg2
k⃗
nk⃗λg(ℎωk) ≪ 1/t ≪ ∆ε/h . (4.148)
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Utilizing the estimate (4.139) for the parameter gk⃗ and taking into account that
g(ℎωk) ∼ 1/∆ε, we transform the inequality (4.148):

πe2 ⟨n| Ê2 |n⟩ aB/(2ℎ∆ε) ≪ 1/t ≪ ∆ε/h .
Here, we have replaced the function g(ε) by a rectangular step of the width ∆ε and
height of 1/∆ε. From the foregoing, we can reach the conclusion that the above calcu-
lation is valid for relatively low intensities of the radiation field.

Interestingly, formula (4.146) for the transition probability is often derived by
passing to the limit t → ∞ in (4.142). In doing so, the function δ(ε/ℎ−ωk , t), having a
narrow and very high maximum (see Figure 4.13), becomes the Dirac delta function:

lim
t→∞

δ ( εℎ − ωk , t) = δ ( εℎ − ωk) . (4.149)

Due to the delta function, the integral in the right-hand side of (4.142) can be easily
calculated over the variable ε. This results in the valid expression (4.146) for the tran-
sition probability.

Attention should be drawn to the fact that the limit t → ∞ is impossible to go over
to in this problem because all of the formulas hold true only for the periods of time
0 < t < τcoll. Replacing the function of classical mathematical analysis by the gener-
alized function (4.149) is but a formal subterfuge for easy calculations. Themore accu-
rate calculations conducted above may serve as its justification. The formal approach
for calculating integrals of the type (4.142) is based on two comments:
1. The “width” of the function g(ε) is greater than the “width” of the function δ(ε/ℎ−

ωk , t).
2. The area beneath the graph of the “acute” function δ(ε/ℎ−ωk , t) is time indepen-

dent.

All the problems discussed below meet these conditions. Therefore, to simplify the
calculations, we resort to the formal approach.

Next, the probability of passing the “atom + radiation” system from the state|1, nk⃗λ⟩ to the state |2, nk⃗λ − 1⟩ per unit of time is our concern. The probability itself
of such a transition should be left aside:

d
dt ⟨|c2(t)|2⟩ = ⟨|c2(t)|2⟩

t = 2πℎg2
k⃗
nk⃗λg(ℎωk) = πe2ωk

ε0V
nk⃗λg(ℎωk) (D⃗12 ⋅ e⃗k⃗λ)2 .

(4.150)
The transition rate (4.150), fortunately, does not depend on time, so its calculation by
perturbation theory gives good results.

To complete the calculation,we average the transition rate found (4.150) over ran-
domorientations of the atoms. Suppose the dipolemoment vector D⃗12 of the atom lies
within the solid angle dΩ = sin θdθdφ, where θ is an angle between the vector D⃗12
and the unit vector of polarization of the electromagnetic wave e⃗k⃗λ. The angle φ de-
fines the position of the projection of the vector D⃗12 in a plane perpendicular to the
vector e⃗k⃗λ (Figure 4.14.).
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Fig. 4.14: The vector D⃗12 in a spherical coordinate system.

Since the total solid angle is equal to 4π, the average value of cos2 θ for all the
equiprobable orientations of the vector D⃗12 is given by the formula:

⟨cos2 θ⟩ = 1
4π

2π∫
0

dφ
π∫
0

cos2 θ sin θdθ = 1
3
.

Therefore, averaged over the orientations of the vector D⃗12, the transition rate of the
atomundergoing single photon absorption from the beam containing nk⃗λ photons has
the form:

W1→2 = πe2ωk
ε0V

󵄨󵄨󵄨󵄨󵄨D⃗12
󵄨󵄨󵄨󵄨󵄨2 ⟨cos2 θ⟩ nk⃗λg(ℎωk) = πe2ωk

3ε0V
󵄨󵄨󵄨󵄨󵄨D⃗12

󵄨󵄨󵄨󵄨󵄨2 nk⃗λg(ℎωk) . (4.151)

We have come to the result (4.151) for the beam of photons, whose initial state is|1, nk⃗λ⟩. In this state, the number of photons are accurately defined. In fact, it can be
shown that the outcome in the general quantum mechanical state is the same for the
photon beam. However, it should be understood that, in this case, the quantity nk⃗λ
means the average number of photons.

In particular, when the number of photons are large, the result holds also for co-
herent states, which correspond to an electromagnetic wave of classical physics. For
the coherent states, the above formulamaybe rewritten in terms ofMaxwell’s classical
theory. Moreover, it can be generalized to the case of propagating the electromagnetic
wave through a medium containing a lot of atoms in the ground state.

The quantity ℎnk⃗λωk/V in Maxwell’s theory corresponds to the average energy of
an electromagnetic wave per unit volume of the medium. Multiplied by the speed of
light c̃ in a medium, the energy yields radiation intensity I, i.e., the average flow of
energy through a unit area perpendicular to the direction of wave propagation:

I = ℎωknk⃗λ c̃/V .

In isotropic media for relatively weak electromagnetic fields, slowly varying in
space and time, the simplest constitutive equations are valid:

D⃗ = ε0εE⃗ , B⃗ = μ0μH⃗ ,

where ε, μ = const are the relative dielectric and magnetic permitivities of a medium,
respectively. Then, the speed of light in a medium is determined by the formula:



234 | 4 Quantum Coherent Optics: Interaction of Radiation with Matter

ε

ε1

ε2

W induced

1→2

hν

(a) (b)

ε

ε1

ε2

hν
W spont

2→1W induced
2→1

Fig. 4.15: Transition of an atom from a ground state to an excited state, induced by an electromag-
netic wave field (a); induced and spontaneous transition of an atom from an excited state to a
ground one (b).

c̃ = c/√εμ, where c = (ε0μ0)−1/2 is the speed of light in a vacuum. The quantity
n = √εμ is called the refractive index of a medium. For nonmagnetic media discussed
below: μ = 1, n = √ε > 1.

Apart from the foregoing, to take the influence of a medium into account, we
should replace the fundamental constant ε0 in a vacuum by the dielectric constant
ε0ε of a medium in formula (4.151) for the transition rateW1→2.

Finally, the transition rate of one of the atoms of themedium from the ground state
to an excited one, due to its interaction with the electromagnetic wave propagating
through the medium, takes the form (see Figure 4.15 (a).):

W1→2 = πe2 󵄨󵄨󵄨󵄨󵄨D⃗12
󵄨󵄨󵄨󵄨󵄨2

3ε0εℎc̃ Ig(ℎωk) . (4.152)

Wewill further discuss in detail the classical theory of electromagneticwave prop-
agation in a medium, and show how to generalize the above formulas to the case of
temporal dispersion of the medium, which plays an important role in lasers.

Interaction of an Atom in the Ground State with Thermal Radiation

Recall that Einstein postulated the following formulas for the probabilities of transi-
tions per atom balanced by thermal radiation per second:

W2→1 = Bρ (ν) + A , W1→2 = Bρ (ν) .
Let us look into a two level atom interacting with all modes of a quasicontinuous

spectrum of the thermal radiation, and find an expression for the Einstein coefficient
B. For this purpose, we should return to the original formula (4.141) for the probability
of passing an atom from the state |1⟩ to the state |2⟩. For further analysis, this equality
can be conveniently written in the form:

|c2(t)|2
t = πe2ωknk⃗λ

ε0Vℎ (D⃗12 ⋅ e⃗k⃗λ)2 δ ( ε2 − ε1ℎ − ωk , t) . (4.153)

To obtain the desired result, we do the following:
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– As before, we average the quantity (D⃗12 ⋅ e⃗k⃗λ)2 over various positions of the vec-
tor D⃗12, with respect to the polarization vector e⃗k⃗λ of a single radiationmode. This
leads to the substitution:

(D⃗12 ⋅ e⃗k⃗λ)2 →
󵄨󵄨󵄨󵄨󵄨D⃗12

󵄨󵄨󵄨󵄨󵄨2
3 .

– Recall that ρ(ν)dν is the thermal radiation energy per unit volume for the fre-
quency range of (ν, ν + dν). Suppose V is the volume of the cavity with thermal
radiation, and that the cavity concentrates the radiation energy Vρ(ν)dν within
the above frequency interval. Because the atom at hand interacts with all modes
of the thermal radiation, formula (4.153) needs to bemodified by the replacement:
ωk → 2πν, ℎωknk⃗λ⃗ → Vρ(ν)dν. Next, we integrate the result over all possible fre-
quencies from 0 to∞. Finally, the formula for the transition rate of the atom from
the state |1⟩ to the state |2⟩ acquires the appearance:

W1→2 = |c2(t)|2
t

= πe2

3ε0ℎ2 󵄨󵄨󵄨󵄨󵄨D⃗12
󵄨󵄨󵄨󵄨󵄨2
∞∫
0

dνρ(ν)δ [ ε2 − ε1ℎ − 2πν, t] . (4.154)

– For the integral to be calculated, we formally approximate the quantity
δ[(ε2 − ε1)/ℎ − 2πν, t] with the Dirac delta function that is time independent:

δ [ ε2 − ε1ℎ − 2πν, t] = 1
2π δ (ν − ε2 − ε1

h ) . (4.155)

The justification of such a procedure is still the same. However, it is not worth for-
getting that the delta function is an even function and satisfies the identity δ(ax) =
δ(x)/|a|. After replacing (4.155), the integral canbeeasily computed, andweultimately
arrive at:

W1→2 = e2 󵄨󵄨󵄨󵄨󵄨D⃗12
󵄨󵄨󵄨󵄨󵄨2

6ε0ℎ2 ρ(ν) . (4.156)

where ν = (ε2 − ε1)/h.
Themultiplier on the right-hand side of (4.156), before the spectral density of ther-

mal radiation ρ(ν), is the Einstein coefficient required. The latter governs the induced
atom’s transition from the ground state to the excited state:

B = e2 󵄨󵄨󵄨󵄨󵄨D⃗12
󵄨󵄨󵄨󵄨󵄨2

6ℎ2ε0 . (4.157)

Interaction of an Atom in an Excited State with an Electromagnetic Wave

Within this section we regard energy transitions of an atom from an excited state to a
ground one as a result of its interactionwith a single electromagneticmode containing
nk⃗λ photons.
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Substitute the approximation (4.126) into the Schrödinger equation (4.124):

iℎ ∂
∂t (c1(t) 󵄨󵄨󵄨󵄨1, nk⃗λ⃗ + 1⟩ + c2(t) 󵄨󵄨󵄨󵄨2, nk⃗λ⃗⟩) =

= (Ĥ0 + Ĥint) (c1(t) 󵄨󵄨󵄨󵄨1, nk⃗λ + 1⟩ + c2(t) 󵄨󵄨󵄨󵄨2, nk⃗λ⟩) . (4.158)

Next, we can scalarly multiply (4.158) by ⟨2, nk⃗λ⃗| and ⟨1, nk⃗λ⃗ + 1|. Using formulas
(4.125), (4.126) and (4.127), we can obtain a set of differential equations to calculate
the functions c1,2(t):

iℎ ∂
∂t c2(t) = (ε2 + ℎωknk⃗λ)c2(t) + iℎgk⃗√nk⃗λ + 1c1(t) ,

iℎ ∂
∂t
c1(t) = [ε1 + ℎωk(n ⃗kλ + 1)] c1(t) − iℎgk⃗√nk⃗λ + 1c2(t) ,

(4.159)

This set of differential equationsneeds tobe solvedwith the initial condition: c2(0)=1,
c1(0) = 0.

It is easy to see that the set (4.159) and, as a consequence, its solution can be de-
duced from the system (4.132) by the formal change:

c2(t) → c1(t) , c1(t) → c2(t) , ε1 + ℎωknk⃗λ → ε2 + ℎωknk⃗λ ,

ε2 + ℎωk (nk⃗λ − 1) → ε1 + ℎωk (nk⃗λ + 1) , gk⃗√nk⃗λ → −gk⃗√nk⃗λ + 1 .
Therefore, the formula for the probability of transition of an atom froman excited state
to a ground one should be:

|c1(t)|2 = 4g2
k⃗
(nk⃗λ + 1)β−2 sin2 βt

2 ≈ 2πtg2⃗k (n ⃗kλ + 1)δ ( ε2 − ε1ℎ − ωk , t) . (4.160)

The newmultiplier (nk⃗λ +1) in equation (4.160) appears instead of the former one nk⃗λ
due to the noncommutative operators â+

k⃗λ
, âk⃗λ. When the electromagnetic field is not

quantized, there is no additional unity.
Themodifier (nk⃗λ +1) allows two terms in the expression for the probability of the

atom’s transition from the excited state to the ground one. The term linear in nk⃗λ cor-
responds to the induced atomic transitions. The calculation for the induced transition
rateW induced

2→1 is the same as for the rateW induced
1→2 (see the previous section). Thus, we

haveW induced
2→1 = W induced

1→2 .
Instead of the atom’s interaction with a single electromagnetic mode, we are in-

terested in what happens in the event of interaction between the atom and thermal
radiation. The resulting interaction confirms Einstein’s hypothesis that the rate of ra-
diation induced thermal transitions of the atom from the ground state to the excited
state can be identically written as the rate of the reverse induced transitions of the
atom.

However, let us return to the atom-electromagnetic wave interaction. Interest-
ingly, a photon born with the induced radiation has exactly the same values of
frequency, the wave vector, and polarization as the photons before the radiation.
Moreover, the new photon correlates in phase with the wave photons. This fact is
important because it opens up the possibility, in principle, of generating powerful
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electromagnetic pulses with identical polarization andwave vectors of the photons in
the pulse. For this, it suffices to pass aweak linearly polarizedwavewith the frequency
ν = (ε2 − ε1)/h through themediumwhose atoms are in the excited state |2⟩. When af-
fected by the wave, all of the medium atomsmove into the state |1⟩ like an avalanche.
The photons of the same energy, polarization, and direction of propagation enrich the
initial pulse.

Being independent of the number of photons n ⃗kλ, the summand in formula (4.160)
corresponds to spontaneous emission. Such transitions take place even in the absence
of any external radiation. They are initiated by the interaction between the atom and
zero point electromagnetic vacuum fluctuations. Only the quantum theory can de-
scribe the spontaneous emission. A photon spontaneously emitted can have any ori-
entation of itswave vector, arbitrary polarization, and a randomphase. In this respect,
it differs significantly from stimulated emitted photons.

Calculation of the Einstein Coefficient A

To start with, we assume that there are no photons in the cavity. Next, we calculate the
Einstein coefficient A that determines the probability of a spontaneous transition of
an atom per second from an excited state to its ground state. Since we have an interest
in the transitions set forth above, we put nk⃗λ = 0 in (4.160) and rewrite the formula in
a form suitable for further analysis:|c1(t)|2

t
= πe2ωk

ε0Vℎ (D⃗12 ⋅ e⃗k⃗λ)2 δ ( ε2 − ε1ℎ − ωk , t) . (4.161)

In the cavity, electromagnetic modes, as a result of the spontaneous emission of
the atom, can occupy only permitted energy states. Their number for the modes with
frequencies in the interval (ν, ν + dν) is evaluated by the formula:

VD(ν)dν = 8πν2

c3
Vdν , (4.162)

where V is the volume of the cavity. To compute the spontaneous transition rate
Wspont

2→1 , formula (4.161) should be updated as follows:
1. Asmentioned earlier, it first needs to average the quantity (D⃗12 ⋅ e⃗k⃗λ)2 over various

orientations of the vector D⃗12 relative to the polarization vector e⃗k⃗λ of a single
radiationmode. This yields the substitution:

(D⃗12 ⋅ e⃗k⃗λ)2 →
󵄨󵄨󵄨󵄨󵄨D⃗2

12
󵄨󵄨󵄨󵄨󵄨

3 .

2. Formula (4.161) should be multiplied by the number of allowed photon states
(4.162) contained in the frequency range (ν, ν +dν), and the result should be inte-
grated over the frequencies between 0 and∞. Then, we arrive at the spontaneous
transition rate:

Wspont
2→1 = ⟨|c1(t)|2⟩

t = 16π3e2

3ε0ℎc3 󵄨󵄨󵄨󵄨󵄨D⃗12
󵄨󵄨󵄨󵄨󵄨2
∞∫
0

dν ν3δ [ ε2 − ε1ℎ − 2πν, t] .
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3. To calculate the above integral, we formally approximate the quantity
δ[(ε2 − ε1)/ℎ − 2πν, t] by the time independent delta function:

δ [ ε2 − ε1ℎ − 2πν, t] = 1
2π

δ (ν − ε2 − ε1
h ) .

Ultimately, we come up with the formula for the spontaneous transition rate (Fig-
ure 4.15b):

Wspont
2→1 = 8 (πe)2 ν3

3ε0ℎc3 󵄨󵄨󵄨󵄨󵄨D⃗12
󵄨󵄨󵄨󵄨󵄨2 , (4.163)

where ν = (ε2 − ε1)/h. This is just the Einstein coefficient:

A = 1/tspont = Wspont
2→1 .

For the thermal radiation in the cavity, we find the ratio of the theoretically calcu-
lated coefficients A and B:

A
B = 8πhν3

c3
.

The finding secured coincides exactly with the ratio of the phenomenological coeffi-
cients A and B, postulated by Einstein for Planck’s formula.

4.10 Absorption and Amplification of Directed Plane-Parallel Flux
by Matter

As previously mentioned, a single two level atom of a medium, under the influence of
an external electromagnetic field, is forced to make transitions between its states. The
rates of the induced transitions are equal:

W1→2 = W2→1 = πe2 󵄨󵄨󵄨󵄨󵄨D⃗12
󵄨󵄨󵄨󵄨󵄨2

3c̃εε0ℎ Ig(ℎωk) ≡ W induced . (4.164)

The relation (4.164) is very difficult to experimentally verify. This is because it is first
necessary to know the wave function of a many electron atom to calculate the square
of the modulus of the matrix element |D⃗12|2. Together with that, the rate of the spon-
taneous transition is related to the lifetime of the excited atom as follows: Wspont

2→1 =
A = 1/tspont. The lifetime can be easily measured in practice.

We have theoretically calculated the Einstein coefficient A (4.163), as well as the
lifetime of the atom in a vacuum tspont. The lifetime of an atom in an isotropicmedium
without dispersion comes from the lifetime of the atom in a vacuum by the formal
replacement: c → c̃, ε0 → εε0. As a result, we arrive at an expression that determines
the lifetime of an excited atom tspont in a medium:

t−1spont = 8π2e2ν3 󵄨󵄨󵄨󵄨󵄨D⃗12
󵄨󵄨󵄨󵄨󵄨2

3c̃3εε0ℎ . (4.165)
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Combining the relations (4.164) and (4.165), we get a formula convenient for ex-
perimental verification of the rates of the atomic transitions induced by an external
and/or medium field:

W induced = λ̃3g(ℎωk)
8πc̃tspont

I , (4.166)

where λ̃ = c̃/ν is the wavelength of radiation in a medium. Next we show how to gen-
eralize the relation (4.166) to the case of isotropic nonmagnetic media with time dis-
persion.

In formula (4.166), the line shape function g(ε) models processes that make the
difference between the energies ε2 and ε1 of the atom indefinite. Particular calcula-
tions require choosing either a Lorentzian or Gaussian curve as a line shape function.

Themost commonmechanisms responsible for the shape of the line are collisions
of atoms of amediumwith each other, or spontaneous transitions of the atoms in other
states left asidebyour calculations (there aremorepossible quantumstates of anatom
than two). The Lorentz line describes well such processes (Figure 4.16):

g(ε) = 1
π (∆ε2 ) 1(ε − ε0)2 + (∆ε/2)2 . (4.167)

The quantity ∆ε called the conditional width of the curve depends on the concentra-
tion of colliding atoms.

In addition to the foregoing processes, there is a Doppler broadening of the lines
due to thermal motion of the atoms [13]. This broadening is best modeled by a Gaus-
sian function, which does not depend on the concentration of colliding atoms (Fig-
ure 4.17):

g(ε) = 1
δ√π exp(−(ε − ε0)2

δ2
) . (4.168)
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Fig. 4.16: The Lorentzian line shape function.
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Fig. 4.17: The Gaussian line shape function.
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The areas underneath both curves (4.167) and (4.168) are equal to unity. So the
more the height of their peaks is greater, the less the width of the line. The Gaussian
line is more acute compared to the Lorentzian one and quickly decays as |ε| → ∞.
Whatever the mechanisms are, the line width is proportional to √T.

Let two statistically independent mechanisms for line broadening act simultane-
ously. Separately, they are described by the functions φ1(ε) and φ2(ε). The function
of the resulting line shape is taken as the convolution:

φ(ε) = +∞∫
−∞

dxφ1(x)φ2(ε + ε0 − x) . (4.169)

Here, ω0 = ε0/ℎ is a common center frequency for the two distributions.
Now we will discuss what happens when a plane electromagnetic wave with in-

tensity I and frequency ν passes through a medium whose atoms are distributed over
the energy levels ε1 and ε2 (ε2 > ε1, ν ≈ ε2 − ε1). Suppose the unit volume contain
N1 atoms with the energy ε1 and N2 atoms with the energy ε2. The medium is not
necessarily equilibrium (Figure 4.18).

ε

N1

N2

ε1

ε2

Fig. 4.18: A two level system of energy transitions.

The number of atomic transitions of the type |2⟩ → |1⟩ per unit time, under the influ-
ence of the electromagnetic wave, is equal to:

N2→1 = N2W induced .

The number of the opposite transitions (|1⟩ → |2⟩) is given by the expression:
N1→2 = N1W induced .

The difference (N1 −N2)W induced is an excess between the numbers of the upward
and downward transitions (Figure 4.18). With each up transition, the electromagnetic
wave loses a photon with the energy hν = ε2 − ε1. With each down transition, the
electromagnetic wave gains a single photon. The total energy acquired by the electro-
magnetic wave per unit time is equal to

− hν (N1 − N2)W induced . (4.170)

We compute the same values in another way. Consider a small volume of matter
in the form of a cube, as shown in Figure 4.19.
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area
S

material

x + d x

d x
x

I(  )x

I(          )x + d xN1 N2,

Fig. 4.19: Emission power balance for
an infinitesimal volume of matter. The
power hν(N1 − N2)W inducedSdx transmit-
ted by an electromagnetic radiation field
to the atoms of matter must be equal to
the reduction in the power of the pass-
ing wave.

Let an electromagnetic wave with the intensity I(x) be normally incident on the face
of the cube (with the coordinate x) and come out through the opposite face (with the
coordinate x + dx), its output intensity being I(x + dx). Under steady state conditions,
a power increase in the electromagnetic wave in the volume of the cube amounts to:

S [I(x + dx) − I(x)] = dI
dx

Sdx ,

where S is the area of the side face of the cube. Together with the above, this gain,
according to formula (4.170) is equal to −hν(N1 − N2)W inducedSdx. Thus, we arrive at
the equation:

dI
dx = −hν (N1 − N2)W induced .

Substituting the explicit expression for the rate of the induced transitions (4.166) into
the right side of this equation, we obtain:

dI
dx = − (N1 − N2) (λ̃)2h

8πtspont
g(hν)I . (4.171)

Let us discuss two cases.
Case 1: A medium is in thermal equilibrium. Before passing an electromagnetic

wave through the medium, the ratio of the atomic levels is determined by the Boltz-
mann factor:

N2
N1

= exp(− ε2 − ε1
kBT

) .

Hence it follows that N2 < N1. When the wave passes through themedium, N2 and N1
change negligibly so it can be thought asN2, N1 ≈ const. Then, equation (4.171) is easy
to integrate:

I(x) = I(0) exp(−αx) ,
where

α = (N1 − N2) (λ̃)2h
8πtspont

g(hν) > 0 . (4.172)

Thus, all thermodynamically equilibrium media absorb energy (Figure 4.20b). The
quantum theory has helped us to calculate the absorption coefficient α (4.172).
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An absorbing medium (            )

An amplifying medium (            )

An incoming
wave

N1N2 < An outgoing
wave

N1N2 >An incoming

(a)

(b)

wave
An outgoing

wave

Fig. 4.20: An electromagnetic wave amplifies in a medium with an inverted population (a) and is
absorbed by the medium with an ordinary level population (b). The atoms in the excited state are
indicated by black circles, the atoms in the ground state are indicated by open circles.

Case 2: Amedium is in a nonequilibrium state with a population inversion: N2 > N1.
Then, after passing through the medium with the inverted population, the wave
strengthens rather than weakens (Figure 4.20a). Therefore, instead of the absorption
coefficient α, the amplification coefficient γ should be entered:

γ = (N2 − N1) (λ̃)2h
8πtspont

g (hν) > 0 . (4.173)

Thenumbers N2 andN1 suffer significant changes when passing the wave through the
medium, so equation (4.171) cannot be integrated. The complete theory must contain
additional equations which take the population changes of N2 and N1 into account.

4.11 The Concept of Time and Spatial Dispersions of a Medium

Next, we consider nonmagnetic media and assume that there are no external charges
and currents in the media, whichmeans that we deal with dielectrics. An electromag-
netic field in such media is described by the following set of Maxwell’s equations:

div B⃗ = 0 , div D⃗ = 0 ,

B⃗ = μ0H⃗ , D⃗ = ε0 E⃗ + P⃗ ,

rot E⃗ = −∂B⃗∂t , rot H⃗ = ∂D⃗
∂t .

(4.174)

In contrast to the problem of propagation of electromagnetic waves in a vacuum, the
system (4.174) is not closed and must be supplemented by constitutive equations,
which relate the dipole moment vector P⃗ per unit volume of the medium to electric
field strength E⃗. Seeking such a relationship is the problem with microscopic theory.
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However, some conclusions can be madewithout resorting to microscopic theory and
can be linked up with the latter afterwards.

If an external electric field E⃗ is weak, as compared to internal circumatomic fields,
we may restrict ourselves to a linear relationship between the E⃗ and P⃗ fields. In gen-
eral, it can be written as:

Pi = t∫
−∞

dt󸀠 ∫ d3 ⃗r󸀠αij( ⃗r, ⃗r󸀠 , t, t󸀠)Ej( ⃗r󸀠 , t󸀠) . (4.175)

Formula (4.175) takes into account the fact that the relationship between E⃗ and P⃗ is
nonlocal. The dipole moment at the point with radius vector ⃗r at a time t is defined by
the values of the coordinates of a spatial region around this point (spatial dispersion),
and depends on the evolution in time (time dispersion).

In formula (4.175), the limits of integration over the time t󸀠 are arranged by the
principle of causality: the field P⃗( ⃗r, t) at the time t is prepared by the events that oc-
curred either before or at the same time.

The temporal dispersion is associatedwith charge inertia andfield relaxation pro-
cesses in a medium, and spatial dispersion represents the transfer of the field action
from one point of the medium to another during the transport and/or vibrations of
charged particles.

Imagine the properties of the mediumbe unchangeable in time. Then any process
would be independent on the time origin. Given the uniformity of time, we get:

αij( ⃗r, ⃗r󸀠, t, t󸀠) = αij( ⃗r, ⃗r󸀠 , t − t󸀠) .
If the medium is also spatially uniform, we get:

αij( ⃗r, ⃗r󸀠 , t, t󸀠) = αij( ⃗r − ⃗r󸀠, t − t󸀠) .
Next, we look at only the local relationship over the spatial coordinates, when

αij( ⃗r− ⃗r󸀠, t− t󸀠) = αij(t− t󸀠)δ3( ⃗r− ⃗r󸀠). This is true for the fields that vary slowly in space.
Then the dipole moment is related to the electric field strength as follows:

Pi( ⃗r, t) = t∫
−∞

dt󸀠αij (t − t󸀠) Ej ( ⃗r, t󸀠) . (4.176)

Formula (4.176) saves the nonlocal (integral) relationship over time. The reality of such
a relationship is a delay in the responses of the medium on the external field or on its
after action. It is time dispersion of a medium that plays a crucial role for theoret-
ically describing lasers. Time dispersion of a laser medium is ultimately due to the
fact that the difference in energy levels of atoms of the medium and frequency of an
electromagnetic wave propagating inside themedium are related through the formula
ε2 − ε1 = hν. This leads to a resonant response of the medium on the electromagnetic
wave, with all the after field effects rising drastically.
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Moreover, to simplify the further analysis,weassume that themedium is isotropic.
Then we have that αij(t − t󸀠) = δijα(t − t󸀠), and the constitutive equation coupling the
E⃗ and P⃗ fields takes the more simple form:

Pi( ⃗r, t) = t∫
−∞

dt󸀠α(t − t󸀠)Ei( ⃗r, t󸀠) . (4.177)

The problem of propagation of electromagnetic fields in a medium boils down to
the problem of propagation of plane monochromatic waves; this is due to the com-
pleteness of a set of the latter. For monochromatic waves, the time dependence of the
field has the following appearance:

E⃗( ⃗r, t󸀠) = E⃗( ⃗r, ω) exp (−iωt󸀠) + c.c. . (4.178)

Formula (4.178) indicates no explicit dependence of the electromagnetic wave on spa-
tial coordinates. Plugging (4.178) into (4.177), we can rewrite the latter in the vector
form:

P⃗( ⃗r, t) = t∫
−∞

dt󸀠α (t − t󸀠) (E⃗( ⃗r, ω) exp (−iωt󸀠) + c.c.) =
= exp (−iωt) t∫

−∞

dt󸀠α (t − t󸀠) exp [−iω(t󸀠 − t)] E⃗( ⃗r, ω) + c.c. ≡
≡ exp (−iωt) P⃗( ⃗r, ω) + c.c .

(4.179)

Now we separately calculate the integral over time:

t∫
−∞

dt󸀠α (t − t󸀠) exp {−iω (t − t󸀠)} = ↕τ = t − t󸀠 ↕= − 0∫
+∞

dτ exp (iωτ) ατ =
= ∞∫

0

dτ exp (iωτ) α (τ) .
We denote the Fourier component of the response function α(t) through α(ω):

α (ω) = ∞∫
0

dτ exp (iωτ) α (τ) .
Note that, by virtue of the reality of the function α(τ), the equality

α∗ (ω) = α (−ω) (4.180)

is true. Since D⃗ = ε0 E⃗ + P⃗, the field D⃗( ⃗r, t) should be expanded as follows:
D⃗( ⃗r, t) = D⃗ ( ⃗r, ω) exp (−iωt) + c.c. ,
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where
D⃗ ( ⃗r, ω) = ε0 E⃗ ( ⃗r, ω) + P⃗ ( ⃗r, ω) = ε0 E⃗ ( ⃗r, ω) + α(ω)E⃗ ( ⃗r, ω) ,

or it is equivalent to:
D⃗ ( ⃗r, ω) = ε0ε (ω) E⃗ ( ⃗r, ω) , (4.181)

where ε0ε(ω) = ε0 + α(ω).
Thus, the relationship (4.181) between theFourier components D⃗( ⃗r, ω)and E⃗( ⃗r, ω)

is still local, but ε(ω) is a complex function. Let us discusswhat consequences wemay
encounter.

The solution of Maxwell’s equations:

div B⃗ = 0 , div D⃗ = 0 ,

B⃗ = μ0H⃗ , D⃗ = ε0 E⃗ + t∫
−∞

dt󸀠α (t − t󸀠) E⃗( ⃗r, t󸀠) ,
rot E⃗ = −∂B⃗

∂t
, rot H⃗ = ∂D⃗

∂t
,

(4.182)

needs to be sought in the formof an expansion over planemonochromaticwaves, with
the spatial coordinate dependence already being clearly highlighted:

E⃗( ⃗r, t) = E⃗0 (ω) exp [−iωt + ik⃗ ⋅ ⃗r] + c.c. , (4.183)

H⃗( ⃗r, t) = H⃗0 (ω) exp [−iωt + ik⃗ ⋅ ⃗r] + c.c. . (4.184)

Inserting expressions (4.183) and (4.184) into the system of integral differential equa-
tions (4.182), and setting equal the coefficients of linearly independent harmonics (ex-
ponents), we obtain the system of algebraic equations:

(k⃗ ⋅ E⃗0) = 0 , ↕ from divD⃗ = 0 ↕ , (4.185a)

(k⃗ ⋅ H⃗0) = 0 , ↕ from divB⃗ = 0 ↕ , (4.185b)

[k⃗ × H⃗0] = −ωε0ε (ω) E⃗0 , ↕ from rot H⃗ = ∂D⃗
∂t

↕ , (4.185c)

[k⃗ × E⃗0] = μ0ωH⃗0 , ↕ from rot E⃗ = −∂B⃗∂t ↕ . (4.185d)

In writing formulas (4.185a)–(4.185d), we have taken the relation (4.181) into account.
Vectorially multiplying the equation (4.185c) by the vector k⃗ yields:

[k⃗ × [k⃗ × H⃗0]] = k⃗(k⃗ ⋅ H⃗0)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟
=0

− H⃗0 ⋅ k⃗2 = −ωε0ε (ω) [k⃗ × E⃗0] =
=↕ [k⃗ × E⃗0] = μ0ωH⃗0 ↕= −ω2ε0μ0ε (ω) H⃗0 .

Given the relationship c2 = 1/ε0μ0, and canceling the common factor, we arrive at:

k2 = ω2ε (ω)
c2

. (4.186)
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Processes in lasers occur at a given real frequency ω of an electromagnetic wave. In
this case, the wave vector obeys the laws of electromagnetism and the properties of
the medium. According to the relation (4.186), the wave vector, as well as the func-
tion ε(ω), turn out to be complex.

We write √ε(ω) as: √ε (ω) = η (ω) + iκ (ω) . (4.187)

Then we have k = (ω/c)(η(ω) + ik(ω)).
Now, it is convenient to introduce a real unit vector n⃗ that indicates the direction of

propagationof the electromagneticwave. The expression for thewavevector becomes:

k⃗ = ω
c (η + iκ)n⃗ . (4.188)

Suppose that a real unit vector e⃗ characterizes the polarization of the field E⃗:

E⃗0 = E0 (ω) e⃗ . (4.189)

By the virtue of (4.185a), the vectors e⃗ and n⃗ are orthogonal.
The vector H⃗0 can be expressed through E⃗0 from the equation (4.185d):

H⃗0 = √ ε0
μ0

(η + iκ)[n⃗ × e⃗]E0 ,
or:

H⃗0 = √ ε0
μ0

(η + iκ)[n⃗ × E⃗0] . (4.190)

The vectors e⃗, [n⃗ × e⃗] and n⃗ form a right-handed triple (Figure 4.21).

O n

e

n e[   ×   ]

Fig. 4.21: The relative orientation of the vectors e⃗, [n⃗ × e⃗] and n⃗. The vec-
tors e⃗, [n⃗ × e⃗] describe the polarization of the fields E⃗ and H⃗. The vector n⃗
characterizes the direction of propagation of electromagnetic wave.

To clarify this result, we consider an electromagnetic wave propagating along the
axis Ox (n⃗ = (1, 0, 0)):
E⃗( ⃗r, t) = E⃗0 (ω) exp[−iωt + ikx] + c.c. = E⃗0 (ω) exp [−iωt + iωη

c
x − ωκ

c
x] + c.c. =

= E⃗0 (ω) exp [−αx2 ] exp [−iωt + ik0x] + c.c. .
In the above formula, the quantity k0 = ωη/c = ω/c̃ refers to the real wave number
for an electromagnetic wave in a disperse medium. The parameter c̃ = c/η describes
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the wave velocity, with η(ω) being the refraction index of the disperse medium. The
parameter α = 2ωk(ω)/c characterizes attenuation (growth) of amplitude of the wave
as it propagates along the axis Ox.

The macroscopic electrodynamics defines an energy flux of an electromagnetic
wave as the energy passing per second through the unit area perpendicular to the
direction of the wave propagation. The flux of energy is a vector physical quantity (the
Umov–Poynting vector):

S⃗ = [E⃗ × H⃗] . (4.191)

The scalar product S⃗ ⋅ n⃗ is referred to as the instantaneous intensity of radiation. Here,
n⃗ is the unit vector in the direction of propagation of the wave. The instantaneous
energy density of an electromagnetic wave is given by the formula:

w = 1
2 [E⃗ ⋅ D⃗ + B⃗ ⋅ H⃗] . (4.192)

By their nature, devices and the human eye are not able to register fast, time vary-
ing, instantaneous intensity of radiation and instantaneous energy density of electro-
magnetic waves. The above tools can detect only average in time values of the given
quantities:

I ≡ ⟨S⃗ ⋅ n⃗⟩ = 1
T

T∫
0

S⃗ ⋅ n⃗dt , (4.193)

W ≡ ⟨w⟩ = 1
T

T∫
0

wdt , (4.194)

where T = 2π/ω is the period of oscillations. The time average instantaneous intensity
of radiation is called the radiation intensity and denoted by the letter I.

Given the field polarizations (4.183) and (4.184) and the relation [e⃗ × [n⃗ × e⃗]] = n⃗,
formula (4.191) for an electromagnetic wave energy flux can be written as:

S⃗ = n⃗E( ⃗r, t)H( ⃗r, t) , (4.195)

where

E( ⃗r, t) = E ( ⃗r, ω) exp (−iωt) + c.c. , E ( ⃗r, ω) = E0 (ω) exp (ik⃗ ⋅ ⃗r) .

H( ⃗r, t) = √ ε0
μ0

(η + iκ)E ( ⃗r, ω) exp (−iωt) + c.c. . (4.196)

It is easy to show that the time average value of the product of two functions of
the form

A(t) = A (ω) exp (iωt) + c.c. ,
B(t) = B (ω) exp (−iωt) + c.c. .
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is calculated by the formula:

⟨A(t)B(t)⟩ = 2Re [A (ω) B∗ (ω)] .
Using this result and the relations (4.195) and (4.196), we find the intensity of the ra-
diation:

I ≡ ⟨S⃗ ⋅ n⃗⟩ = 2Re [E ( ⃗r, ω)H∗ ( ⃗r, ω)] = 2 󵄨󵄨󵄨󵄨E ( ⃗r, ω)󵄨󵄨󵄨󵄨2√ ε0
μ0

η =
= 2 |E0 (ω)|2√ ε0

μ0
η exp [−2ωc κ (n⃗ ⋅ r)] .

(4.197)

In calculating this, we have taken into account that i(k⃗ ⋅ ⃗r) = (ω/c)(iη − k)(n⃗ ⋅ ⃗r).
In particular, when the wave propagates along the axis Ox (n⃗ = (1, 0, 0)), its in-

tensity changes, depending on the coordinate x as follows:

I(x) = I(0) exp [−2ωκc x] ≡ I(0) exp(−αx) , (4.198)

where I(0) is the value of the intensity at the coordinate x = 0;

α = 2ωκ (ω)
c

. (4.199)

Comparing the formula of the macroscopic electrodynamics (4.199) with that previ-
ously obtained from the microscopic calculations, we find:

α = 2ωκ (ω)
c = (N1 − N2) λ̃2hg (hν)8πtspont

, (4.200)

where λ̃ is the length of the electromagnetic wave in the medium and λ̃ = c̃/ν, c̃ = c/η
is the speed of light in the medium.

Thus, we have already calculated the parameter κ using quantum theory. The re-
fraction index η can also be found. However, we will not dwell on this here, but will
briefly discuss the scheme of the quantummechanical calculation of η later.

Let us compute the average energy density of the electromagnetic wave:

W = 1
2 [⟨E⃗ ⋅ D⃗⟩ + ⟨B⃗ ⋅ H⃗⟩] =

= Re [E∗ ( ⃗r, ω) ε0ε (ω) E ( ⃗r, ω)] + Re [ε0(η2 + κ2)E∗ ( ⃗r, ω) E ( ⃗r, ω)] =
= 2 󵄨󵄨󵄨󵄨E ( ⃗r, ω)󵄨󵄨󵄨󵄨2 ε0η2 .

It is worth pointing out that ε(ω) = η2−κ2+2iηκ. The termwith the (η2+κ2) is derived
from the product H∗H.

If one accepts that c̃ = cη−1 = (ε0μ0)−1/2η−1 and compares the resulting expres-
sion with formula (4.198), we come up with:

W = I
c̃
,
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or it is equivalent to:
I = c̃W . (4.201)

Expression (4.201) between the intensity of electromagnetic waves and the average
energy density has been used previously.

4.12 Intrinsic Oscillations of Optical Laser

Theword “laser” ismadeup from the initial letter of eachword from the phrase, “light
amplification by stimulated emission of radiation.”

The first laser was built on a ruby crystal in 1960. In 1964, N.G. Basov,
N.M. Prokhorov, and Charles H. Townes were awarded the Nobel Prize in Physics
for the realization of the idea of the laser. Before the advent of lasers, there were no
monochromatic radiation sources in optics. Due to exceptional monochromatic ra-
diation, lasers are irreplaceable for performing especially scrupulous measurements
of atomic and molecular spectra, as well as for creating a carrier wave in fiber optic
communication lines.

The advantages of laser over light sources preceding it are:
– High temporal coherence: measured at different times, correlations between the

phases of a laser wave are preserved for periods of time, up to 10−1 sec (a wave of
conventional sources has the time of correlations of 10−10 sec).

– High spatial coherence: a laser wave has an almost perfectly flat front. The front
of laser radiation preserves correlations between the phases and polarizations at
distances up to 5 ⋅ 10−2 cm.

Since a laser beam diverges very little as it travels away from the laser, the laser ra-
diation can be concentrated in a small volume of the third degree of the radiation
wave λ3, with its intensity maintenance being very high. The intensity of the standard
pulsed laser amounts to 106–1010 W/cm2. At the same time, the intensity value of
a modern high powered laser is 1020 W/cm2. In this case, the electric field strength
reaches gigantic values in the order of 1011 V/cm2, which is an order of magnitude
higher than that of intra–atomic fields. Such conditions radically change the nature
of interactions of optical radiation with matter. This circumstance is widely used in
science and engineering. In particular, the laser light makes it possible to generate
plasma so that hot thermonuclear fusion can begin. The field of laser radiation re-
veals unusual nonlinear properties of a medium, such as the generation of multiple
harmonics, the self-focusing of the radiation, and the formation of particle like energy
bunches (solitons).

Lasers are widespread in medicine, with them being used as light scalpels, for se-
lective destruction of cancer cells, and irradiation of poorly healingwounds or human
blood, etc.
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Finally, laser light retains its polarization, which is important for carrying out all
possible kinds of interference experiments in optical media.

The Operating Principle of a Simple Laser

Consider theoperationof theapparatus shownschematically inFigure4.22. Amedium
with an inverted population is placed in an optical cavity (a Fabry–Perot etalon)
equipped by two parallel semitransparent mirrors facing each other.

Suppose a linearly polarized plane electromagnetic wave fell left into the res-
onator from a vacuum (point one), its electric field strength being:

E⃗i = e⃗ {Ei exp[−iωt + ikx] + c.c.} , (4.202)

where e⃗ is the unit polarization vector. In the medium, the real wave number k = ω/c
changes and becomes complex:

k → k󸀠 = ω
c (η + iκ) . (4.203)

As the wave travels through the cavity, other phase factor characterizes its space time
change:

exp [−iωt + ik󸀠x] .

We write down the imaginary part of the wave number k󸀠 in the following form:

Imk󸀠 ≡ ωκ (ω)
c = α0 − γ

2 .
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Fig. 4.22: Scheme of a laser generator. The center is an optical resonator made of two semitranspar-
ent mirrors, with an inverted population medium placing between them.
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The term −γ/2 governs the 2 ↔ 1 energy transitions of atoms of the medium:

γ = (N2 − N1) λ̃2hg (hν)8πtspont
, (4.204)

where λ̃ = c̃/ν is the wavelength in the medium and c̃ = c/η is the speed of light
in the medium. The phenomenological parameter α0 > 0 is responsible for the wave
absorption by the medium, due to all other energy loss mechanisms except for the
transitions 2 ↔ 1.

We designate the ratio of the amplitude of the electric field transmitted through
the left mirror to the amplitude of the incident electric field as t1, and as t2 for the right
mirror. Suppose r1(r2) is the ratio of the amplitude of the electric field reflected within
the medium to the amplitude of the incident electric field for the left (right) mirror.

Nowwewill discuss how the wave (4.202) passes through the cavity. At point one,
the wave with the amplitude t1Ei falls left into the medium through the first mirror.
After going through that mirror and reaching the second mirror, the wave acquires an
additional phase factor exp(ilk󸀠), where l is the resonator length. Furthermore, the
wave is partially reflected back (point two) and partially transmitted through the sec-
ondmirror. Themultipliers r2 and t2, respectively take these wave amplitude portions
into account. Once crossed again the resonator, the reflected wave, gains the multi-
plier exp(2ilk󸀠). After that, it is partially reflected by (point three) and partially pene-
trates through the mirror. However, we are interested only in the resulting wave that
comes out from the right side of the cavity. For brevity, we will not discuss the result-
ing wave at the left output of the cavity; that is why it is not shown in the figure. After
multiplying the wave coming into point three by the coefficient r1, we obtain the am-
plitude of the reflected wave at the same point. Then the wave reaches the right mirror
with the phase factor exp(3ilk󸀠), and its part t2 leaves the cavity. It can be seen that we
have arrived at a geometric progression of amplitudes at the output of the resonator
(right): t1t2Ei exp(ilk󸀠), t1t2r1r2Ei exp(3ilk󸀠). . .

We sum up the geometric progression to find the outgoing wave:

E⃗t(r, t) = e⃗{t1t2Ei exp (−iωt + ik󸀠l) [1 + r1r2 exp (2ik󸀠l) +
+r21r22 exp (4ik󸀠l) + ⋅ ⋅ ⋅ ] + c.c.} =

= e⃗ { t1t2Ei exp (−iωt + ik󸀠 l)
1 − r1r2 exp (2ik󸀠l) + c.c.} .

Generally speaking, the calculation should make allowances for changes of the elec-
tromagnetic wave phase by ±π, due to this reflecting from the denser medium. How-
ever, the given problem may ignore this circumstance because the wave experiences
an even number of reflections before leaving the resonator.

When the denominator in the formula for the outgoing wave

E⃗t(r, t) = e⃗ { t1t2Ei exp (−iωt + ik󸀠l)
1 − r1r2 exp (2ik󸀠l) + c.c.} (4.205)
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vanishes, even a negligible wave entering the resonator provides a giant wave am-
plitude at its output. We have come up with a condition that initiates the intrinsic
oscillations inside the resonator:

r1r2 exp (2ik󸀠l) = 1 , (4.206)

where, according to formula (4.203): k󸀠 = k0 + i(α0 − γ)/2, k0 = ωη/c = ω/c̃. We split
the complex relation (4.206) on two conditions: a phase and amplitude one.

The phase condition has the appearance 2k0l = 2mπ, where m is an integer. This
is a normal condition for interference amplification of the multiply reflected waves
between the mirrors:

k0 l = mπ . (4.207)

Given that ω = 2πν, we can rewrite equation (4.207) in the form:
2νl
c̃ (ν) = m . (4.208)

The frequency ν in (4.208) cannot be arbitrary because it is related to the energies
of atoms of the medium: ν = (ε2 − ε1)/h. However, condition (4.208) can be easily
satisfied by changing the resonator length l.

The amplitude condition r1r2 exp[l(γ(ω) − α0)] = 1 can be rewritten as a formula
for the threshold gain:

γthreshold (ω) = α0 − 1
l ln (r1r2) . (4.209)

The explicit form of the factor γ(ω) (4.204) yields the critical density of the inversed
population of the atomic levels. Once it has exceeded its value, we can excite intrinsic
oscillations in the laser resonator:

Nthreshold = (N2 − N1)threshold = 8tspontπ
hg (hν) λ̃2 [α0 − 1

l
ln(r1r2)] . (4.210)

Upon excitation of intrinsic oscillations inside the resonator, the laser takes en-
ergy from the inversed population medium and emits it in the optical range. Without
producing “pumping,” or in other words, without transferring the new atoms of the
medium from the ground state to excited states, the inverted population decreases and
the intrinsic laser oscillations decay away. This happens at the timewhen the inversed
population of the atomic levels falls below the calculated critical value Nthreshold. If the
atoms of the medium in the resonator are always “pumped” to level two, the intrinsic
oscillations can be achieved uninterrupted. Hence, lasers can be classified as operat-
ing in either continuous or pulsed mode.

4.13 A Pulsed Ruby Laser

The first quantum generator of light was a ruby laser built in 1960, which operates, for
example, in pulse mode.
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A working substance of a ruby laser is a ruby crystal that is aluminum oxide
(Al2O3) known as corundum, doped by chromiumwhen grown. The red color of ruby
is caused by the presence of the positive ions of Cr3+. An Al3+ ion in the Al2O3 crystal
lattice substitutes for a Cr3+-ion. As a consequence, the crystal has two absorption
bands: one is in the green part of the spectrum and another is shifted in the blue
part (Figure 4.24). The density of the red color of ruby depends on the concentra-
tion of Cr3+ions: the higher the concentration is, the richer the red color. The ion
concentration in dark red ruby reaches 1%.

A ruby laser uses energy transitions of Cr3+ ions. Pumping is done by irradiat-
ing the crystal ruby with an intense flash of light from a powerful xenon filled tube
(Figure 4.23). The latter is similar to that applied when photographing. The tube pro-
duces a burst of light as a current pulse passes through it. The current pulse instantly
heats the xenon gas to several thousand Kelvin. The pumping is impossible to main-
tain uninterrupted, because the tube cannot withstand continuous operation over a
long period at such a high temperature.

The tube light is notmonochromatic, so it is important that the Cr3+ ion-spectrum
has quasicontinuous bands 3 and 4 (Figure 4.24). It is towards these energy states that
the Cr3+ ions initially move, absorbing photons of light from the xenon filled tube.

As can be seen from Figure 4.24, the vertical lines are responsible for the tran-
sitions pumping. The wavy line indicates a laser transition. The inclined lines show
extremely fast radiationless transitions (within a time order of 10−7 sec). In this case,

Outer mirror

Coolant

Ruby rod
Flash tube

Energy storage capacitor

Voltage power supply

Output beam

Outer mirror partially

transmittin radiation

Fig. 4.23: A typical pulse ruby laser with two outside mirrors, pumped by a flash lamp.
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Fig. 4.24: Energy levels used in a ruby laser.

the excess energy is converted into the energy of lattice vibrations, which leads to the
heating of ruby. Therefore, the ruby rod should be continuously cooled.

Life time of the Cr3+ ions at the level two is relatively great (of the order of
3 ⋅ 10−3 sec). Therefore, the pumping transfers most of the ions from the ground
(first) level to the upper metastable level (2nd). Intrinsic oscillations in a ruby laser
are excited when the population difference is N2 − N1 > Nthreshold.

The polarization radiation characteristics of a ruby laser depends, first of all, on
the orientation of the ruby crystal. Ruby is a uniaxial crystal. Therefore, when the laser
geometrical and optical axes are perpendicular to eachother, a linearly polarized light
can be obtained. In contrast, if they are parallel, the laser radiation is unpolarized.

If a lasingmedium is isotropic (for example, a cubic crystal), a polarized light can
be produced by reflecting an output beam. For this purpose, instead of a semitrans-
parent mirror, the resonator output (right side of the operating medium) is built of a
biprismwith twomirrors placed on its bottom and right edges (Figure 4.25). The cross
section of the biprism is an isosceles triangle; its base corresponds to the transparent
left edge of the biprism. The angle at the base of the triangle and the turn of the biprism
are chosen so that the light rays inside the biprism should be incident and reflected
from themirrors at right angles. Such a system divides the light beam coming out from
the operating medium into two parts. Refracted in the biprism and reflected from the
mirrors, one part of the beam, as expected, returns to the resonator. Another part, as
a result of reflection (refraction) of the output radiation at the Brewster angle on the
left side of the biprism, becomes linearly polarized. This part of the beam leaves the
resonator.

Mirror

Operating substance Mirrors

Fig. 4.25: Scheme for obtaining polarized radiation with a biprism.
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The general principle of producing polarized radiation is as follows. For this, the
direction of preferential orientation should be created in the operating lasingmedium
by, for example, adding dyes whose fluorescent light is polarized. This causes a sharp
rise in the degree of emitted radiation polarization over time, even when the initial
polarization is negligible.

During laser radiation processes, the population difference decreases and the
laser beam is interruptedwhen thedegreeof inversionof themediumbecomes smaller
than the threshold value.

4.14 Heterolasers

On 10 October 2000, the Nobel Committee announced that the annual prize in physics
was going to be awarded to Zhores I. Alferov (The Ioffe Physico – Technical Institute,
theRussianAcademyof Sciences, St. Petersburg, Russia), Herbert Kroemer (University
of California, Santa-Barbara, USA), and Jack S. Kilby (Texas Instruments Company,
Dallas, USA). The scientists were awarded for the invention and development of fast
optoelectronic and microelectronic components, based on so called heterojunctions
and heterostructures.

A heterojunction is defined as the contact of two semiconductors different in
chemical composition. As a rule, at the interface of the semiconductors, a bandgap,
mobility of charge carriers, their effective mass, and other important physical charac-
teristics of the materials are changed. However, a “dramatic” heterojunction changes
the semiconductor properties at a distance comparable to, or less, than the width of
the space charge region. Combinations of different heterojunctions such as p-n-, n-n-,
p-p-types can form such heterostructures.

As far back as distant 1957, Herbert Kroemer, an American of German origin, in-
vented the first heterostructured transistor unique in its properties. Six years later he
and Zh. I. Alferov (independently of one another) offered the tenets underlying the
design of innovative, heterostuctured lasers. In the same year, Zh. Alferov patented
an injection quantum generator that became famous afterwards. The third laureate
physicist made an enormous contribution to the development of integrated circuits
on heterostructures. The fundamental works of these researchers made it possible to
create subminiature devices with fantastic properties for modern optoelectronics and
microelectronics.

In 1962, Zh. Alferov, jointly with a small group of enthusiasts, began investiga-
tions of semiconductor heterostructures. At this time, scientists had to have amazing
intuition and scientific courage to leave awell trodden trackof physics of semiconduc-
tor monojunctions and take the research path of heterostructures, where no one has
found anything before. There were very fewwho believed in the possibility of fabricat-
ing an ideal heterojunction. As amatter of fact, a heterojunctionwith useful properties
is possible to be made only in the event of coinciding types, orientations, and periods
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of crystal lattices of matched materials. Moreover, an ideal heterojunction interface
needs to be free of structural defects and mechanical strains. It can even be said that
the interface of semiconductors with different conductivity types is the technical de-
vice itself.

Manufacturingof ideal heterojunctions andheterostructureshasbecomepossible
due to the development of methods of epitaxial growth of semiconductor crystals. Zh.
Alferov put forward and implemented a brilliant idea: to grow other crystals with the
same lattice parameters, but with a completely different energy spectrum of electrons
and holes, on the face of a crystal with certain lattice parameters.

All materials to produce heterostructures refer to the central part of the periodic
system of elements (Groups III-V). Themiddle of the periodic table (Group IV) includes
germanium (Ge) and silicon (Si). However, in practice, quite a lot of effort was required
to develop heterostructures based on germanium -silicon alloys because of the 4%
difference of silicon and germanium lattice constants.

Silicon and germanium play the same important role in electronic device tech-
nologies as steel in technology of structural materials. However, similar to modern
metallurgy that uses other materials besides steel, electronics employs, along with
silicon and germanium, semiconductor solid solutions. Each element of Group III can
bind any element of group V, with compounds of type AIIIBV forming.

Gallium and aluminum belong to Group III of the periodic table, and arsenic be-
longs to the fifth one. GaAs (gallium arsenide) and an AlxGa1−xAs solid solution (alu-
minumgallium arsenide) were found to be themost suitable for creating semiconduc-
tor heterostructures, wherein a portion of gallium atoms are replaced by aluminum
atoms. The value of x usually varies between 0.15 and 0.35. The band gap of gallium
arsenide amounts to 1.5 eV and growswith increasing x in AlxGa1−xAs solid solutions.
So, in AlAs compounds (x = 1), the band gap is 2.2 eV.

For the components of the systems listed above, the periods and thermal expan-
sion coefficients of the crystal lattices coincide with great accuracy. This ensures no
defects and stresses in them and, consequently, high quality surfaces of interfaces in
heterostructures.

Mobility of electrons or holes is a characteristic that is responsible for how eas-
ily the charge carriers move through a matter. At low temperatures, when the scatter-
ing by phonons can be neglected, the mobility of the charge carriers in today’s het-
erostructures of GaAs/AlxGa1−xAs is 1000 times higher than that of silicon, and is
equal in order of magnitude to 107cm2/(V·s). In this case, the mean free path of an
electron before it scatters is approximately 0.2mm, meaning that the electron passes
by a million atoms without scattering.

The discovery of ideal heterojunctions by Alferov, as well as the development of
technologies for their production, entailed successful research of unique electrical
and optical properties of heterostructures. In particular, many new effects were pre-
dicted. Among these are:
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(a) The superinjection effect represents abruptly increasing the density of carriers in-
jected into the narrow band gap layer of a semiconductor of heterostructures as
compared to the carrier density of the wide band gap emitter.

(b) The electron confinement effect that is due to changing the width of a forbidden
energy band and provides localization of charge carriers in the thin narrow band
gap layer of a semiconductor.

Both effects are extremely important, for example, to create inverse population in the
active layer of a semiconductor laser.
(c) The optical confinement effect that is associated with a difference in refractive in-

dices of the layers and allows one to create spatial localization of electromagnetic
waves. This fact is essential, for example, in generating a powerful electromag-
netic output pulse of the active layer of a laser without energy losses.

These effects enriched opportunities to control the motion of charge carriers and light
fluxes in heterostructures. This enabled one to dramatically improve the parameters of
most known semiconductor devices, to create fundamentally new devices, especially
promising for applications in optical and quantum electronics. Over a very short time
(in the late 60s/early 70s), Zh. Alferov and his colleagues have designed a first low
threshold heterolaser that operates in a continuousmode at room temperature, highly
effective light emitting diodes, photodiodes, phototransistors, and solar cells. Manu-
facturers gained the technology of producing new types of power diodes, transistors,
and thyristors based on heterostructures.

The simplest injection heterolaser includes two heterojunctions. One of them, of
the p-n-type, injects electrons. In fact, it is a diode switched in the forward direction.
The second heterojunction, of the p-p-type, limits the spreading of charge carriers
from the active middle layer. It is important that the middle layer should consist of
a material having a smaller band gap and a larger dielectric constant than the outer
layers. Two plane parallel faces of the sandwich of the semiconductor layers, perpen-
dicular to the planes of the p-p- and p-n-junctions, serve as mirrors of the optical res-
onator (Figure 4.26).

Active particles in a laser are free charge carriers; electrons and holes. Population
inversion is achieved by passing a high forward current through a p-n-junction. In this
case, excess charge carriers inject into the active layer.
Due to potential barriers at the boundaries of the active layer (Figure 4.27), the electron
hole plasma turns out to be trapped in a potential well in the middle layer. Therefore,
there are no recombination energy losses in the outer layers.

The coherent lasing is brought about bymeans of quantum transitions in themid-
dle layer between permitted bands rather than discrete energy levels as in a ruby laser.
Due to the significant difference in the dielectric constants, the middle layer acts as a
high qualitywaveguide. So, radiation losses in the outer layers are negligible (the phe-
nomenon of total internal reflection of electromagnetic waves takes place).
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Fig. 4.26: Overall scheme of an injection
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Fig. 4.27: Energy diagram of laser heterostruc-
tures: εc and εv are the edges of the conduction
and valence bands.

Quantum well lasers can be tuned in wavelength: the frequency generated by the
laser increases with decreasing the well depth.

A current that corresponds to the beginning of the generation is called a threshold
one. In the heterolasers, the threshold current is record small – twenty times lower
than in conventional semiconductor lasers. An important achievement is to provide
continuous generation of radiationwithout cooling heterolasers, which is impossible
for single junction semiconductor lasers operating on a similar scheme.

Other attractive features of the heterolasers are: small dimensions of the active
medium, low inertia and high efficiency of conversion of electrical energy into light
energy (it amounts to 60% as compared to that of 2–3% for single junction semicon-
ductor lasers).

In the early 70s, Zh. Alferov, with his staff, formulated the tenets of ideal het-
erostructures using multicomponent solid solutions; in particular, InGaAsP-het-
erostructures (quaternary or more). The lattice period of such solutions is found to
be slightly correctable as their composition changes, while the bandgap width ranges
widely. This circumstance made it possible to expand the radiation range of hetero-
lasers into both the infrared and visible spectral regions. It is the same lasers that are
now being used as a radiation source in fiber optic communication lines at extended
distances.

In the 80s/90s, Zh. Alferov and his team continued studies of solar cells based
on heterostructures, which led to the creation of photovoltaic cells operating under
concentrated solar radiation. The efficiency coefficient of the new generation of de-
vices approached the theoretical one and was about 30–40%. For comparison, the
efficiency of the first semiconductor solar cells accounted to only 1%. Similar convert-
ers established a good basis for works on cosmic and solar energetics. Solar cells of
this type turned out to be extremely efficient and reliable. For example, they had been
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working aboard the Russian Space Station Mir for many years (about ten years) with-
out noticeable power losses.

Although it sounds fantastic, heterostructures give the possibility of designing
new types of materials with desired properties at interatomic distances. In the fu-
ture, these materials will significantly improve characteristics of many devices and
systems,making the latter subminiaturized. The first fruits of the newelectronics have
already become part of our lives. Laser diodes based on heterostructures can be found
in CD-ROM drivers. Fiber optic communication lines, including the Internet, became
available only due to new properties of materials based on heterostructures. High per-
formance transistors, based onheterostructures, are beingused today in satellite com-
munications, mobile phones, etc.

4.15 Formalism of the Density Matrix and Semiclassical Theory of
the Propagation of Electromagnetic Waves in a Two Level
Atom Medium

The formalism of the density matrix is widely used for describing quantum systems
consisting of a large number of identical particles. It is convenient to carry out averag-
ing over the ensemble of particles.

Let us illustrate the method on a concrete example. Consider an interaction of N
two level atoms with an electromagnetic wave. The electromagnetic wave is assumed
to contain many photons, so it can be described in terms of Maxwell’s theory. We
restrict ourselves to the electric dipole approximation, which takes into account the
main interaction between the atoms and the electromagnetic wave field.

For a nonmagnetic medium (M⃗ = 0⃗, B⃗ = μ0H⃗), Maxwell’s equations acquire the
form:

div E⃗ = 1
ε0

div P⃗ ,

div H⃗ = 0 ,

rot H⃗ = ⃗jext + ∂
∂t (ε0 E⃗ + P⃗) ,

rot E⃗ = −μ0 ∂H⃗∂t ,

(4.211)

where P⃗ is the dipole moment per unit volume of the medium. The density of the ex-
ternal electric current ⃗jext = σE⃗ (4.212)

is introduced to allow certain problems to be solved, such as power losses due to any
absorbing backgroundmedium, and also due to wave diffraction andmirror transmis-
sion in lasers.
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FromMaxwell’s equations it is easy to derive an formula that defines the distribu-
tion of the electric field E⃗ in the medium:

rot rot E⃗ = −∆E⃗ + ∇⃗(div E⃗) = −μ0σ ∂E⃗∂t − 1
c2

∂2 E⃗
∂t2

− μ0
∂2P⃗
∂t2

.

It should be noted that div E⃗, in general, is different from zero. In the resulting equa-
tion, we move all the terms containing E⃗ to the left-hand side to get:

− ∆E⃗ + ∇⃗(div E⃗) + 1
c2

∂2E⃗
∂t2

+ μ0σ
∂E⃗
∂t

= −μ0 ∂2P⃗∂t2
. (4.213)

For definiteness, consider transverse electromagnetic waves that propagate along
the axis Ox. Suppose they are linearly polarized along the Oz-axis (Figure 4.28). Then
E⃗ = (0, 0, E(x, t)), P⃗ = (0, 0, P(x, t)), and we can simplify equation (4.213) up to:

∂2

∂x2
E − 1

c2
∂2E
∂t2

− μ0σ
∂E
∂t = μ0

∂2

∂t2
P . (4.214)

Next, we represent a two level atom as a quantum system in terms of energetic
spin. A Hamiltonian that describes the state of the atom and its interaction with the
electric field E⃗ has the form:

Ĥ = Ĥatom + Ĥint , (4.215)

Ĥatom = ε1 + ε2
2 Î + ε1 − ε2

2 R̂3 , (4.216)

Ĥint = −̂⃗p ⋅ E⃗ , (4.217)

where ̂⃗p = −|e|D⃗12R̂1 is the operator of the dipole moment of the atom. Recall that:

Î = |1⟩ ⟨1| + |2⟩ ⟨2| , R̂1 = |2⟩ ⟨1| + |1⟩ ⟨2| ,
R̂2 = i (|2⟩ ⟨1| − |1⟩ ⟨2|) , R̂3 = |1⟩ ⟨1| − |2⟩ ⟨2| ,
R̂s R̂p = iεspqR̂q + δspÎ ,

(4.218)

where εspq in the unit is a completely antisymmetric pseudotensor (ε123 = 1); the
repeated index implies summation over the index range.

Suppose |Ψ⟩ is a state of an isolated atom. The vector of |Ψ⟩ satisfies the Schrö-
dinger equation:

iℎ ∂
∂t |Ψ⟩ = Ĥ |Ψ⟩ (4.219)

x

y

z
E

O
Fig. 4.28: The polarization direction of the electric field propagating along
the axis Ox.
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or − iℎ ∂
∂t ⟨Ψ| = Ĥ ⟨Ψ| (4.220)

in virtue of the fact that the operator Ĥ is Hermitian, i.e., Ĥ+ = Ĥ.
The ket-vector of |Ψ⟩ can be expanded in an arbitrary complete set of vectors. We

choose as such vectors the orthonormal eigenvectors of the operator Ĥatom:

Ĥatom |i⟩ = εi |i⟩ , i = 1, 2 , (4.221)
⟨i|j⟩ = δij . (4.222)

Then |Ψ⟩ = c1(t)|1⟩ + c2(t)|2⟩, where ci = ⟨i|Ψ⟩ = ⟨Ψ|i⟩∗. Next, we consider the state|Ψ⟩ as normalized: ⟨ΨΨ⟩ = |c1|2 + |c2|2 = 1 . (4.223)

From quantum mechanics, it is known that, in the state |Ψ⟩, the average value of
any observable quantity corresponding to the Hermitian operator Â is calculated by
the formula:

⟨Ψ| Â |Ψ⟩ = ∑
i,j=1,2

⟨Ψ|i⟩ ⟨i| Â |j⟩ ⟨j|Ψ⟩ = ∑
i,j=1,2

c∗i cjAij . (4.224)

In deriving the equality, we have used the condition of completeness of the states {|i⟩}:
∑
i
|i⟩ ⟨i| = Î . (4.225)

The average value calculated by (4.224) determines the observed quantity A for the
isolated atom. In practice, most problems deal with systems that consist of a large
number of identical atoms. In fact,wemeasure, not thequantity ⟨Ψ|Â|Ψ⟩, but its value
additionally averaged over all the N atoms of the medium. Denote the appropriate
average as ⟨⟨Â⟩⟩:
⟨⟨Â⟩⟩ = 1

N ∑
k
Nk ∑

i,j=1,2
c(k
∗)

i c(k)j Aij = ∑
k
wk ∑

i,j=1,2
⟨Ψ(k)󵄨󵄨󵄨󵄨󵄨 i⟩ ⟨i| Â |j⟩ ⟨j 󵄨󵄨󵄨󵄨󵄨Ψ(k) ⟩ =

= ∑
j=1,2

⟨j| (∑
k
wk

󵄨󵄨󵄨󵄨󵄨Ψ(k)⟩⟨Ψ(k)󵄨󵄨󵄨󵄨󵄨 ∑
i=1,2

|i⟩ ⟨i| Â) |j⟩ = ∑
j=1,2

⟨j| ρ̂Â |j⟩ = Sp (ρ̂Â) .

(4.226)

Here, Nk is the number of atoms of the medium in the state |Ψ(k)⟩ and ∑k Nk = N,
wk = Nk/N is the probability of realizing the quantum mechanical state |Ψ(k)⟩ in the
ensemble of N atoms. The density operator is given by:

ρ̂ = ∑
k
wk

󵄨󵄨󵄨󵄨󵄨Ψ(k)⟩⟨Ψ(k)󵄨󵄨󵄨󵄨󵄨 . (4.227)

It is easy to see that ρ̂+ = ρ̂ (the operator ρ̂ is Hermitian) and:

Sp ρ̂ = ∑
k
wk = 1 . (4.228)
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Let us find equations to be solved to get the density operator ρ̂. For this purpose,
we calculate the total time derivative of expression (4.227):

d
dt
ρ̂ = ∑

k
wk (( ∂

∂t
󵄨󵄨󵄨󵄨󵄨Ψ(k)⟩)⟨Ψ(k)󵄨󵄨󵄨󵄨󵄨 + 󵄨󵄨󵄨󵄨󵄨Ψ(k)⟩( ∂

∂t
⟨Ψ(k)󵄨󵄨󵄨󵄨󵄨)) .

Using formulas (4.219) and (4.220), we replace the quantities ∂|Ψ(k)⟩/∂t and
∂⟨Ψ(k)|/∂t by their values, and finally obtain:

dρ̂
dt

= 1
iℎ [Ĥ, ρ̂] . (4.229)

It is worth noting that the operator ρ̂ is a specific operator, instead of a wave function.
Therefore, unlike other operators of the Schrödinger picture, it varies over time.

We introduce the representation of the values observed in the basis {|i⟩} where
the operators Ĥ and ρ̂ correspond to 2×2matrices. The operator ρ̂ corresponds to the
density matrix:

ρ̂ = (ρ11 ρ12
ρ21 ρ22

) , (4.230)

Where ρij = ⟨i|ρ̂|j⟩, and by virtue of hermiticity of ρ̂,

ρ11 = ρ∗11 , ρ22 = ρ∗22 , ρ12 = ρ∗21 . (4.231)

The Hamiltonian (4.216) acquires the form:

Ĥ = ε1 + ε2
2 Î + ε1 − ε2

2 σ̂3 − ̂⃗p ⋅ E⃗ , (4.232)

where ̂⃗p = −|e|D⃗12 σ̂1 and σ̂i is Pauli matrices. Recall the appearance and algebra of
the matrices:

σ̂1 = (0 1
1 0

) , σ̂2 = (0 −i
i 0

) , σ̂3 = (1 0
0 −1) , Î = (1 0

0 1
) ,

σ̂s σ̂p = iεspkσ̂k + δsp Î .
(4.233)

Here, as previously, εspk is the Levi–Civita symbol.
We write down a matrix corresponding to the operator Hamilton (4.232) in detail,

using the fact that the given problem addresses E⃗ = (0, 0, E), D⃗12 = (0, 0, D12):
Ĥ = ( ε1 |e|D12E|e|D12E ε2

) . (4.234)

Let us elucidate the physical meaning of the elements of the density matrix ρ̂. The
quantity

ρ11 = ∑
k
wk

󵄨󵄨󵄨󵄨󵄨⟨1|Ψ(k)⟩󵄨󵄨󵄨󵄨󵄨2 . (4.235)

describes the probability of detecting a group of atoms with energies ε1 in the system
of N atoms, i.e., the atoms in the ground state. This group contains N1 = Nρ11 atoms.
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Similarly, the quantity ρ22 makes it possible to calculate the number of atoms N2
with the energies ε2 > ε1, being in the excited state:

N2 = Nρ22 .

To reveal the physical meaning of the off diagonal elements of the matrix ρ̂, we
calculate the average value of the dipole moment of a single atom in the ensemble
of N atoms:

⟨⟨̂⃗p⟩⟩ = Sp (ρ̂ ̂⃗p) = − |e| D⃗12 Sp (ρσ1) = − |e| D⃗12 (ρ12 + ρ21) == − |e| D⃗12 (ρ21 + ρ∗21) . (4.236)

Thus, the off diagonal elements of the density matrix determines the mean dipolemo-
ment of the individual atoms of the medium. Therefore, the dipole moment per unit
volume of the medium is:

P⃗ = n ⟨⟨̂⃗p⟩⟩ = −n |e| D⃗12 (ρ21 + ρ∗21) , (4.237)

where n = N/V is the number of atoms per unit volume of the medium.
As a result, theMaxwell equation (4.214) that defines the electric field distribution

in the medium takes the form:

∂2

∂x2
E − 1

c2
∂2

∂t2
E − μ0σ

∂E
∂t

= μ0n |e|D12
∂2

∂t2
(ρ21 + ρ∗21) . (4.238)

Here, we have taken into account that E⃗ = (0, 0, E), D⃗12 = (0, 0, D12) in the problem
considered.

In the basis {|i⟩}, the equations for the density operator ρ̂ boil down to equations
for the elements of the density matrix ρ̂. These equations are called the Bloch equa-
tions. Using the formula:

[Ĥ, ρ̂] = ( γ(ρ21 − ρ12) γ(ρ22 − ρ11) + ρ12(ε1 − ε2)
γ(ρ11 − ρ22) + ρ21(ε2 − ε1) γ(ρ12 − ρ21) ) , (4.239)

where γ = |e|D12E, ρ21 = ρ∗12, it is easy to get a set of equations for the density matrix
elements (the Bloch equations):

d
dt ρ21 = 1

iℎ ((ε2 − ε1) ρ21 + |e|D12E (ρ11 − ρ22)) ,
d
dt ρ11 = 1

iℎ |e| D12E (ρ21 − ρ∗21) ,
d
dt ρ22 = − 1

iℎ |e|D12E (ρ21 − ρ∗21) .
(4.240)

From the definition of matrix element

ρ21 = 1
N ∑

k
Nkc(k)∗2 c(k)1 ,
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we see that ρ21 is the sumof complex numberswhose phases differ from atom to atom,
and dramatically change after each collision of the atoms. From this, we can conclude
that in the absence of an external field, the quantity ρ21 must vanish after a few colli-
sions of atoms with each other.

In addition, it is intuitively clear that, in the absence of an external field, the di-
agonal elements of the matrix ρ̂ must relax over time to their equilibrium values ρ(0)11
and ρ(0)22 .

The qualitative speculations can be put into a mathematical form if one formally
introduces it into the Bloch equation (4.240); the so called relaxation terms:

d
dt ρ21 = 1

iℎ ((ε2 − ε1) ρ21 + |e|D12E(ρ11 − ρ22)) − ρ21
T2

,

d
dt ρ11 = 1

iℎ |e| D12E (ρ21 − ρ∗21) − (ρ11 − ρ(0)11 )
T1

,

d
dt ρ22 = − 1

iℎ |e|D12E (ρ21 − ρ∗21) − (ρ22 − ρ(0)22 )
T1

.

(4.241)

The time T2 bears the name of the transverse relaxation time. During this time, the
individual atoms of the medium “forget” their phase coherence. In the absence of an
external field, the diagonal elements of the density matrix recover their equilibrium
values during the period T1.

Maxwell’s equations (4.238) and the Bloch equations (4.241) with relaxation terms
constitute a closed system suitable for the analysis of many phenomena, including
nonlinear ones such as the propagation of electromagnetic waves through a medium
with active atoms. In this case, the atoms are described quantum mechanically, and
the electromagnetic wave is represented in a classic way (the quasiclassical approxi-
mation). The approach set forth above is insufficient only if the quantum properties
of electromagnetic waves in a medium are of our concern.

Note that, with this method, it is easy to calculate the dielectric susceptibility of
a medium to define a relationship between harmonics P⃗(ω) and E⃗(ω):

P⃗ (ω) = α (ω) E⃗ (ω) .
The formula means that the complex refractive index of the active medium

√ε (ω) = η + iκ = √α (ω) + ε0

can be completely found. The connection between the imaginary part κ of this index
and the microscopic theory was already discussed earlier.

The semiclassical approach not only reproduces all the formulas received earlier,
but also automatically calculates the shape of the line. The line shape appears to be
Lorentzian and assigned by the T1 and T2 parameters. Thus, the relaxation terms pos-
tulated in theBloch equations explain quite a certain physicalmechanism responsible
for the line shape. Namely, they account for the processes involving collisions between
atoms of the medium.
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4.16 Self-Induced Transparency and the Concept of Strongly
Nonlinear Particle-like Excitations (Solitons)

Between 1965–1970, an interesting effect was predicted theoretically, and then experi-
mentally studied. Itwas found that under certain conditions, ultrashort pulses of laser
light pass through the optical medium, not being absorbed as if through a fully trans-
parent system. This effect was given the name of self-induced transparency; it is asso-
ciated with the formation of the so called optical solitons. We will now illustrate this
statement.

Suppose that atoms of a medium are in a ground state with the energy ε1, and
short laser pulses with the frequency ν = (ε2 − ε1)/h pass through the medium. For
simplicity, we assume that each atom has only two energy levels: ε2 and ε1 (ε2 > ε1).
The front edge of the pulse causes the electrons of the atoms of the medium to move
from the level ε1 to the higher level ε2 . This is the reason forweakening the laser pulse,
due to spending some portion of its energy.

When passing through themediumwith excited atoms, the back edge of the pulse
returns the electrons to the previous levels. In this case, induced electromagnetic radi-
ation with the frequency ν = (ε2 − ε1)/h occurs and replenishes the laser pulse energy
lost earlier (Figure 4.29).

ε

x

ε1

ε2

O

Fig. 4.29: Energy diagram. The process of energy
exchange between atoms of a medium and a laser
pulse.

The shape and speed of the laser pulse adjust themselves so that the absorp-
tion and emission energy processes should arise simultaneously. As a result, the laser
pulse takes the form of a particle like envelope soliton. Such solitons transfer the en-
ergy bunches of a certain shape through themediumwithout losses. The phenomenon
of self-induced transparency can be described in terms of the semiclassical theory ex-
pounded. Let us dwell on this in more detail.

The possibilities of modern technologies allow one to easily design a device that
generates laser pulses with a duration of a nanosecond (10−9 sec) or even a picosec-
ond (10−10 sec). When propagated through amedium as a dilute gas, the nanosecond
pulse duration proves to bemuch shorter than the relaxation times of the atoms of the
medium:

τ ≪ T1, T2 , (4.242)
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In this case, we can neglect the dissipative terms in the Maxwell and Bloch equations.
The relaxation processes described by such terms are too slow, and so, have no notice-
able influence on the propagation of the laser pulse through the medium or its self-
localization.

For further analysis, it is more convenient to use the following notation

ρ3 = ρ11 − ρ22 (4.243)

for the quantity that characterizes the difference in populations between the energy
levels of the atoms of the medium. When ρ3 > 0, the number of atoms in the energy
levels ε1 is greater than that in the energy levels ε2 . Inparticular,when ρ3 = 1,wehave
a thermodynamically equilibriummedium in a ground state. Inversely filled levels are
typical of the medium with ρ3 < 0. When ρ3 = −1, all the medium atoms are in an
excited state with the energy ε2 > ε1.

In addition, for convenience, we separate the real and imaginary parts of the com-
plex function:

ρ21 = 1
2 [ρ1 + iρ2] . (4.244)

Given that the dipole moment of the atom p⃗ = −|e|D⃗12 lies codirectionally along
the vector of the electric field E⃗, we get the following notation of the Maxwell–Bloch
equations:

∂
∂t ρ3 = −2 󵄨󵄨󵄨󵄨p⃗󵄨󵄨󵄨󵄨 Eℎ ρ2 , (4.245a)

∂
∂t ρ1 = ω21ρ2 , (4.245b)

∂
∂t ρ2 = −ω21ρ1 + 2 󵄨󵄨󵄨󵄨p⃗󵄨󵄨󵄨󵄨 Eℎ ρ3 , (4.245c)

[ ∂2

∂x2
− 1
c2

∂2

∂t2
] E = μ0n 󵄨󵄨󵄨󵄨p⃗󵄨󵄨󵄨󵄨 ∂2∂t2 ρ1 , (4.245d)

where ω12 = (ε2 − ε1)/ℎ.
Using the relation (4.245c), we exclude the parameter ρ2 from the equation

(4.245b),
∂2

∂t2
ρ1 = −ω2

21 [ρ1 − 2 󵄨󵄨󵄨󵄨p⃗󵄨󵄨󵄨󵄨 Eℎω21
ρ3] . (4.246)

Applying the equation (4.245b), we leave aside the parameter ρ2 in (4.245a):

∂
∂t ρ3 = −2 󵄨󵄨󵄨󵄨p⃗󵄨󵄨󵄨󵄨 Eℎω21

∂
∂t ρ1 . (4.247)

Also, we transform (4.245d) through the calculated derivative (4.246):

[ ∂2

∂x2
− 1
c2

∂2

∂t2
] E = −μ0n 󵄨󵄨󵄨󵄨p⃗󵄨󵄨󵄨󵄨ω2

21 [ρ1 − 2 󵄨󵄨󵄨󵄨p⃗󵄨󵄨󵄨󵄨 Eℎω21
ρ3] . (4.248)
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Next, we proceed to the dimensionless field E⃗ in the obtained equations (4.246)–
(4.248), highlighting its characteristic amplitude A:

E = AẼ , (4.249)

and introduce the dimensionless small parameter:

ε = A 󵄨󵄨󵄨󵄨p⃗󵄨󵄨󵄨󵄨ℎω21
≪ 1 . (4.250)

Suppose that the density of a gas through which the laser pulse travels is so small that
the estimate

c2μ0n 󵄨󵄨󵄨󵄨p⃗󵄨󵄨󵄨󵄨
2A = εγ (4.251)

holds. Here, γ = O(1). In the new notations, the Maxwell–Bloch equations take the
form convenient for them to be approximately solved:

[ ∂2

∂t2
+ ω2

21] ρ1 = 2ω2
21εẼρ3 ,

∂
∂t ρ3 = −2εẼ ∂

∂t ρ1 ,

[ ∂2

∂x2
− 1
c2

∂2

∂t2
] Ẽ = −2εγ

c2
ω2
21 [ρ1 − 2εẼρ3] .

(4.252)

When ε ≪ 1, the approximate solution of the system (4.252) can be arrived at by em-
ploying the so called method of multiscale expansions.

Now, our concern is to find the Maxwell equation solutions that resemble a trav-
eling wave with a fast space time dependence of the type:

Ẽ ≅ E0 cos (ω21 (t − x
c)) . (4.253)

In writing the above equation, we have taken two facts into account:
1. Only waves with the frequency ω21 = (ε2 − ε1)/ℎ can intensively interact with two

level atoms of the medium.
2. In the absence of medium, expression (4.253) is an exact solution of Maxwell’s

equation.

Apparently, the presence of the medium only brings relatively slow time space wave
amplitude modulations and small corrections to (4.253). For a mathematical descrip-
tion, the slow spatial and temporal variables:

X = εω21
c x , T = εω21 (t − x

c) , (4.254)

are needed for seeking the solution to be expanded for the field Ẽ:

Ẽ = E0(X, T) cos (ω21 (t − x
c)) + εE1(x, t, X, T) + ⋅ ⋅ ⋅ . (4.255)
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If one carefully analyzes the form of the equations (4.252), we can make sure that
such a structure for the expansion of E⃗ involves only the following expansions for ρ1
and ρ2:

ρ1 = P0(X, T) sin (ω21 (t − x
c)) + ερ11(x, t, X, T) + ⋅ ⋅ ⋅ , (4.256)

ρ3 = ρ30(X, T) + ερ31(x, t, X, T) + ⋅ ⋅ ⋅ . (4.257)

Substituting the expansions (4.255)–(4.257) into the Maxwell–Bloch equations
(4.252), and setting equal the coefficients of the different powers of ε to zero, we ob-
tain a chain of equations. The choice of the initial terms of the expansion is justified
because of automatically satisfying the first ε0-order equations of the chain. For the
terms O(ε), we have:

[ ∂2

∂t2
+ ω2

21] ρ11 = 2ω2
21 cos θ [E0ρ30 − ∂

∂T
P0] , (4.258a)

∂
∂t
ρ31 = −ω21 [ ∂

∂T
ρ30 + 2E0P0 cos2 θ⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

(1+cos 2θ)/2
] , (4.258b)

[ ∂2

∂x2
− 1
c2

∂2

∂t2
] E1 = −2ω2

21
c2

[ ∂
∂X

E0 + γP0] sin θ . (4.258c)

Here, θ = ω21(t − x/c).
It is not hard to see that the integration of the equation (4.258b) over the fast vari-

able t (the slowvariables are considered constantparameters) yields nogrowing terms
in t provided that the following condition is met:

∂
∂T ρ30 = −E0P0 . (4.259)

Under the condition (4.259), the equation (4.258b) gives a small correction ρ31 not
required for further analysis.

It is also easy to check that:

( ∂2

∂t2
+ ω2

21)(sin θ
cos θ

) = 0 ,

( ∂2

∂x2
− 1
c2

∂2

∂t2
)(sin θ

cos θ
) = 0 .

(4.260)

Ultimately, this leads to the fact that if one leaves the summands proportional to cos θ
and sin θ in the right-hand sides of equations (4.258a)and (4.258b), their solutionswill
contain growing terms of the type x cos θ, x sin θ, t cos θ, t sin θ as x → ∞ and t → ∞.
For the calculations to be self-consistent, a requirement needs to met; that the terms
proportional to cos θ and sin θ should be omitted in the right-hand sides of equa-
tions (4.258a) and (4.258b). Then, we obtain the following equations to calculate the
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functions of the slow variables:

∂
∂T

P0 = E0ρ30 ,
∂
∂X

E0 = −γP0 . (4.261)

Under the restrictions of (4.261), the fast variable dependent corrections ρ11 and E1
can be easily calculated. They are not worth writing out because the equations ob-
tained for the functions ρ30, P0, and E0 already form a closed system, with it being a
simplified model that describes the main effect of the mutual influence of the electro-
magnetic field and the atoms of the medium:

∂
∂T

P0 = E0ρ30 ,

∂
∂T ρ30 = −E0P0 ,
∂
∂X E0 = −γP0 .

(4.262)

It should be emphasized that the perturbation theory cannot always be reduced
to the simplified model (4.262). This happens only when making the right choice of
the slow variables that reflect the characteristic spatial and temporal processes in a
system.

From the first two equations of (4.262) we find:

∂
∂T (P20 + ρ230) = 0 .

Without loss of generality, we may put:

P20 + ρ230 = 1 .

This allows one to parameterize P0 and ρ30:

P0 = ± sinΦ , ρ30 = ± cosΦ . (4.263)

Such alternation of signs is compatible with the first two equations (4.262), which also
imply that:

E0 = ∂
∂T Φ . (4.264)

If one plugs the results of (4.263) and (4.264) into the last equation of (4.262), we
derive a differential equation for the calculation of Φ:

∂
∂X

∂
∂T

Φ = ∓γ sinΦ . (4.265)

Analysis of the solutions of equation (4.265) with different signs shows that the up-
per sign describes the propagation of electromagnetic waves through an equilibrium
medium. The lower sign corresponds to the propagation of electromagnetic waves
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throughamediumwith invertedpopulation. Amediumwith invertedpopulationgives
unstable solutions of Φ.

Next, we limit ourselves to the discussion of solutions of the equation:

∂
∂X

∂
∂T Φ = −γ sinΦ , (4.266)

that describes the effect of self-induced transparency of an initially equilibrium
medium. The solutions of (4.266) define the electric field E0 = ∂Φ/∂T in a medium
and the quantity ρ3 = cos Φ that characterizes the degree of inversion of the medium
when passing an electromagnetic pulse through it. We are interested in a strongly
disturbed, initially equilibrium medium with ρ3 = 1 before passing the wave, and
hence Φ = 0 or Φ = 2πn, where n is an integer.

Earlier, we looked at cases of weakly excited states of the medium when the gov-
erning equations could be linearized near its stable equilibrium position. In the given
problem, it is no use to linearize (4.265) since this leads to the equation:

∂
∂X

∂
∂T Φ = −γΦ . (4.267)

As the traditional perturbation theory claims,when expanding sinΦ = Φ−Φ3/3!+⋅ ⋅ ⋅ ,
no finite order in powers of Φ for equation (4.266) gives particle like energy bunches
(solitons). Thepower expansion is not suitablebecause it violates theperiodicity prop-
erty of the function sinΦ. We will discuss this issue in more detail.

This book dealswith different condensedmedia. In specific examples, wehave as-
certained that the real media can always be described by nonlinear differential equa-
tions in partial derivatives. Generally speaking, many condensed media have a highly
nontrivial, strongly nonlinear ground state (for example, a domain structure). How-
ever, we have limited ourselves to the discussion of relatively simple media with a
spatially homogeneous stable ground state. Under low external impacts on such a
medium, its behavior near the homogeneous ground state can always be described by
linearizing original nonlinear equations. After the linearization, the medium’s phys-
ical properties are theoretically described by linear differential equations in partial
derivatives. Their complete set of solutions, as a rule, is represented in the form of low
amplitude waves. In media without energy losses, the small amplitude waves are jux-
taposedwith quasiparticles. For example, thermal vibrations of a crystal are governed
by phonons.

It is important that linear differential equations satisfy the principle of superpo-
sition. The superposition principle facilitates the description of linear wave processes
extremely well. An arbitrarily complicated wave field can be represented as the sum
of the simplest normal modes using the Fourier transform as a powerful mathemat-
ical tool. An arbitrary wave packet, when moving, changes its shape. By finding a
change in characteristics of individual harmonics that form the packet, any change
in its shape can be easily calculated.
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Waves to be arisen in a medium subjected to large external influences are de-
scribed by nonlinear differential equations for which the superposition principle does
not hold. A distinctive feature of nonlinear waves is processes of their interaction. The
nonlinear waves can transform beyond recognition when interacting.

For example, when two nonlinear waves meet, they may disappear, giving rise to
the third wave whose frequency is equal to the sum or difference of the initial wave
frequencies. After the meeting of two waves with close frequencies, one of them may
be forced to change its frequency (the phenomenon of self-synchronization of waves).

Here, it would be appropriate to quote I.R. Shen, a well known expert in nonlin-
ear optics: “Physicswould be dull and life most unfulfilling if all physical phenomena
around uswere linear. Fortunately, we are living in a nonlinear world.While lineariza-
tion beautifies physics, nonlinearity provides excitement in physics.” Against linear
waves, the parameters of even the simplest periodic nonlinear waves (their frequency
and velocity) are wave amplitude dependent. This leads, in particular, to compression
of nonlinear waves. It is well known that nonlinear periodic waves on water become
steeper as their amplitude grows; their crests are folded back and overturned (Fig-
ure 4.30).

Fig. 4.30: A nonlinear world.

It has been found that, under strong external impacts in condensed matter where
there is dispersion but small friction losses, a complete set of nonlinear normalmodes
includes (apart from waves arising under weak influences) particle like waves also
(solitons). Moreover, it is solitons that govern the main physical properties of con-
densed matter under strong external influences.

At first glance, a soliton looks like a wave packet of linear theory, but it is not
the case. To clarify the mechanism of soliton formation, we recall that waves with dif-
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ferent wave numbers propagate in dispersive media with different phase velocities.
Therefore, as linear theory states, a wave packet involving different harmonics always
splits into its wave components over a certain period of time. It should be emphasized
that the wave packet energy, of course, is retained despite blurring of the packet itself.
The amplitude of the wave packet gradually diminishes and becomes hardly notice-
able. It is no wonder that the translation of the word dispersion from Latin (dispertio)
means scatter or breaking apart. However, even weak nonlinearity of amedium causes
interactions between harmonic waves the wave packet is made up from. They tend
to compress the wave packet or to increase the slope of the resulting wave front. The
multiscale expansion method uses slow variables to treat these interactions as a non-
linear transfer of energy from one harmonic to the others, which linear theories never
produce. The balancing of two competing effects occurs. The former is compression of
the wave packet due to the nonlinear harmonic interactions, and the latter is blurring
of the packet due to the dispersion. As a result, special particle like waves, solitons,
are formed.

As particles, the solitons are localized in space and retain their shape and veloc-
ity, not onlywhenmoving, but even after collidingwith solitarywaves similar to them-
selves. The solitons maybe regarded as stable formations. Upon colliding, the solitons
scatter away like billiard balls, restoring their initial (before the collision) shape and
velocity.

It is interesting and important to note that an arbitrary wave pulse of sufficiently
large amplitude splits into a number of stable solitons over time. In this respect, the
origin of the word soliton is the same as of a solo performer: solitary states. That is
why they define all the basic physical properties of condensed matter under extreme
external influences. At the same time, initially small amplitude wave pulses, which
ignore nonlinearity of themedium, formno solitons, but are blurred due to dispersion.

General Conclusions

1. In the absence of nonlinearity of a condensedmatter, dispersion prevents solitons
from emerging due to the blurring of waves.

2. If there is no dispersion but nonlinearity, the possibility of forming solitons is also
excluded because of the continuous transfer of energy from one harmonic to the
others. In most cases, this feature appears as a steepening of the resulting wave
front or compression of wave pulses.

3. Soliton formation is given by the basic properties of all condensedmatters, where
energy losses due to friction are little and the balance between dispersion and
nonlinearity is possible.

4. For this reason, many nonlinear systems of different physical nature have proved
to be possible to theoretically describe within universal theoretical models. To
integrate these nonlinear models, scholars have succeeded in gaining powerful
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Fig. 4.31: An example of topologically stable solitons in a wire.

analytical methods of generalizing the Fourier transforms for linear systems. Of
course, thesemethods are not applicable to all nonlinear partial differential equa-
tions. Simultaneously, the Fourier method also does not allow all linear differ-
ential equations to be integrated. New mathematics rests on support of different
versions of the so called inverse scattering method. With the latter, it has first be-
come possible to theoretically detail many highly nonlinear states of a medium.
The properties of such states are unusual and cannot be explained within linear
theory. For systems close to ones that are integrable by the inverse scattering prob-
lem, special versions of the soliton perturbation theory have been developed. The
results secured also cannot be reproduced in any finite order of the traditional
perturbation theory.

5. Analytical mechanics claim that, according to the Liouville–Arnold theorem, the
equations of motion of a dynamic system with N degrees of freedom can be in-
tegrated in quadratures only if the system has N so called first integrals of mo-
tion. From this perspective, nonlinear partial differential equations, such as equa-
tion (4.266), have an infinite number of degrees of freedom. It has turned out that
the integrability of some of them by the inverse scattering problem is due to an
infinite number of conservation laws. Amazing dynamic stability of each soliton
is guaranteed by an infinite series of conservation laws.

6. It is remarkable that, among the variety of solitons, there are ones whose dynamic
stability is reinforced by topological reasons. let us explain this statement with an
example of wire or fishing line loops (Figure 4.31).

If an endless wire lies in a plane, the loop soliton cannot be created or destroyed. This
gives us the right to call such a soliton topological. Recall that topology studies prop-
erties of figures that remain unchanged when the figures are continuously deformed.
When lying in a plane, the endless wire loop cannot be eliminated by continuous de-
formations. The wire loops are an example of topologically stable solitons; the most
nonlinear and the most stable ones, which have already been discussed. In the gen-
eral, the topological solitons can be described by fields with geometric peculiarities,
which cannot be eliminated without destroying the ordered state in a large volume of
matter. It is not hard to verify that wire loops not only can move but also rest. The ex-
ample mentioned above illustrates the possibility of existing static solitons or soliton
like topological defects.
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Today, scientists are studying solitons in crystals, superconductors, in the atmo-
sphere of the Earth, and other planets [17, 18]. Soliton representations are used to de-
lineate patterns of dents on the surface of loaded plates and shells [19]. Apparently,
solitons have played, and continue to play an important role in the evolution of the
Universe. Modern theories of elementary particles try to interpret the elementary par-
ticles as solitons. Here, it would be appropriate to quote Louis de Broglie, one of the
founders of quantummechanics: “Inmy present views, I came to the thought that the
wave-particle duality requires developing wave mechanics based on nonlinear equa-
tions, in relation to which linear equations were but only approximate forms holding
true under certain circumstances.”

It is interesting that magnetic materials are rich in the variety of their internal
structure and in properties of magnetic solitons. At first, no one has even noticed that
the motion of the well-known domain walls in ferromagnetic materials is similar to
particlemotion. Todaywe know that the domainwall is a topologically stable soliton.
Investigations of nonlinear properties of magnetic materials have experienced signif-
icant progress owing to the soliton theory involved [20–22]. Curiously, even the pe-
culiarities of the internal structure of the domain walls and domains can currently
be more adequately outlined in terms of soliton like topological defects, magnetic
vortices, and spirals. The vortex and spiral structures are the closest relatives of soli-
tons [21].

A complete interpretation of experimental data under extreme external impact on
a medium is impossible to run without carrying out an analysis of soliton states.

Let us return to the equation:

∂
∂X

∂
∂T Φ = −γ sinΦ ,

which describes the self-induced transparency effect. This equation has been investi-
gated by the inverse scatteringmethod in detail. Its soliton solutions are found explic-
itly. The simplest soliton solutions, of course, can be obtained by traditional methods
of integration. However, explicit analytical formulas, which delineate the motion of
a system of N solitons, can be derived only by methods related to the inverse scatter-
ing method. To verify this, we present the analytical formula that characterizes pair
collisions of solitons, including their motion between collisions and recovery of their
shape after colliding:

Φ = −4 arg [det(I + 𝑣)] , (4.268)

𝑣nm(X, T) = cm
λn + λm

exp√γ [2iλmX + i
2λm

T] . (4.269)

There are two types of solitons:
1. kinks and antikinks (bends)
2. breathers (pulsating solitons)
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Each soliton of the first type (a bend) is described by a real number cm, and a purely
imaginary number λm = iκm; κm > 0.

Each soliton of the second type (a breather) is parameterized by a pair of num-
bers λs and −λ∗s , symmetrically arranged with respect to the imaginary axis and a
pair of complex conjugate numbers cs and c∗s , which corresponds to the former. Here,
Imλs > 0.

Thus, a system that comprises K kinks and antikinks and L breathers (N = K + L)
is characterized by a matrix 𝑣with (K + 2L) × (K + 2L) dimension.

Let us look at the simplest solution. Suppose there is only one bend. In this case𝑣 is the number equal to:

𝑣 = c
2iκ

exp φ ; (4.270)

Φ = −4 arg(1 + 𝑣) = 4σ arctg exp (φ + δ) , (4.271)

where φ = √γ(−2κX + T/2κ), σ = sign c, and δ = ln |c/2κ|. The parameter δ may
be eliminated by choosing the origin of the coordinate system, so further, we put that
δ = 0. The result (4.271) holds true, and this is easily checked.

The shape of the curves of the functionsΦ(T) for X = const (Figure 4.32) substanti-
ates the name of the solutions (the bends): there is a kink when σ = 1 and an antikink
when σ = −1.

=1σ
π2

T

Φ(   )T

O

= –1σ

π–2

T

Φ(   )T

O

Fig. 4.32: Dependence of Φ(T) for X = const.

The bends of the function Φ(T) correspond to the electric field bunches localized
in the space:

Ẽ = ∂
∂T

Φ = σ√γ
κ

1
chφ

. (4.272)

Going over from the slow variables X and T to the initial variables x and t, we find:

Φ = 4σ arctg exp ( εω21α
2 (t − x

V )) , (4.273)

Ẽ = σα
ch [ εω21α

2 (t − x
V )] . (4.274)
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Here α = √γ/κ is a parameter that characterizes the amplitude of the soliton. The
quantity 2/(εω21α) has the meaning of the duration of the soliton pulse. The velocity
of a moving soliton as a whole is less than the speed of light:

V = c
1 + 4κ2 < c (4.275)

Measured in different experiments, the velocities of picosecond and nanosecond
pulses turned out to be two to four orders of magnitude smaller than the speed of
light in a vacuum.

It can be seen from the formulas given that the soliton increases its amplitude
and velocity as the duration shortens. This rule is common for many solitons. To keep
it firmly in mind, the following comedic phrase is helpful for remembering the rule:
“A tall and thin man moves faster than a short and fat one.”

The solutionofΦ as x → ±∞ tends to0and2πσ, which corresponds to theground
state of the medium in the regions where there are no electromagnetic pulses: ρ3 =
cosΦ → 1 as |x| → ∞.

Another elementary formation is a breather (a pulsating soliton). The general for-
mula defines it by two parameters λ associated with reduction:

λ1 = r + iκ , λ2 = −r + iκ , (4.276)

where κ > 0, and by two parameters c:

c1 = a , c2 = a∗ , (4.277)

where a is an arbitrary complex number. The breather has the form:

Φ = −4arctg( κ
r ⋅ sin [r√γ (2X + T/ (r2 + κ2)) + φ0]

ch [κ√γ {2(X − X0) − T/ (r2 + κ2)}]) , (4.278)

where
φ0 = arg(aκ ) , X0 = 1

2κ√γ ln
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 ra
2κ(r + iκ)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨 .
The solution (4.278) describes a localized bunch of the electric field Ẽ = ∂Φ/∂T;

the bunch moves as a whole and pulsates. Hence, its name comes from a breather (a
“breathing” soliton).

Naturally, such solitons may be used for transmitting information over optical
fibers. The advantages are obvious:
– high rate of transmission of vast amount of information because of the short pulse

duration
– low power consumption
– high reliability

In 1991, impressive results were achieved in this area. Nakazawa, jointly with his em-
ployees, brought about the transmission of information over optical fiber at a speed
of 10Gbit per second; a distance of 106 km.
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In general, bymaintaining solitons, their form and velocity and stability and spa-
tial localization are very valuable properties for any digital data transmission. It is one
of the most promising directions of applied science. The future generation of comput-
ers using superconductors is expected to employ logic andmemory devices, in which
a role of a soliton plays a fluxon; a magnetic flux quantum. It can be shown that the
fluxon motion in narrow superconducting (Josephson) contacts can also be theoreti-
cally described by equation (4.266).



5 Dislocations and Martensitic Transitions

5.1 Ordered Macroscopic States of a Crystal and
a Nonlinear Theory of Elasticity

A theoretical description of condensed matter often requires resorting to both micro-
scopic degrees of freedom and macroscopic objects. The former are discussed from
the standpoint of quantum theory, and the latter are introduced phenomenologically,
in the language of classical physics. Among them, for example, are vortex filaments
in superconductors and superfluid liquids, dislocations, grain boundaries in crystals,
and domain walls in magnetic materials. The consistent quantum theory holds that
their formation is the result of spontaneous symmetry breaking in a system, and of
condensation of a huge number of Bose quasiparticles corresponding to the collective
excitations of the system. The appearanceof such excitations emanates from the Gold-
stone theorem. According to this theorem, an ordered macroscopic state that spon-
taneously breaks symmetry of a microscopic Hamiltonian of a system is maintained
by long range correlations created self-consistently by the system itself. Quanta cor-
responding to the correlations obey the Bose–Einstein statistics. Their energy tends
to zero as the momentum tends to zero. In this case, a large number of Goldstone
bosons are possible to condensate into extended macroscopic objects with different
symmetry. In the system, supracondensate bosons tend to partially restore the sym-
metry spontaneously broken by the ordered macrostates formed.

This chapter deals with the physical properties of macroscopic objects with clas-
sical behavior, dislocations, and interphase boundaries in crystals. A spontaneous vi-
olation of the total translational invariance of the microscopic Hamiltonian of the sys-
tems causes the formation of the above objects, followed by the condensation of a
large number of acoustic phonons.

The fields of dislocations and interphase boundaries have topological features.
Each dislocation meets a line, and each interphase boundary corresponds to a two-
dimensional surface of topological singularities. It can be argued that all macroscopic
defects of condensed matter, with topological singularities, are always formed as a
result of the condensation of gapless quasiparticles (Goldstone bosons) [23]. Macro-
scopic objects with classical behavior, such as vortices in superconductors, disloca-
tions, and interphase boundaries in crystals, are formed in quantum systems. There-
fore, they interact with other quasiparticles of the matter, changing their quantum
numbers. Their interaction can be described in terms of the effective potential acting
on the quasiparticles. For example, electrons in the core region of the vortex filament
of a superconductor are affected by the potential of the filament. As a consequence,
the electron energy decreases, which explains the nature of the so called solid core
of the vortex. Near the dislocation or the interphase boundary, the potential of these

https://doi.org/10.1515/9783110586183-005
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macro-objects acts on phonons of the crystal. As a result, special phonon states local-
ized along the dislocation line or near the interphase boundary appear.

Dislocations and interphase boundaries occupy regions which are extended
enough; their dimensions are much greater than the interatomic distance. Therefore,
the continuum theory of elasticity ensures their fruitful semiclassical discussion. Such
an approach delineates well the peculiarities of a crystal subjected to deformation to
form moving dislocations, as well as nonlinear effects near martensitic transitions.

There are two main ways of theoretically describing changes in the positions of
material particles of a body during its deformation. As a “mark” of the material point
of the body, the Lagrangian approachuses Cartesian coordinates of the position of this
point in the undeformed state of the body. Then wewatch the evolution of the marked
material points of the body. In contrast, the Eulerian approach traces goings on in a
fixed area of space as time goes by. Such a description is ideally suitable for study-
ing liquids, where a rapidly deforming mass often comes from nowhere and leaves
for nowhere. So it would be preferable to consider what is happening here and now,
before our eyes. However, being convenient kinematically, the Eulerian description
becomes clumsy when it comes to the laws of dynamics and leads to difficulties. The
point is that the dynamic equations include quantities related to material particles of
a body, rather than to spatial regions occupied temporarily by these particles. Some
relations, being obvious under the Lagrangian approach, require complicated reason-
ing when using Eulerian coordinates [24]. We will adhere to the Lagrangian descrip-
tion when discussing dislocations and martensitic transitions in crystals.

Let us use an undeformed body as a frame of reference: xk is the Cartesian coor-
dinates of a material point of the body before deformation, Xk = xk + uk(x⃗, t) are the
coordinates of the same point after deformation, and u⃗(x⃗, t) is the displacement vec-
tor of medium. In the undeformed state of the body, the vector that connects two close
particles of the medium can be written in the form:

dx⃗ = (dx1, dx2, dx3) .
Therefore, the square of the distance between the particles is given by:

(dx⃗)2 = dxkdxk .

Furthermore, unless otherwise stated, the double indices imply summation.
After deforming the body, the vector connecting these close particles becomes dif-

ferent:
dX⃗ = (dX1, dX2, dX3) .

The distance between the particles changes as follows:

(dX⃗)2 = ∂Xk
∂xs

∂Xk
∂xp

dxsdxp .

The quantity

gsp = ∂Xk
∂xs

∂Xk
∂xp
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characterizes the metric properties of the deformed medium; it is invariant with re-
spect to rotation of the body as awhole: Xk → DksXs. Here,D is amatrix of the rotation
group SO(3) that does not depend on the coordinates x⃗:

DisDik = δsk , detD = 1 ,

where δsk is the Kronecker symbol.
Since, upon deformation of the body, the change in distance between its close

particles can be written in the form:

(dX⃗)2 − (dx⃗)2 = [gis − δis] dxidxs ≡ 2ηisdxidxs , (5.1)

the Lagrangian strain tensor
ηij = 1

2 [gij − δij]
is usually chosen as a measure of the nonlinearly elastic deformation of medium. In
terms of the displacement field u⃗(x⃗, t), it appears as:

ηij = 1
2 [ ∂ui∂xj

+ ∂uj
∂xi

+ ∂uk
∂xi

∂uk
∂xj

] . (5.2)

Note that the tensor ηij is symmetric with respect to the indices i, j. Let us explain the
relationship between the tensors and the quantities observed.

If the deformations are sufficiently small, we may make the replacement:

(dX⃗)2 − (dx⃗)2 ≈ 2 󵄨󵄨󵄨󵄨dx⃗󵄨󵄨󵄨󵄨 (󵄨󵄨󵄨󵄨󵄨dX⃗󵄨󵄨󵄨󵄨󵄨 − 󵄨󵄨󵄨󵄨dx⃗󵄨󵄨󵄨󵄨) .

Then, from (5.1), we derive an approximate formula for the relative elongation of a
sample in the vicinity of a point with a radius vector x⃗:󵄨󵄨󵄨󵄨󵄨dX⃗󵄨󵄨󵄨󵄨󵄨 − 󵄨󵄨󵄨󵄨dx⃗󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨dx⃗󵄨󵄨󵄨󵄨 ≈ ηisdxidxs(dx⃗)2 .

Next, we trace the change in the volume element occupied by the same material
particles of themedium. Suppose the particles are in a small volumedVx = dx1dx2dx3
before deformation of the body. When deformed, the body changes its initial volume:

dVX = dX1dX2dX3 = det JdVx .

However, it always contains an unchanged mass of material particles. Here, J is the
matrix with the elements:

Jij = ∂Xi
∂xj

= δij + ∂ui
∂xj

.

We denote the initial and final densities of the mediumby ρx and ρX. Then, by the law
of conservation of mass, we have:

ρXdVX = ρxdVx .
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Hence, a useful relation determines the change in the density of the medium during
deformation of the body:

ρx
ρX

= dVX
dVx

= det J . (5.3)

When deformations are small, i.e., (|∂ui/∂xj| ≪ 1), from (5.3), we obtain simple ex-
pressions in terms of the displacement field for relative changes in density and small
volume near the point with the radius vector X⃗:

dρX − dρx
dρx

≈ −∂ui∂xi
; dVX − dVx

dVx
≈ ∂ui
∂xi

. (5.4)

In the nonlinear theory of finite deformations [25], the density of the elastic energy
of a sample can be expanded over the strain tensor components ηij. The expansion
coefficients are determined by the requirements of energy invariance under transfor-
mations of the symmetry group of an undeformed matter. The latter concerns only
the Lagrangian coordinates xi of the material particles of the body. For an isotropic
medium, there are only three independent invariants of the tensor ηij, through which
the remaining invariants can be expressed [25, 26]:

I1 = ηmm , I2 = ηmpηpm , I3 = ηmpηpsηsm .

With these remarks in mind, the expression for the elastic energy of an isotropic non-
linear body can be represented in the form:

W = ∫
V0

φd3 x⃗ ; φ = λ
2
I21 + μI2 + A

3
I3 + BI1I2 + C

3
I31 + ⋅ ⋅ ⋅ . (5.5)

Here, φ is the energy per unit volume of the body before deformation, λ, μ, A, B, C . . .
are the elastic moduli of the material, and the integration is performed over the vol-
ume V0 of the undeformed body. The coefficients λ and μ of the terms, quadratic in ηij
in (5.5), are called linear moduli of elasticity. The coefficients of higher powers of ηij
are referred to as nonlinear moduli. This nonlinearity is usually named “physical” be-
cause it is associated with the nonlinearity of the forces of intermolecular interaction
in a medium and is different for different materials. The source of the second type of
nonlinearity proves to be the very definition of the strain tensor (5.2) that contains
products of derivatives of the displacement field. This relationship, which is indepen-
dent of the physical properties of the deformed body, is called “geometric nonlinear-
ity.”

Nonlinear elastic modules are unknown for most materials, and their known val-
ues are not reliable. Hereinafter, for definiteness, the elastic moduli are thought to
be comparable in order of magnitude. Such an approximation is valid for many ma-
terials [27]. For further analysis, it is important that the terms in (5.5) that contain
higher order invariants contribute less to the deformation of the medium since, usu-
ally, max |ηik| < 1.
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Note that the physical nonlinearity of media with a microstructure can be easily
taken into account in the framework of this approach. The influence of themicrostruc-
ture can be simulated by additional gradient terms in the expression for the elastic en-
ergy density of the body. We will return to this issue later in the discussion of marten-
sitic transitions.

When the deformation processes are adiabatic, the dynamic equations for a non-
linearly elastic body can be obtained from the Hamiltonian principle:

δS0 + t1∫
t0

δAdt = 0, S0 = t1∫
t0

[K − U] dt . (5.6)

The kinetic energy K of the system has the form:

K = ∫
V0

ρ0
2 (∂ui∂t )

2
d3 x⃗ ,

where ρ0 is the density of a material in the undeformed state (henceforth, we will
assume that ρ0 = const), and the integration is performed over the volume V0 of the
undeformed body.

The potential energy U consists of the elastic energyW of the body, and the energy
W1 of its interaction with external mass forces:

W1 = − ∫
V0

ρ0Piuid3 x⃗ .

Here, Pi is an external mass force, and ρ0Pi is a force acting per unit volume of the
body before deformation.

Let us represent the force acting on the oriented surface element (dS1, dS2, dS3)of
the deformed body in the form (Text1j , T

ext
2j , T

ext
3j )dSj . The elements Textij forman external

stress tensor. In this notation, the work of external surface forces is written as:

δA = ∫
S

δuiTextij dSj . (5.7)

It is worth emphasizing that the external forces are applied to the surface S of the de-
formed body. To make use of the Hamilton principle (5.6), we should replace the inte-
gration over S in the relation (5.7) by integration over the surface σ of the undeformed
body. The transformation needed:

∫
S

δuiTextij dSj = ∫
σ

δuiTextij
∂ det J
∂Jjs

dσs ,
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is achieved by means of the identity:

dSj = 1
2
εjkpdXk ∧ dXp = 1

2

εsmn det J⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞[εj󸀠kp ∂Xj󸀠

∂xs
∂Xk
∂xm

∂Xp
∂xn

]∂xs
∂Xj

dxm ∧ dxn =
= det J ∂xs

∂Xj

1
2
εsmndxm ∧ dxn = det J ∂xs

∂Xj
dσs = ∂ det J

∂Jjs
dσs ,

where dσs = dxm ∧ dxn, ∧ is the symbol of the external product, and εpmn is an abso-
lutely antisymmetric unit tensor (ε123 = 1). Here, we have used the relations:

∂Xj󸀠

∂xs
∂xs
∂Xj

= δj󸀠 j ; εsmn det J = εj󸀠kp
∂Xj󸀠

∂xs
∂Xk
∂xm

∂Xp
∂xn

,

and the representation of the inverse matrix:

(J−1)sj = ∂xs
∂Xj

= ∂ ln det J
∂Jjs

.

The Hamilton principle (5.6) produces the necessary equations of dynamics and
boundary conditions. The equations of dynamics have the form:

− ρ0
∂2ui
∂t2

+ ∂Pis
∂xs

+ ρ0Pi = 0 ; Pis = ∂W
∂ (∂ui/∂xs) . (5.8)

In general, the Piola–Kirchhoff tensor Pis is not symmetric with respect to the indices
i, s.

When varying the action S0 over the fields ui, integrals over the surface σ arise to
lead to two types of boundary conditions. A part σ󸀠 of the body surface,where external
forces are given, reveals the following nonlinear boundary conditions:

Pisns |σ󸀠 = Textij det J ∂xs∂Xj
ns
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨σ󸀠 = Textij

∂ det J
∂Jjs

ns
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨σ󸀠 .

Here, n⃗ is the vector of the unit normal to the surface σ󸀠. In another part σ󸀠󸀠 of the body
surface where the displacement vector is given, when varying the action, it must be
supposed that δus = 0. In addition, δus = 0 at the ends of the time interval [t0, t1].

In the deformed body, the i-th component of the momentum flux density goes
through a unit area orthogonal to the j-th one of the Cartesian axis. Both components
define the element Tij of the stress tensor. The expression TijdSj involves the i-th com-
ponent of the force acting on the oriented area (dS1, dS2, dS3) of the deformed body
from the directions of the surroundingparts of themedium. The law of conservation of
the angular momentum guarantees the symmetry property of the tensor with respect
to the indices i, j. The stress tensor is related to the Piola–Kirchhoff tensor and the
elastic energy density of the body by a chain of equalities [25]:

Tij = 1
det J

Pik
∂Xj

∂xk
= 1
det J

Pjk
∂Xi
∂xk

= 1
det J

∂Xj

∂xm
∂φ
∂ηmn

∂Xi
∂xn

. (5.9)
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According to (5.9), the terms I1 in the energy density φ would lead to the appearance
of constant stresses even in an undeformed body. That is why there are no such terms
in the expansion (5.5).

When the body is slightly deformed, i.e., (|∂ui/∂xj| ≪ 1), the geometric nonlin-
earity of the strain tensor can be neglected:

ηij ≈ εij = 1
2 [∂ui∂xj

+ ∂uj
∂xi

] . (5.10)

In this case, we leave only the first two terms in the expansion of the elastic energy:

φ = μ (εik)2 + λ
2 (εii)2 = μ (εik − 1

3
εllδik)2 + 1

2 (λ + 2
3
μ) (εll)2 . (5.11)

If one chooses the tensor εik, in such a way that εll = 0, the right-hand side of (5.11)
saves only the first term. If one chooses the tensor of the form εik = δikconst, only the
second term remains. Hence, it follows that the elastic energy of a nondeformed body
is minimum if λ + 2μ/3 > 0, μ > 0.

The approximation of (5.10) and (5.11) allows us to make no distinctions between
the volumes and surfaces of the body, before and after deformation: dVX ≈ dVx, dSi ≈
dσi. The Piola–Kirchhoff and stress tensors coincide and are proportional to the strain
tensor:

Tij ≈ Pij ≈ σij = ∂φ
∂εij

= λεppδij + μεij . (5.12)

The stress tensor σij in (5.12) is symmetric in the indices i, j. The boundary conditions
on the sample surface subjected to external stresses are simplified:

σisns |σ󸀠 = σextis ns
󵄨󵄨󵄨󵄨󵄨σ󸀠 .

The dynamic equations in (5.8) become linear and, in the absence of mass forces,
take the form: − ρ0

∂2ui
∂t2

+ cijkl
∂2uk
∂xj∂xl

= 0 . (5.13)

The above equations are suitable for describing even anisotropic crystals. For an
isotropic medium, the tensor of elastic constants is equal to:

cijkl = λδijδkl + μ (δikδjl + δilδjk) , (5.14)

and equation (5.13) appear as:

− ρ0 ̈u⃗ + (λ + μ) ∇⃗div u⃗ + μ∆u⃗ = 0 . (5.15)

Particular solutions of model (5.15) are longitudinal and transverse sound waves
(Goldstone modes) moving in the sample independently of each other with velocities
of:

cl = √(λ + 2μ) /ρ0 ; ct = √μ/ρ0 .
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The validity of the assertion is easiest to verify by applying the divergence and
rotor operations to the equality (5.15). Then, taking into account the identities:

div ∇⃗f = ∆f ; rot ∇⃗f = 0 ,

we immediately obtain closed wave equations:

( ∂2

∂t2
− 1
c2l

∆) div u⃗ = 0 ; ( ∂2

∂t2
− 1
c2t

∆) rot u⃗ = 0 .

They control the propagation of longitudinal (div u⃗) and transverse (rot u⃗) deforma-
tions in the medium.

We demonstrate that, in the longwave approximation, the equations of motion
for atoms in a crystal (2.17) are reduced to the equations of the linear theory of elas-
ticity (5.13). Suppose that a unit cell of a crystal contained one atom, and only three
acoustic modes propagate in the crystal. In the harmonic approximation, the equa-
tions of dynamics for the crystal lattice take the form:

MÜα(l) = − ∑
l󸀠,α󸀠

Φαα󸀠 (l − l󸀠)Uα󸀠 (l󸀠) .

The time dependent vector U⃗(l) describes small oscillations of an atom with a mass
M, near the equilibrium position R⃗l = l1 a⃗1 + l2 a⃗2 + l3 a⃗3; Φαα󸀠(l) is a matrix of force
constants. A set of three numbers l = {l1, l2, l3} enumerates the unit cells, and the
indices α, α󸀠 = 1, 2, 3 specify the vector components. When discussing the dynamics
of a crystal, we will explicitly indicate all the summations.

Suppose that the characteristic spatial scale of the displacement field change was
much larger than the lattice constant. In this case we can assume that the coordinates
of the atoms run through a series of continuous values and the displacements are con-
tinuous functions of the coordinates: U⃗(l) = U⃗(x⃗). We confine ourselves to the first
terms in the expansion of the function Ua󸀠(l󸀠) = Ua󸀠(x⃗󸀠) in a series, with respect to a
point with the radius vector x⃗:

Uα󸀠 (x⃗󸀠) ≈ Uα󸀠 (x⃗) + 3∑
γ=1

∂Uα󸀠(x⃗)
∂xγ

Rl󸀠−l
γ + 1

2

3∑
γ,δ=1

∂2Uα󸀠 (x⃗)
∂xγ∂xδ

Rl󸀠−l
γ Rl󸀠−l

δ .

Here, x⃗󸀠 − x⃗ ≈ R⃗l󸀠 − R⃗l = R⃗l󸀠−l. Such an approximation is justified if the atoms interact
weakly at large distances. As a result, we find:

− ∑
l󸀠,α󸀠

Φαα󸀠 (l − l󸀠)Uα󸀠 (l󸀠) ≈ ∑
α󸀠
Cαα󸀠Uα󸀠 (x⃗) + ∑

α󸀠 ,γ
Cαα󸀠γ

∂Uα󸀠 (x⃗)
∂xγ

+ ∑
α󸀠 ,γ,δ

Cαα󸀠γδ
∂2Uα󸀠(x⃗)
∂xγ∂xδ

.

The coefficient
Cαα󸀠 = −∑

l󸀠
Φαα󸀠 (l − l󸀠) = 0
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is equal to zero by the property (2.25) of the force matrix (a shift of the crystal as a
whole shouldproduceno forces actingon theatomsof the crystal). For crystalswith an
inversion center (almost all crystals have an inversion center), the second coefficient
is also zero:

Cαα󸀠γ = −∑
l󸀠
Φαα󸀠 (l − l󸀠) Rl󸀠−l

γ = 0 .

As a result, the equation of dynamics for a crystal is rewritten in the form:

− ρ0
∂2

∂t2
Uα(x⃗) + ∑

γ,α󸀠,δ󸀠
cαγα󸀠δ

∂2Uα󸀠(x⃗)
∂xγ∂xδ

= 0 , (5.16)

where ρ0 = M/Va is the density of a medium and Va is the volume of a unit cell of a
crystal:

cαγα󸀠δ = − 1
2Va

∑
l󸀠
Φαα󸀠 (l − l󸀠) Rl󸀠−l

γ Rl󸀠−l
δ = 1

Va
Cαα󸀠γδ . (5.17)

Equations (5.13) and (5.16) have the same algebraic structure, although they use dif-
ferent notations for vector fields, tensor indices, and summations. For cubic crys-
tals, the constant tensor (5.17) is close to the tensor of elastic moduli of an isotropic
medium (5.14). In general, the transformations of the point symmetry group of the
crystal identify the formof the coefficients in the expansion in powers of ηij of the elas-
tic energy of the crystal [28], and lead to the coincident of equations (5.13) and (5.16).

5.2 Dislocations in a Crystal

Themechanical propertiesof solids are called those, that determine theability of solids
to change their shape under external mechanical impacts (pressure, force, etc.) and
resist destruction by these forces.

Deformation of a solid body is the result of changes in the mutual arrangement
of the particles of which the body consists. Elastic deformation of a crystal refers to
the fact that the atoms are slightly displaced from their equilibrium positions under
the action of external forces until the equilibrium is restored. In this case, the equilib-
rium is established between the forces of attraction and repulsion of atoms, on the one
hand, and external forces, on the other hand. Elastic deformation is characterized by
reversibility; it disappears after relieving the stresses deforming the body. It is for this
reason that Hooke’s law holds for elastic deformation (5.12). Hooke’s law corresponds
to a linear relationship between deformation and stress.

As plastic deformation of a crystal occurs, the crystal layers slide relative to each
other. Plastic deformation is irreversible. After removing an external stress, the body
does not restore its original shape. To shift crystalline planes relatively to each other,
forces tangent to these planes are needed. No matter which way the external force is
directed, there are always atomic crystalline planes, along which some component
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of this force acts. So, there exists a possibility of a shear even under a tensile exter-
nal stress. According to modern concepts, the carriers of elementary acts of plastic
shear along the crystalline planes are special macroscopic defects of the crystal, or
dislocations. Although the mechanism of formation and motion of dislocations can
be explained only on the basis of atomistic concepts, the classical theory of elasticity
outlines many of the dislocation associated strength and plastic properties of materi-
als. For this, it is sufficient to introduce sources into the theory to simulate changes in
the microstructure and topological properties of a crystal as dislocations are formed.
Now we expound the microscopic interpretations underlying this approach.

Dislocations are defects of crystals. They represent lines along and near which
the proper arrangement of the crystal atomic plane is violated. There are two simplest
types of dislocations: edge and screw ones.

y

x

Fig. 5.1: Scheme of the arrangement of atoms near an edge disloca-
tion.

Figure 5.1 shows the commonly accepted scheme of an edge dislocation in a single
cubic crystal. The edge dislocation coincides with the Oz-axis of the Cartesian coor-
dinate system, and represents a straight line on which the edge of the extra atomic
half-plane inserted inside a perfect crystal terminates. Dislocations of such a type can
be caused by uneven motion of atoms during sliding. Their appearance is similar to
the formation of wrinkles of a carpet due to uneven motion of its individual parts. The
dislocations can also be formed during crystal growth from the melt. The atoms are
strongly displaced from their equilibrium positions in a perfect crystal and localized
along a cylindrical region, whose characteristic radius is equal to only a few inter-
atomic distances. This region is called the core of a dislocation. It is important to note
that, outside the dislocation core, the crystal remains almost perfect and is subjected
only to elastic deformations.

The deformations away from the dislocation can be detected by traversing along
a closed contour on the lattice around the dislocation in the Oxy-plane (Figure 5.1).
If one introduces the displacement vector u⃗ of each atom, directed from its position
in a perfect crystal lattice, the total increment of the vector is different from zero, and
equal to the lattice period along the Ox-axis. It is this topological singularity of the dis-
placement field that is regarded as the initial one for detecting dislocations in a crystal
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macroscopically. Most of the existing physical properties of dislocations bear no rela-
tionship to their microscopic models. Therefore, they can be described phenomeno-
logically within the theory of elasticity, on the basis of a similar determination.

D

−b

τ

D

b

τ

Fig. 5.2: Increment of the displacement
field when traversing a line D along a
closed contour for dislocations with
different directions of the Burgers vector.

Thus, a dislocation in a crystal is called a special line D, characterized by the follow-
ing property. In the coordinate system Oxyz, when traversing around a line D along a
closed contour γ, the displacement field u⃗(x⃗, t) of the deformed body acquires a given
increment b⃗, which is equal in magnitude and direction to one of the main vectors of
the crystal lattice: ∮

γ

duk = bk . (5.18)

Furthermore, for definiteness, we assume that the direction takenwhile traversing the
contour obeys the rule of the right screw with respect to the direction of the tangent
vector τ⃗ to the line D (see Figure 5.2). The vector b⃗ is called the Burgers vector of a
dislocation. Its possible values are defined by a crystallographic structure of the body.
For the edge dislocation, the vectors b⃗ and τ⃗ are orthogonal. An edge dislocation is
usually denoted by the symbol ⊥. The vertical line indicates from which side an extra
half-plane of atoms is inserted.

A screw dislocation is a straight line parallel to the vector b⃗. The presence of a
screw dislocation in a crystal turns the crystal lattice planes into a helicoidal sur-
face similar to a spiral staircase. Figure 5.3 displays the scheme of the arrangement of
atomic planes in the presence of a screw dislocation that coincides with the line OO󸀠,
parallel to the Oz-axis. Any crystal plane containing the OO󸀠-axis can be a plane of
comparatively slight mechanical motion of a screw dislocation. The exit point of the
screw dislocation on the outer surface of the sample appears as a step (Figure 5.3).
During the process of crystallization, the atoms of a medium, depositing out of vapor
or a solution easily tack onto such a step, which triggers spiral growth of the crystals.
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O

O' Fig. 5.3: Part of a crystal with a screw dislo-
cation.

When using literature data for calculating the Burgers vector value, it is necessary to
follow the sign in formula (5.18). We have chosen the sign “+” on the right-hand side
of (5.18). In this case, the dislocations, which are codirectional to the Oz-axis, have the
Burgers vectors: b⃗ = (b, 0, 0) and b⃗ = (0, 0, b), where b > 0 (see Figures 5.1 and 5.3).

The dislocations can be merged in the event of there being two dislocations with
opposite (identical) directions of theBurgers vector and identical (opposite) directions
of the dislocation lines. Such dislocations annihilate when their lines coincide. As a
result, the two defects disappear and the perfect crystal lattice is restored (see Fig-
ure 5.4). The excess of energy is released in the form of thermal lattice vibrations and
acoustic emission [29].

1

2
(a) (b)

Fig. 5.4: Annihilation of edge dislocations: (a) two
“extra” atomic half-planes; (b) forming a regular
atomic plane as dislocations merge.
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When subjected to external forces, the edge dislocation canmove relatively easily only
in its slip plane. The latter is a crystal plane passing through the Burgers vector and the
dislocation line. As a result of the dislocationmoving, it breaks and reconnects bonds
between, not all atoms in the slip plane, but only between those near the dislocation
line at a given moment (Figure 5.5). Therefore, the local shear strain can be observed
at relatively low external stresses.

Fig. 5.5: The scheme of motion of an edge dislocation in the slip plane.

Imagine that the dislocation shown in Figure 5.1 moves in its slip plane towards the
left edge of the crystal. It is easy to see (Figure 5.5) that when it reaches this edge,
an irreversible plastic deformation of the body occurs. The entire upper half of the
body shifts relative to the lower half by a distance equal to the lattice constant. The
body in the final state has a regular crystal lattice, which means it turns out to be
unstressed. It is important to note that this dislocation displacement requires a stress
two or three orders of magnitude less than for disrupting all interatomic bonds in the
slip plane, and shifting the entire upper half of the crystal with respect to the lower
half on the lattice constant. The problem of the plastic shear of the upper part of a
crystal with respect to the lower part is in some sense analogous to the problem of
moving a carpet along the floor surface. It is not easy to move a carpet as a whole even
for a short distance. But it is not difficult to obtain the same result by forming small
wrinkles in the carpet and then to shift them from one edge of the carpet to the other.
As mentioned earlier, the wrinkles on the carpet are analogous to the dislocations.
It can be said that dislocations are elementary carriers of plasticity.

At high temperatures, the edge dislocationmakes it possible to move perpendicu-
lar to the slip plane. This displacement is slow and limited, so it is called a dislocation
climb. The climb of the edge dislocation is associated with the diffusionmass transfer
and is accomplished, either by detaching atoms from the edge of the extra half-plane,
or by attaching them to it (Figure 5.6).

Due to the fact that the Burgers vector along the dislocation line is constant (see
definition (5.18)), the curvilinear dislocation can consist of segments of edge, screw,
or mixed types. The topological restriction (5.18) also guarantees nonbreaking off the
dislocation line inside the crystal. It either ends at the surface of the crystal or forms
a closed loop.

The dislocation line can branch out into several separate dislocations. Suppose
the dislocation line l1 with the Burgers vector b⃗1 branches at a point A into two dis-
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Fig. 5.6: Climb of an edge dislocation: atoms of the extra half-plane pass into vacant lattice sites.

location lines, l2 and l3, with Burgers vectors, b⃗2 and b⃗3, respectively (Figure 5.7). In
this case, the dislocations l1, l2, and l3 are said to form a node. Nowwe use the defini-
tion (5.18) and choose a single contour γ near the pointM1, and another contour near
the pointM2. Since the complete Burgers vector is preserved along the dislocation, we
obtain b⃗1 = b⃗2 + b⃗3. More than three dislocations can converge in one node.

M1

A

M2

dl2

dl3

dl1
ds

ds

Fig. 5.7: A node formed by three dislocations.

Elastic dislocation fields are long range, which causes regular dislocation structures
to form. The point is that, in equilibrium configurations of the type of regular walls or
networks the dislocations consist of, the elastic fields from different dislocation lines
are compensated and do not propagate over large distances. As a result, the energy of
the entire dislocation system drastically diminishes. The dislocation network usually
contains a large number of nodes and can be two- and three-dimensional. The Burg-
ers vectors of dislocations forming a triple node always lie in a single plane. Therefore,
when it is possible for only triple nodes to exist, the dislocation network is topologi-
cally two-dimensional. However, at great distances, it can be distorted and can inter-
sect itself.

From microscopic examination, it directly follows that the dislocation loop can
move relatively easily without breaking the crystal continuity only along a certain
surface, which is called the slip surface. The latter is a cylindrical surface Σg whose
generatrices are parallel to the vector b⃗, and a closed dislocation line D serves as a
guiding line (Figure 5.8). The shift of the dislocation loop by the vector b⃗ along the
surface Σg changes no interatomic spacing near Σg. In this case, plastic deformation
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D

Σg

b

b

Σg

D

b

(a) (b)

Fig. 5.8: The slip surfaces of dislocation loops: (a) the loop D can be contracted to a point by sliding;
(b) the dislocation line D does not contract to a point.

is not accompanied by local changes in the volume of the medium. After the local
shift, the crystal is again in equilibrium, albeit in an internally stressed state. Such a
displacement of dislocations under the action of external forces is called sliding.

Depending on their position on the slip surface, the dislocation loops are divided
into two types. A dislocation loop of the first type can be contracted to a point by slid-
ing. Slip of a dislocation loop of the second type around the surface Σg never makes
the loop infinitely small. The second type dislocation loop has the smallest dimen-
sions when it lies in a plane perpendicular to the vector b⃗. At the same time, there can
be scenarios for the dislocations transition to another slip surface by sliding (or to an-
other slip plane, when it comes to a flat dislocation loop). Let us explain the assertion.

Imagine that a part of the dislocation line is lying in its slip plane, and that it has
a screw type segment on which τ⃗‖b⃗ (Figure 5.9 (a)). Also, recall that a screw disloca-
tion can generate many slip planes. Any crystal plane parallel to the vector b⃗ can be
taken as the slip plane of the screw segment of the dislocation loop. This plane can
cross the slip plane of the remaining part of the dislocation at an angle. The screw
segment δl0 of finite length slides in a new sliding plane, taking the form of an arc

b

τ

D
b

b

D
δl0

δl1

(a) (b)

Fig. 5.9: Transverse slip: (a) the initial slip plane of dislocations; (b) the outcrop of the screw seg-
ment δl0 of dislocations onto the transverse slip plane.
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δl1 (Figure 5.9 (b)). A similar dislocation emergence from the old slip plane is called
transverse sliding.

Sources of Dislocations

To ensure significant plastic deformation in a crystal, mechanisms for dislocations
to nucleate and multiply must exist. The main ones are the Frank–Read sources and
double transverse sliding.

(b)(a)

A B
b A B

b

Fig. 5.10: A dislocation segment fixed in two
points.

The Frank–Read source can be a segment of the dislocation secured at the ends at
points A and B. This may be a segment between two nodes of a dislocation net-
work (see Figure 5.10 (a)) or between two breakpoints on a single dislocation (Fig-
ure 5.10 (b)). Under the applied stress, the initially straight line segment one (Fig-
ure 5.11) is bent into loop two, then into loop three. Two loop elements in line four
closely approach each other. After merging, they annihilate. The next configuration
consists of the closed loop five and short AB segment of the dislocation. It is worth
pointing out that the regular crystal lattice is restored in the merge region. Now, loop
five freely extends as a separate dislocation line. The short segment again begins to

1

2

3

4

5

A B

Fig. 5.11: The Frank–Read source.
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b

b

b

A

B

A'

B'

Fig. 5.12: Scheme of double transverse sliding.

pass successive configurations 1, 2, 3, 4,. . . The dislocation AB segment that gives rise
to a sequence of closed dislocation loops is called the Frank–Read source.

The Frank–Read source is often formed as a result of so called double transverse
sliding. Suppose that the screw AB segment suffers transverse sliding (Figure 5.12) to
form the loop AA󸀠B󸀠B in a new slip plane. Consider such a dislocation. Being purely
screw, the segment A󸀠B󸀠 can pass into the new slip plane, parallel to the original one
by double transverse sliding. If the points A󸀠 and B󸀠 are unmovable, the dislocation
segment A󸀠B󸀠 can act as the Frank–Read source.

Having ascertained the reason for the weakening of the strength of crystals with
dislocations, two alternative ways of obtaining materials with increased strength can
be indicated. One of them is the use of crystals that are almost, or completely, free
from dislocations. However, this method is not widely used in producing composite
reinforced materials with high strength and heat resistance.

The strength and plasticity of crystals depends on how easily dislocations move
in them. Therefore, an opposite method has become in demand. It is the creation of
materials with a large number of defects in the crystalline structure. Defects, which
can also be other dislocations, impede the dislocation motion. Surrounding the dis-
locations, the elastically distorted region of the crystal scatters phonons, conduction
electrons, and other quasiparticles. The scattering processes take away some of the
energy from the moving dislocations and make them decelerate.

Hardening and Plastic Deformation

As Frank and Read have shown, the plastic deformation process causes a huge num-
ber of new dislocations. When moving, the dislocations penetrate one through the
other. Since each dislocation in the crystal is a place of the violated order, attraction
and repulsion forces arise between the dislocations. As a result, in some metals, the
resistance to the dislocation motion increases by more than one hundred times. That
is what accounts for the hardening of crystals during plastic deformation.
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Dislocations and Impurities

The addition of impurities to a substance usually enhances the strength and hardness
by impeding themotion of dislocations. Let us clarify this statement using an example
of an edge dislocation (Figure 5.1). The lattice above the dislocation line is somewhat
compressed, and below it, it is stretched. Because of this, the impurity atoms form a
cluster mainly in the region of the dislocations. Namely, atoms whose dimensions are
smaller than the sizes of the main lattice atoms are located in the compressed part,
i.e., above the dislocation line. The larger atoms are arranged under it in the stretched
part. The accumulation of impurity atomsnear dislocations requires a greater stress to
initiate the process of the dislocation traveling. This means hardening of the body. As
calculations show, a rather small number of impurity atoms accumulated at the dis-
locations (of the order of 0.01 percent or less) are enough for hardening. This explains
the strong influence of impurities on the mechanical properties of solids.

Simultaneously, if an alloy is a mixture of two kinds of almost identically sized
atoms (for example, gold and silver), the hardening is very weakly expressed. In such
cases, the impurities do not accumulate at dislocations; in any other place of the lat-
tice, their energy is about the same.

Dislocations and Heat Treatment

Long term high temperature treatment followed by slow cooling of bodies increases
the mobility of dislocations. Is happens due to the growth of the kinetic energy of
atoms at a high temperature. Impurity atoms clustered near dislocations diffuse, and
partially leave their sites at the dislocations to equalize their concentration through-
out the body. The heat treated dislocations movemore freely, and plastic deformation
of the body is possible to observe at lower stresses.

Special heat treatment processes, includingheating to a certain high temperature,
followed by immediate cooling of bodies are more complicated. After such heat treat-
ments, crystals of one, or a few, strengthening phases precipitate in the alloy. These
phases strongly violate the regularity of the crystal structure. The resulting fine crys-
talline multiphase structure exerts great resistance to the motion of dislocations. At
high temperatures, diffusion processes may lead to enlargement of the fine crystalline
structure of the alloy, to a dissolution of precipitates of the strengthening phases, or
to a disappearance of distortions of the crystal lattice. In high temperature alloys, the
diffusion processes proceed slowly enough, which ensures the long term preservation
of the strengthened state at high temperatures.
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Dislocations and Destruction

Under certain conditions, local elastic stresses causedby largedislocation clusters can
become significant. As a result of the stress concentration, a disruption of the bonds
linking the atoms of the neighboring crystal planes and the initiation of microcracks
can occur. Further growth andmerging of several microcracks lead to the destruction
of the crystal. One such scenario was proposed and analyzed by Stroh [30].

S

x Fig. 5.13: The formation of a wedging crack as head
dislocations unite into the cluster.

Let us look at a set of a large number of identical rectilinear edge dislocations located
parallel to each other in one and the same slip plane. Suppose an external shear stress
pushes the dislocations towards a stopper S located there too (Figure 5.13). The stop-
per can be, for example, a grain boundary or the inclusion of a strengthening phase.
With sufficient magnitude of the external stress, the head dislocations of the cluster
approach each other at a distance in the order of the interatomic distance. Then, the
internal stresses near the stopper below the slip plane stretch the lattice extensively.
They increase so much that they may disrupt the bonds between adjacent atomic
planes and form a wedging crack.

5.3 Basic Equations of the Theory of Dislocations

Having gained the atomic understandings underlying the theory of dislocations, we
go over to the discussion of its quasiclassical equations. Condition (5.18) stands for a
topological singularity of the displacement field of a crystal as dislocations occur. The
topological singularity is associated with the ambiguity of a field u⃗(x⃗, t). The func-
tion u⃗(x⃗, t) receives a given increment b⃗ when traversing around the dislocation line.
Certainly, there is no physical ambiguity because the increment b⃗ corresponds to an
additional displacement of the crystal atoms by one of the lattice periods. Such a shift
does not change the crystal states.

A general property of the functions with topological singularities is that some of
their derivatives do not commute with each other in the domain of existence of the
singularities. It is not hard to persuade ourselves that this statement holds true if one
rewrites the definition of dislocation (5.18) in the differential form. We use the Stokes’
theorem and transform the integral along the contour γ into an integral over the sur-
face S spanned by this contour:

∮
γ

duk = ∮
γ

dxp∂puk = ∫
S

dSpεpmn∂m∂nuk = bk . (5.19)
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In what follows, the contracted notations ∂p = ∂/∂xp adopted in the field theory
are used to simplify the formulas.We enumerate the spatial vector components by the
letters of the Latin alphabet: p,m, . . . = 1, 2, 3. The letters of the Greek alphabet will
appear later when listing all the space time coordinates: xμ (μ = 0, 1, 2, 3). Here time
is written as t = x0.

The right-hand side of (5.19) differs from zero, since bk ̸= 0. The tensor εpmn is
antisymmetric: εpmn = −εpnm, therefore the left-hand side of (5.19) does not vanish,
only when the second derivatives of the field u⃗(x⃗, t) are not commutative:

∂m∂nuk − ∂n∂muk ≡ [∂m , ∂n] uk ̸= 0 .

Here and below, all the derivatives are interpreted in accordance with the theory of
generalized functions.

The space time domain, where

[∂μ , ∂ν] uk ̸= 0 ; μ, ν = 0, 1, 2, 3 ; k = 1, 2, 3 , (5.20)

is called a domain of the topological singularity of the function u⃗(x⃗, t).
In the problem at hand, the derivatives ∂muk and ∂0uk correspond to the observ-

able quantities and, consequently, must be single valued functions with higher com-
muting derivatives over the coordinates xμ:

∂μ∂ν∂αuk − ∂ν∂μ∂αuk ≡ [∂μ , ∂ν] ∂αuk = 0 . (5.21)

The relations (5.20) and (5.21) express general mathematical conditions for the ex-
istence of topological singularities. We show that the definition of a dislocation (5.19)
allows us to specify them.

The dislocation line can be defined through a spatial parameter σ and time t:⃗l = ⃗l(σ, t), σ1 ≤ σ ≤ σ2. We determine the tensor of dislocation density:

Dik(x⃗, t) = bk
σ2∫
σ1

dσ ∂li (σ, t)
∂σ

δ(3) (x⃗ − ⃗l (σ, t)) , (5.22)

where δ(3)(x⃗) is the spatial delta function. Then the right-hand side of (5.19) can be
represented as an integral of Dik over the surface S, spanned by the contour γ:

∫
S

dSpDpk = bk ∫
S

dSp
σ2∫
σ1

dσ
∂lp (σ, t)

∂σ
δ(3) (x⃗ − ⃗l (σ, t)) = bk . (5.23)

Let us elucidate the finding. The dislocation line intersects the surface S only at a sin-
gle point. The argument of the delta function at this point vanishes. The integral of the
delta function over the small volume ∆Sp∆lp containing the indicated point is equal
to unity. The remaining elements of the surface S and the line ⃗l(σ, t) do not contribute
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to the integration. Hence, formula (5.23) follows. By the arbitrariness of the contour,
the equality of two integrals:

∫
S

dSpεpmn∂m∂nuk = ∫
S

dSpDpk ,

implies the equality of the integrands:

Dpk = εpmn∂m∂nuk . (5.24)

From (5.24), using the identity:

εrspεpmn = δrmδsn − δrnδsm , (5.25)

we find an explicit relationship between the noncommutative derivatives of the field
u⃗(x⃗, t) over the spatial coordinates:

∂r∂suk − ∂s∂ruk = εrspDpk , (5.26)

where the tensor Dpk is determined by expression (5.22).
Combining formulas (5.21) and (5.24), we get the following important equations:

∂pDpk = 0 ; ∂0Dpk + εpmn∂mInk = 0 , (5.27)

where Ink = ∂n∂0uk − ∂0∂nuk.
The first of the equations (5.27) expresses the constancy of the Burgers vector

along the dislocation line. We verify that it determines more precisely the geometric
properties of the dislocation line in representation (5.22). Using (5.22), we calculate the
quantity ∂pDpk:

∂pDpk(x⃗, t) = bk
σ2∫
σ1

dσ
∂lp (σ, t)

∂σ
∂
∂xp

δ(3) (x⃗ − ⃗l (σ, t)) =
= −bk σ2∫

σ1

dσ
∂lp
∂σ

∂
∂lp

δ(3) (x⃗ − ⃗l (σ, t)) =
= −bk σ2∫

σ1

dσ ∂
∂σ δ
(3) (x⃗ − ⃗l (σ, t)) =

= bk [δ(3) (x⃗ − ⃗l (σ1, t)) − δ(3) (x⃗ − ⃗l (σ2, t))] .
Here, ⃗l(σ1, t) and ⃗l(σ2, t) are the edge points of the dislocation line at a time t. It is
seen from the relationship obtained that the first of the continuity equations (5.26) is
satisfied inside the body only when the line of dislocation is closed, or emerges on the
surface of the body.
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Comment

Having emerged on the external surface of the body, the dislocation changes the
boundary conditions. The elastic fields inside large crystals are usually said to de-
pend weakly on the edge points of dislocations on the surface of the body. Such an
assumption may be violated in samples of small crystal sizes [29].

The second of the continuity equations expresses the conservation law of the
Burgers vector for the motion of a dislocation. Since the form of the tensor Dpk is
known, an explicit expression for the density tensor of the dislocation flow Ink can be
found from the second equation (5.27). We recall that the quantity Ink characterizes
the noncommutativity of the derivatives of the field u⃗(x⃗, t) over the spatial coordinates
and time. Using the representation (5.22), we compute ∂0Dpk:

∂0Dpk(x⃗, t) = bk
σ2∫
σ1

dσ [∂2lp (σ, t)∂σ∂t δ(3) (x⃗ − ⃗l (σ, t)) + ∂lp (σ, t)
∂σ

∂
∂t δ
(3) (x⃗ − ⃗l (σ, t))] =

= bk
σ2∫
σ1

dσ [ ∂2lp
∂σ∂t δ

(3)(x⃗ − ⃗l) − ∂lp
∂σ

∂lm
∂t

∂
∂xm

δ(3)(x⃗ − ⃗l)] .

We transform the first term on the right-hand side of the equation by integration by
parts:

σ2∫
σ1

dσ
∂2 lp
∂σ∂t

δ(3)(x⃗ − ⃗l) = ∂lp (σ, t)
∂t

δ(3) (x⃗ − ⃗l (σ, t))󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
σ=σ2

σ=σ1
− σ2∫
σ1

dσ
∂lp
∂t

∂
∂σ

δ(3)(x⃗ − ⃗l) =
= − σ2∫

σ1

dσ
∂lp
∂t

∂lm
∂σ

∂
∂lm

δ(3)(x⃗ − ⃗l) =
= σ2∫
σ1

dσ
∂lp
∂t

∂lm
∂σ

∂
∂xm

δ(3)(x⃗ − ⃗l) .
In the case of closed dislocation loops, the extra integral terms vanish. For disloca-
tions emerging on the body surface, these terms also vanish if one takes the values
of x⃗ inside the body. Applying identity (5.25), we transform the final result:

∂0Dpk(x⃗, t) = bk
∂

∂xm

σ2∫
σ1

dσ [ ∂lp∂t ∂lm
∂σ − ∂lp

∂σ
∂lm
∂t ] δ(3)(x⃗ − ⃗l) =

= εpmn
∂

∂xm
[[bkεnrs

σ2∫
σ1

dσ ∂lr
∂t

∂ls
∂σ

δ(3)(x⃗ − ⃗l)]] . (5.28)

Comparing (5.28) with the second equality (5.27), we derive a formula of the relation-
ship between mixed derivatives of the field u⃗(x⃗, t) over the spatial coordinates and
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time:

Ink = ∂n∂0uk − ∂0∂nuk = bkεnsr
σ2∫
σ1

dσ ∂ls
∂σ

∂lr
∂t

δ(3)(x⃗ − ⃗l) . (5.29)

Whenadislocationmoves along the slip surface (suchamotion is called conservative),
the condition Inn = 0 is fulfilled, since in this case, the vectors bk, ∂ls/∂σ, ∂lr/∂t lie
in one plane.

The basic dynamic equation of the elasticity theory (5.13) in the new notations
appears as: − ρ0∂20ui + cijkl∂j∂luk = 0 . (5.30)
Next, we discuss the case of an isotropic medium with the tensor of elastic con-
stants (5.14):

cijkl = cjikl = cklij = cijlk = λδijδkl + μ (δikδjl + δilδjk) . (5.31)

To calculate the properties of crystals with dislocations, instead of the ambiguous
functions u⃗i(x⃗, t), it is more convenient to use the distortion tensor βni = ∂nui, and
the displacement velocity 𝑣i = ∂0ui of the medium particles. This is because they are
single valued functions of spatial coordinates xk and time x0. The equations for cal-
culating the fields βni(x⃗, t) and 𝑣i(x⃗, t) are obtained by differentiating the equation
(5.30) over the variables xk and x0, respectively. After differentiation, the derivatives
are rearranged in accordance with the rules (5.21), (5.26) and (5.29). This leads to the
appearance of the sources:

Dik(x⃗, t) = bk
σ2∫
σ1

dσ ∂li (σ, t)∂σ δ(3) (x⃗ − ⃗l (σ, t)) ;

Ink(x⃗, t) = bkεnsr
σ2∫
σ1

dσ ∂ls (σ, t)∂σ
∂lr (σ, t)

∂t δ(3) (x⃗ − ⃗l (σ, t))
in the resulting equations:

−ρ0∂20βni + cijkl∂j∂lβnk = ρ0∂0Ini − cijklεnlp∂jDpk ;−ρ0∂20𝑣i + cijkl∂j∂l𝑣k = cijkl∂j Ilk .
(5.32)

These sources simulate changes in the topological properties and microstructure of
the medium due to the presence of dislocations. The attractiveness of this approach
lies in excluding the ambiguous function u⃗i(x⃗, t) from consideration. The single val-
ued and continuous fields βni(x⃗, t) and 𝑣i(x⃗, t) are primary; almost all observed quan-
tities may be expressed through them.

A Screw Dislocation and Its Equation of Motion

Let us examine the characteristic features of the theory of dislocations using an ex-
ample of a screw dislocation in a crystal. The elastic field of the screw dislocation is
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particularly simple and admits an illustrative interpretation in the language of elec-
trodynamics. This allows us to explain a number of key results of the theory without
resorting to tedious computations.

Consider a rectilinear screw dislocation perpendicular to the plane Oxy of an un-
bounded body:

⃗l (σ, t) = (l1(t), l2(t), σ) , −∞ < σ < ∞ ; b⃗ = (0, 0, b) .
Because of the symmetry of the problem, the displacement field of a dislocation has
the form u⃗ = (0, 0, u), where u depends only on the coordinates x1, x2 and the time
x0. We compare the nonzero derivatives β13 = ∂1u, β23 = ∂2u, ∂0u and the vectors
E⃗ = (β23, −β13, 0) and H⃗ = (0, 0, ∂0u/c), where c ≡ ct = √μ/ρ0 is the speed of trans-
verse sound in amedium. In this case equations (5.31) and (5.32) coincide exactly with
the equations of classical electrodynamics for the electric andmagnetic field strengths
that accompany the motion of a rectilinear charged filament:

− 1
c2

∂2E⃗
∂t2

+ ∆E⃗ = 4π∇⃗ρ + 4π
c2

∂ ⃗j
∂t ; − 1

c2
∂2H⃗
∂t2

+ ∆H⃗ = −4πc rot ⃗j , (5.33)

where

∆ = ∂21 + ∂22 , ∇⃗ρ = (∂1ρ, ∂2ρ, 0) , rot ⃗j = (0, 0, ∂1 j2 − ∂2j1) .
The charge (ρ( ⃗r, t)) and current ( ⃗j( ⃗r, t)) densities of the filament are expressed in terms
of the dislocation parameters:

ρ = b
4π δ
(2) ( ⃗r − ⃗l⊥(t)) , ⃗j = b

4π (V1(t), V2(t), 0) δ(2) ( ⃗r − ⃗l⊥(t)) .

Here, δ(2)( ⃗r) is the two-dimensional delta function of the coordinates ⃗r = (x1, x2) and
the vectors ⃗l⊥ = (l1(t), l2(t)) and ∂ ⃗l⊥/∂t = (V1, V2) specify the filament position in
the plane Oxy and the speed of its movement. The coincidence of the two problems
becomes clearer if one rewrites relations (5.26) and (5.29) through E⃗, H⃗, ⃗j, ρ and uses
them to replace equations (5.33) by the equivalent system of Maxwell equations:

div E⃗ = 4πρ , rot E⃗ = −1c ∂H⃗∂t ,

rot H⃗ = 4π
c

⃗j + 1
c
∂E⃗
∂t

, div H⃗ = 0 .

Due to the symmetry of the problem, the last equation is satisfied identically. It is
given for the complete coincidence of the theory of a screw dislocation with two-
dimensional electrodynamics [31].

Well known results of electrostatics allow us to immediately come to the nonzero
components of the distortion tensor of the screw dislocation:

E⃗⊥ = (β23, −β13) = (∂2u, −∂1u) = b
2π

⃗r
r2

. (5.34)
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The integration of equation (5.34) gives the displacement field u⃗( ⃗r), that is written
up to integration constants, in the form:

u = b
2π arctg x2

x1
outside the singular line ⃗r = 0. The above formula is not quite appropriate because
the function arctg(x2/x1), by definition, has the narrow range of variation: −π/2 ≤
arctg(x2/x1) ≤ +π/2 and, therefore, performs a double jump by ±π when moving the
vector ⃗r along the plane Oxy. In fact, the designation arctg(x2/x1) implies a branch of
the much valued logarithmic function:

φ( ⃗r) ≡ 1
2i ln

x1 + ix2
x1 − ix2 . (5.35)

This function is single valued and continuous in the Oxy-plane with a cut. Usually,
the half-plane {x2 = 0, x1 ≥ 0} is chosen as the cut, and the branch is specified
by the condition of making expression (5.35) vanish on the upper edge of the cut,
where x2 = +0, x1 ≥ 0. Then formula (5.35) determines the polar angle ranged within
0 ≤ φ ≤ 2π, when the vector ⃗r runs through points of the Oxy-plane with a cut. From
the mathematical point of view, the choice of the cut is completely arbitrary and de-
fines only the direction the polar angle is measured from. However, difficulties of a
physical nature can arise. On the cut, the displacement field undergoes a jump by a
lattice constant. Such a jump does not violate the correct structure and continuity of
the crystal only when the cut coincides with the slip plane or the slip surface of the
dislocation (see Figure 5.3). Therefore, to make the displacement field unambiguous,
we should always choose the cuts coincidedwith a part of the dislocation slip surface.

In the linear theory of elasticity, the tensor of internal elastic stresses is related to
the strain tensor εij = (βij + βji)/2 of a medium by Hooke’s law:

σij = cijklεkl = λεppδij + 2μεij . (5.36)

In the presence of a screw dislocation, only the shear stress components are nonzero:

σ13 = σ31 = μβ13 = −bμx2
2πr2

; σ23 = σ32 = μβ23 = bμx1
2πr2

. (5.37)

According to (5.34) and (5.37), the distortions and stresses generated by the screw dis-
location decrease slowly with increased distance (by the law ∼r−1). The mentioned
feature is typical of all rectilinear dislocations.

It is useful to calculate the energyof anelastic field createdbya rectilinear disloca-
tion in a crystal. The elastic energy per unit dislocation length is given by the integral:

WD = 1
2 ∫ εikσikdx1dx2 = ∫[ λ2 ε2pp + με2ik]dx1dx2 . (5.38)

For a screw dislocation, the integral (5.38) is equal to:

WD = μ
2 ∫(β213 + β223) dx1dx2 = μb2

4π ∫ dr
r . (5.39)
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The integration over r must be, in general, made within the limits (0,∞). However,
the integral diverges logarithmically on both limits. The divergence for r = 0 is due to
the inapplicability of the continuum theory of elasticity at interatomic distances. As
the lower limit of integration, we should take the value of r0 of the order of the lattice
constant a. In this case, we omit the dislocation core energy W0, whose maximum
value is notdifficult to estimate. Indeed, in thedislocation corewith the cross sectional
area ∼b2, the relative displacement of atoms is of the order of unity. Hence, we have:

W0 ∼ μb2 . (5.40)

The upper cutoff parameter of the divergent integral (5.39) is determined by the mag-
nitude of R in the order of the crystal size. This leaves us with:

WD = μb2

4π
ln R

r0
. (5.41)

Comparing (5.40) and (5.41), we conclude that, under the condition ln(R/r0) > 1, for-
mula (5.41) yields the main part of the dislocation energy. At the same time, the “big
parameter” ln(R/r0) is only theoretically too large. Taking the ratio R/r0 ∼ 105–106

(although, it is often smaller), we come to a conclusion that ln(R/r0) is slightly differ-
ent from 4π. Therefore, for a rough estimate, the energy per unit length of any dislo-
cation is accepted as being equal to WD ≈ μb2. The weak logarithmic dependence of
the energy, and other observable quantities on the cutoff parameters, does not come
across any serious difficulties in theoretically describing dislocations.

It is interesting to note that a dislocation in crystals of finite dimensions can expe-
rience attraction from their surface. Consider a screw dislocation near the boundary
of a crystal occupied by the region x ≥ 0. Suppose that the dislocation is parallel to
the axis Oz and intersects the plane Oxy at a point (x0, 0). In other words, it is at a
distance x0 from the surface of the sample (Figure 5.14). External forces being absent,
the boundary conditions must be satisfied on the surface of the body:

σisns |σ = 0 , (5.42)

where n⃗ is the vector of the unit normal to the surface σ. Within the problem under
consideration, the boundary conditions (5.42) have a simple form:

σ31|x=0 = μβ13󵄨󵄨󵄨󵄨x=0 = 0 .

The same boundary conditions appear in electrostatics when calculating the electric
field strength E⃗ of a charged filament near the boundary of a conductor. The tangential
components of the field E⃗ must vanish on the surface of the conductor.

As in electrostatics, the distortion field of a screw dislocation in an elastic half-
space (x ≥ 0) can be computed by using the image method. In the region x ≥ 0,
the distortion field coincides with the field of a system of two dislocations in an un-
boundedmedium. The position and Burgers vector of the first of these are the same as
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x

y

x0

Fig. 5.14: A screw dislocation near the surface of a semi–infinite
crystal and its mirror reflection outside the crystal.

for a real dislocation inside the body. The second fictitious dislocation is placed out-
side of the body. Its position is amirror reflection of the position of the real dislocation
relative to the body surface. The Burgers vector direction of the fictitious dislocation is
opposite. The superposition of the fields of two dislocations inside the body (for x ≥ 0)

β13 = − b
2π [ y(x − x0)2 + y2

− y(x + x0)2 + y2
] ;

β23 = b
2π [ x − x0(x − x0)2 + y2

− x + x0(x + x0)2 + y2
] .

satisfies equations (5.31) and (5.32) with the correct boundary conditions.
The charged filament is attracted to the surface of the conductor in the same way,

as if its mirror image with an opposite charge was behind the surface. Thus, we con-
clude that the dislocation near the body surface might experience the force of attrac-
tion from the surface. Usually, there are various barriers to keep the dislocation from
moving to the boundary of the crystal. The dislocation emergence on the crystal sur-
face is equivalent to annihilation of the real and fictitious dislocations, and should be
accompanied by a burst of acoustic emission. The authors of the work [32] detected
sound radiation caused by the emergence of dislocations on the free crystal surface.

If a screw dislocation with an axis Oz is at the center of an unbounded plate with
a thickness of d, the influence of the plate surfaces (y = ±d/2) on the dislocation is
equivalent to interaction with a sequence of fictitious dislocations with alternating
directions of the Burgers vector. The positions of the fictitious dislocations outside the
plate are determined by a series of reflections from both plate surfaces (Figure 5.15).

It is not difficult to complete the summation of the fields by means of formulas:

y
x2 + y2

= 1
2 ( 1

y + ix + 1
y − ix) ; x

x2 + y2
= 1
2i ( 1

y − ix − 1
y + ix) ;

ctg ξ = ∞∑
n=−∞

1
ξ + nπ .

(5.43)

We achieve the final result:

β13 = − b ch (πx/d) sin (πy/d)
d [ch (2πx/d) − cos (2πy/d)] , β23 = b sh (πx/d) cos (πy/d)

d [ch (2πx/d) − cos (2πy/d)] . (5.44)
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y

xdd

Fig. 5.15: A screw dislocation in the center of a plate and a series
of its mirror reflections with alternating directions of the Burgers
vectors.

At small distances (r < d/π) from the dislocation line, the distortion field (5.44) is the
same as for a dislocation in an unbounded medium (5.34). However, as the distance
grows, beginning from a distance of the order of the plate thickness (in the region|x| > d/π), the elastic dislocation field in the plate exponentially tends to zero. In the
slip plane (when y = 0), the dislocation produces a short range but nonlocal shear
stress:

σ23 = μb
2d sh (πx/d) .

This example shows that the real or fictitious dislocations, combined into periodic
structures, strongly screen the elastic fields.

In the external electromagnetic field E⃗ext = (Eext1 , Eext2 , 0), H⃗ext = (0, 0, Hext), the
Lorentz force acts per unit length of the charged filament:

F⃗ = κE⃗ext + κ
c [V⃗ × H⃗ext] ,

where κ and V⃗ are the linear density of the electrical chargeandvelocity of thefilament
respectively. A similar forcemust act on the screw dislocation in the deformed crystal,
in the given external fields E⃗ext = (βext23 , −βext13 , 0), H⃗ext = (0, 0, ∂0uext/c). In this case,
the analog of the charge density is the quantity κ = μb. It is worth noting that the
deformation rate of the body and the velocity of dislocation motion are usually small
in comparisonwith the speed of sound c. Therefore, the second term in the expression
for the force acting on the dislocation is always neglected:

F⃗ ≈ κE⃗ext = b (σext23 , −σext13 , 0) . (5.45)

Inside the body, the components of the external stress tensor (σext13 , σ
ext
23 ) anddistortion

fields (βext13 , β
ext
23 )are relatedbyHooke’s law (5.36). Next,wederive a general expression

for the force that acts per unit of lengthof not only the screwdislocation, but anyunder
the external stress.

The equations of the screwdislocation like the equations of two-dimensional elec-
trodynamics are invariant under Lorentz transformations. The limiting speed of mo-
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tion of the screw dislocation is the speed of transverse sound c. As already mentioned
earlier, when analyzed, the dislocation motion, due to its typical velocity and small-
ness, allows the relativistic effects to be ignored. Nevertheless, it is reasonable to as-
sume that the intrinsic elastic energy per unit length of the screw dislocation (5.41) is
equivalent to its mass, in accordance with the analog of the Einstein formula:

m = WD
c2

= ρ0b2
4π ln R

r0
.

Then, the equation of the screw dislocation dynamic under a given shear stress field
coincides with the equation of motion of a nonrelativistic charged particle in two-
dimensional electrodynamics:

m (V̇1, V̇2, 0) = κE⃗ext = b (σext23 , −σext13 , 0) . (5.46)

Attention should be paid to the fact that equation (5.46) contains only nondissipative
forces of elastic origin. A real dislocation may be also subjected to additional forces,
which are inelastic in nature.

The works [33] and [34] give a theory of the intended approach. In these works
equations of motion of a dislocation loop, under both a field of given external stresses
and intrinsic dislocation stresses, are obtained. The inertial properties of the disloca-
tion loop are characterizedby a nonlocalmass tensor. After the derivation of the equa-
tion of motion for a single dislocation, it is also not difficult to write down a closed sys-
tem of equations in order to completely determine the evolution of dislocation loops
and an elastic field in a solid. Unfortunately, this system is too complicated, and there-
fore, rarely used to solve practical problems at present.

The Green’s Function Method in the Theory of Dislocations

In the case of anunboundedmedium, the basic equations of the theory of dislocations
may be solved in quadratures [33–38]. In this section effective formulas are obtained
for elastic fields of all possible dislocation systems, which are convenient for compar-
ing the predictions of the theory with experimental results.

To calculate the elastic fields of a moving dislocation, we introduce the dynamic
Green function; a decaying at infinity solution of the singular equation:

ρ0∂20Gim (x⃗ − x⃗󸀠, t − t󸀠) − cijkl∂j∂lGkm (x⃗ − x⃗󸀠, t − t󸀠) = δimδ(3)(x⃗ − x⃗󸀠)δ(1) (t − t󸀠) .

This solution must satisfy the causality condition: Gim(x⃗ − x⃗󸀠, t − t󸀠) = 0 for t < t󸀠. Be-
causeof theproperties of thehomogeneity of timeand themedium, theGreen function
depends on the differences of the arguments. Its explicit form is much easier to seek



5.3 Basic Equations of the Theory of Dislocations | 307

by the Fourier transformmethod. The further analysis uses the representation of [38]:

4πρ0Gij(x⃗, t) = 1
c2t R

δijδ(1) (t − R
ct
)+

+ ∂i∂j { 1R [(t − R
cl
)Θ (t − R

cl
) − (t − R

ct
)Θ (t − R

ct
)]} , (5.47)

R = |x⃗|, Θ(t) is the Heaviside step function:
Θ(t) = {{{

1 , t > 0
0 , t < 0 .

Using the Green function, after simple integrations, we find the solution of the sys-
tem (5.32):

βnm = ∞∫
−∞

dt󸀠 ∫d3 x⃗󸀠εnjhcijkl∂lGkm (x⃗ − x⃗󸀠, t − t󸀠)Dhi (x⃗󸀠, t󸀠) −
− ρ0
∞∫
−∞

dt󸀠 ∫ d3 x⃗󸀠∂0Gim (x⃗ − x⃗󸀠, t − t󸀠) Ini (x⃗󸀠 , t󸀠) ;

𝑣m = − ∞∫
−∞

dt󸀠 ∫d3 x⃗󸀠cijkl∂lGkm (x⃗ − x⃗󸀠, t − t󸀠) Iij (x⃗󸀠, t󸀠) .

(5.48)

Here and below, the sequence order of the indices sometimes changes to account for
the symmetry properties of the tensor (5.31).

When discussing acoustic radiation from amoving dislocation, the elastic modu-
lus tensor (5.31) is conveniently expressed in terms of the velocities of the longitudinal
cl = √(λ + 2μ)/ρ0 and transverse ct = √μ/ρ0 sound waves:

cijkl = ρ0 (c2l − 2c2t ) δijδkl + ρ0c2t (δikδjl + δilδjk) .
The delta function involving the expressions for the densities Dik and Ink (5.22),

(5.29), the elastic fields (5.48)may bewritten in the form of contour integrals along the
dislocation line x󸀠h(σ, t󸀠):

βnm = cijklbiεnjh
∞∫
−∞

dt󸀠
σ2∫
σ1

dσ
∂x󸀠h (σ, t󸀠)

∂σ
∂lGkm (x⃗ − x⃗󸀠, t − t󸀠) −

− ρ0biεnlh
∞∫
−∞

dt󸀠
σ2∫
σ1

dσ
∂x󸀠l
∂σ

∂x󸀠h
∂t󸀠 ∂0Gim (x⃗ − x⃗󸀠, t − t󸀠) ;

𝑣m = −cijklbiεjnh ∞∫
−∞

dt󸀠
σ2∫
σ1

dσ ∂x
󸀠
n

∂σ
∂x󸀠h
∂t󸀠 ∂lGkm (x⃗ − x⃗󸀠, t − t󸀠) .

(5.49)
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Formulas (5.49) appear as integrals along the dislocation line and clearly illustrate
the fact that the dislocation is a linear topological singularity of the elastic field of the
crystal.

For a motionless dislocation, in formulas (5.48) and (5.49), we should put that
Dhi = Dhi(x⃗󸀠), Ini = 0, x󸀠h = x󸀠h(σ) and take into account that the integral

∞∫
−∞

dt󸀠Gkm (x⃗ − x⃗󸀠, t − t󸀠) = Gkm(x⃗ − x⃗󸀠)
gives a static Green’s function:

Gij(x⃗, t) = 1
8πμ [2δijR − λ + μ

λ + 2μ ∂i∂jR] . (5.50)

D

γ

Σ

n

τ

Fig. 5.16:Mutual orientation of the vectors ⃗τ, n⃗ and the
traversing direction along the contour γ.

The theory of dislocations often applies an alternative definition of a dislocation,
which is sometimes more convenient than the original one. A microscopic exami-
nation implies that the displacement field u⃗(x⃗, t) of the dislocation loop undergoes a
jump by a lattice constant along a part Σ of the slip surface bounded by the dislocation
line. This circumstance makes it possible to define the dislocation by the relation:

u⃗−(x⃗, t) − u⃗+(x⃗, t) = b⃗ ; x⃗ ∈ Σ , (5.51)

where u⃗+ and u⃗− are values of u⃗(x⃗, t) respectively on the upper and lower sides of the
surface Σ. The “upward” direction (a positive direction) is given by the direction of
the normal n⃗ toward the surface Σ. The directions of the vectors n⃗ and τ⃗ are connected
by the right screw rule (Figure 5.16). Rather than seeking an ambiguous displacement
field, we will seek the single valued and continuous function u⃗G(x⃗, t) outside the cut
of Σ, with a given jump (5.51) at the cut itself.

With the jump (5.51) happening, the distortion tensor of the field u⃗G(x⃗, t) must
have a singularity on the surface. The singular part is written using the delta function:

βPik(x⃗, t) = −∫
Σ

dSibkδ(3)(x⃗ − ⃗l) . (5.52)
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Here, the integration is over the surface Σ bounded by the dislocation line ⃗l(σ, t). The
singular distortion βPik simulates a plastic shear of the crystal by a lattice constant, and
is not caused by elastic stresses. This approach yields the total distortion tensor of the
medium as the sum:

βGik ≡ ∂iuGk = βik + βPik . (5.53)

Here, the elastic part βik of the distortion tensor is a single valued and continuous
function of coordinates. It determines internal stresses in a crystal with a dislocation:
σij = cijklβlk. Therefore, the new notations bring the basic equation (5.29) of the elas-
ticity theory to the form: −ρ0∂20uGi + cijkl∂jβlk = 0 .

Hence, taking (5.53) into account, we obtain a closed equation for calculating the sin-
gle valued but discontinuous function u⃗G(x⃗, t):

− ρ0∂20u
G
i + cijkl∂j∂luGk = cijkl∂jβPlk . (5.54)

It is interesting to note that the plastic distortion (5.52) is related to the dislocation
density tensor (5.22) by:

Dpk = −εpmn∂mβPnk . (5.55)

Formula (5.55) expresses the well known Stokes theorem.
Relation (5.55) can also be regarded as the result of integration of the second con-

tinuity equation (5.27) over time:

∂0Dpk + εpmn∂mInk = 0 .

From here, we receive another useful relation at once:

βPnk(x⃗, t) =
t∫
−∞

dt󸀠Ink (x⃗, t󸀠) . (5.56)

After traveling through the dislocation between twomaterial points initially displaced
by the vector (dx1, dx2, dx3), these are shifted along the coordinate axes by the seg-
ments dsPk = βPikdxi. Therefore, the quantity β

P
ik is said to describe the kinematics of

plastic deformation. According to (5.4), the local volume changes as the body deforms
are governed by the quantity ∂iuGi = βii + βPii ̸= 0. Relation (5.56) shows that there are
no volume changes due to the plastic deformation of the crystal when the dislocation
moves conservatively (Iii = 0): βPii = 0.

The solutionof equation (5.54) for thedisplacementfield caneasily be foundusing
the Green functions (5.47) and (5.50). After simple integrations, we obtain:

uGm = − ∞∫
−∞

dt󸀠 ∫d3 x⃗󸀠cijkl∂lGkm (x⃗ − x⃗󸀠, t − t󸀠) βPji (x⃗󸀠, t󸀠) .
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Or, subject to (5.52), we get the more detailed:

uGm = − ∞∫
−∞

dt󸀠 ∫
Σ(t󸀠) dS

󸀠
j cijkl∂lGkm (x⃗ − x⃗󸀠 , t − t󸀠) bi . (5.57)

For a stationary dislocation, the surface Σ is independent of t.

An Edge Dislocation

As an example, let us consider the problem of calculating the elastic fields of a recti-
linear edge dislocation. We choose the axis Oz along a dislocation line, and the axis
Ox along the Burgers vector: b⃗ = (b, 0, 0). It follows from the symmetry of the prob-
lem that the vector u⃗G lies in the plane Oxy and is independent of x3. After simple,
but tedious, computations we find from (5.57) that:

uG1 = b
2π [arctg y

x + 1
2 (1 − ν) xyr2 ] ; uG2 = b

4π (1 − ν) [(1 − 2ν) ln r
R + x2

r2
] , (5.58)

where x1 = x, x2 = y, r2 = x2 + y2; ν = λ[2(λ + μ)]−1 is the Poisson coefficient. For all
materials, it ranges within 0 ≤ ν ≤ 1/2. While regularizing the logarithmically diver-
gent integral in the second formula of (5.58), we have entered the cutoff parameter R
(the size of the crystal).

The components of the stress tensor have the form:

σ11 = −D y (3x2 + y2)
r4

, σ22 = D
y (x2 − y2)

r4
,

σ12 = D
x (x2 − y2)

r4
, σ33 = ν (σ11 + σ22) , (5.59)

where D = μb[2π(1 − ν)]−1. In contrast to the stresses of a screw dislocation, the
stresses (5.59) are anisotropic in the Oxy-plane.

The average hydrostatic pressure created in the medium by the edge dislocation

p = −1
3
σkk = 2

3 (1 + ν)D y
r2

has a simple physical meaning. Above the Ozx-plane (y > 0)where there is an “extra”
inserted half-plane in the crystal (Figure 5.1), the medium is compressed and, there-
fore, p > 0. Beneath the Ozx-plane (y < 0), we have p < 0 (the medium is stretched in
all directions).

Dislocation Systems

We will now write down the formulas for the tensors (5.22) and (5.29) of a single dis-
location in a form convenient for generalizations. Suppose the coordinates in these
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formulas are in a small neighbourhood of the point ⃗l(σ0, t) of the dislocation line. We
introduce a local Cartesian coordinate system in this region, pointing one of its axis
along the dislocation line. Then

δ(3) (x⃗ − ⃗l (σ, t)) = δ(1) [(σ − σ0) 󵄨󵄨󵄨󵄨󵄨∂ ⃗l/∂σ0󵄨󵄨󵄨󵄨󵄨] δ(2) ( ⃗ξ) ,

where ⃗ξ is a two-dimensional radius vector measured from the dislocation axis in a
plane perpendicular to the tangent vector to the dislocation line:

τ⃗ (σ0, t) = ∂ ⃗l
∂σ0

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∂ ⃗l
∂σ0

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
−1

.

After integration, the tensor (5.22) acquires the simple form of:

Dik = τibkδ(2) ( ⃗ξ) . (5.60)

The relation (5.29) admits an analogous expression:

Ink = εnsrτsbkVrδ(2) (ξ) , (5.61)

where Vr = ∂lr(σ0, t)/∂t is the velocity of the dislocation length element.
In the case of continuous distribution of the dislocations, instead of (5.60)

and (5.61), we can enter the tensors:

Dik(x⃗, t) = τibkn , Ink(x⃗, t) = εnsrτsbkVrn , (5.62)

where n is the number of dislocations in the direction of the vector τ⃗ (each dislocation
has the Burgers vector b⃗), intersecting a unit area perpendicular to τ⃗ at a given point.
If there are sets of dislocations with other n, b⃗, τ⃗, the total dislocation density and the
total dislocation flux density are obtained by summing over all the sets.

The tensors (5.62) are connected by the continuity condition:

∂0Dik + εilm∂lImk = 0 , (5.63)

which expresses the law of conservation of the Burgers vector in a medium. To show
it, let us integrate the relation (5.63) over a surface spanned by a closed line L. Intro-
ducing the complete Burgers vector B⃗ of dislocations covered by the line L, and using
the Stokes theorem, we come to:

∂Bk
∂t

= −∮
L

dxiIik .

It is clear to see from this equality that the integral on the right-hand side determines
the magnitude of the Burgers vector carried away by dislocations that cross the line L.
The element Iik governs the flux of the k-th component of the Burgers vector through
a unit area parallel to the i-th Cartesian axis.

The basic equations of the dislocation theory are linear. Therefore, the elastic
fields of the dislocation system represents a superposition of fields from individual
dislocations of the system. After redefinition of the tensors Dik, Iik, the formulas for
calculating the elastic fields of the dislocation system retain the form (5.48).
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5.4 Interaction of Dislocations with a Stress Field

Consider a dislocation loop D in a field of external (with respect to the dislocation)
elastic stresses σextik and find the force acting on the dislocation [29]. To do this, the
work δA spent by the external forces upon a small displacement of the loop should be
calculated. One can represent the work in the form:

δAD = ∮
D

FiδXidl , (5.64)

where δXi is the displacement of an element of a dislocation line and Fi are the com-
ponents of the force the elastic stresses per unit dislocation length act with.

Suppose that the dislocation displacement generates a change δui in the displace-
ment field. The work performed by the external stresses in a volume V0 of the body,
due to the dislocation displacement, being:

δA = ∫
S

σextik δukdSi , (5.65)

where S is the surface bounding the volume V0 of the body.
In the given case, it is convenient to use transformations of the integral (5.65) to

apply the Gauss theorem. Therefore, the displacement field u⃗ around the dislocation
should be regarded as a single valued function of coordinates. With this approach,
the field u⃗ has a discontinuity along the surface Σ spanned by the dislocation loop. To
exclude discontinuity points, we surround the loop with a closed surface S̃, outside
which (in a volume V󸀠) the function u⃗(x⃗, t) is continuous. Using the Gauss theorem,
we find:

δA = ∫
V 󸀠

∂l (σextik δuk)d3 x⃗ − ∮̃
S

σextik δukdSi =
= ∫
V 󸀠

(∂lσextik ) δukd3 x⃗ + ∫
V 󸀠

σextik δεikd
3 x⃗ − ∮̃

S

σextik δukdSi . (5.66)

In the second term, given the symmetry property σextik = σextki , we replace the distortion
field ∂iuk by the deformation field: εik = (∂iuk + ∂kui)/2. As a normal to the surface
S0, the external normal with respect to the volume V󸀠 is taken.

S0

hD

D

ρ

Σ

Fig. 5.17: Scheme of a surface S0 and a cut Σ.
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Inside the crystal, the external stress field satisfies the equilibriumconditions: ∂i σextik =
0. Therefore, the first integral on the right-hand side of (5.66) disappears. To calcu-
late the last two integrals, we choose a surface that passes along the upper and lower
banks of the cut Σ (with a gap h), andwhich contains a thin tube S0 of radius ρ around
the dislocation line D (scheme of the surface S0 is shown in Figure 5.17).

When the cut edges come closer to each other (h → 0) and the tube radius de-
creases (ρ → 0), the integral over the volume V󸀠 (because of the continuity of the
fields σextik and εik) turns into an integral over the volume V0:

∫
V 󸀠

σextik δεikd
3 x⃗ → ∫

V0

σextik δεikd
3 x⃗ .

The surface integral in (5.66) is also simplified. First of all, we should note that the
integral over the tube surface vanishes as ρ → 0, since the dislocation displacement
field possesses the following property: limρ→0 ρui = 0. On the banks of the cut Σ still
remaining in the integral, the values of the continuous functions σextik in the limit are
the same, and the limiting values of u⃗ are different in a constant value b⃗. Therefore,
instead of (5.66), we obtain:

δA = ∫
V0

σ̃extik δε̃ikd
3 x⃗ + 1

3 ∫
V0

σextll δεkkd
3 x⃗ + bkδ∫

Σ

σextik dΣi , (5.67)

where σ̃extik and ε̃ik are the deviators of stresses and deformations. For example, ε̃ik =
εik − δikεll/3. Based on the obvious identity

σextik δεik = (σextik − 1
3δikσ

ext
ll ) δεik + 1

3σ
ext
ll δεkk = σ̃extik δε̃ik + 1

3σ
ext
ll δεkk ,

the first two terms in (5.67) replace the integral over the volume in (5.66).
In the last term on the right-hand side of (5.67), the symbol of the variation δ is

taken outside the integral sign since the stress distribution σextik is assumed to be given.
If the element of the dislocation line dl is displaced by δX⃗, the area of the surface Σ

changes by the magnitude:
δΣk = εkspδXsτpdl . (5.68)

Relation (5.68) should be used when transforming the last integral into (5.67). In a
case when the displacement δX⃗ lies in the dislocation slip plane, expression (5.68)
completely characterizes the changes occurring in the crystal. However, if the dis-
placement is perpendicular to the slip plane, additional conditions that arise from
the medium continuity become important. The displacement of the dislocation in a
direction perpendicular to the plane of its slip causes a local change (δεkkd3 x⃗) in the
volume (5.4), the value of which is evaluated purely geometrically:

δεkkd3 x⃗ = εimnτmbnδXidl . (5.69)
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Taking into account (5.68) and (5.69), we separate out δA in the work, from the part
that is responsible for inelastic deformationof themediumas thedislocationdisplace-
ment migrates:

δA = ∫
V0

σ̃extik δε̃ikd
3 x⃗ + ∮

D

εimnτn (σextmk − 1
3σ

ext
ll δmk) bkδXidl . (5.70)

The first integral in (5.70) is equal to an increase in the elastic energy of the medium
in the volume of the body. The linear integral over the dislocation loop

δAD = ∮
D

εimnτn (σextmk − 1
3
σextll δmk) bkδXidl (5.71)

determines the work done for the dislocation displacement. Comparing (5.71) with
(5.64), we obtain an expression for the force acting per unit of dislocation length:

Fi = εimnτnσ̃extmkbk . (5.72)

A formula like (5.72), where the stress deviator σ̃extmk is replaced by the stress tensor
σextmk, was first obtained by Peach and Koehler [39]. The necessity of taking the inelas-
tic change in volume into account when moving the dislocation, i.e., the necessity to
substitute σextmk − σextll δmk/3 for σextmk, has been indicated by Weertman [40]. Such a re-
placement, in particular, allows us to make a conclusion that the external hydrostatic
pressure σextmk = pδmk has no influence on the dislocation.

For the parallel Oz-axis of a screw dislocation with the Burgers vector b⃗(0, 0, b),
formula (5.72) reproduces expression (5.45) found earlier:

F1 = bσext23 , F2 = −bσext13 . (5.73)

For the parallel Oz-axis of an edge dislocation with the Burgers vector b⃗ =(0, 0, b), the nonzero components of the force are equal to:

F1 = bσext12 , F2 = −bσ̃ext11 . (5.74)

Polygonization: A Dislocation Model of a Grain Boundary

An analysis of the interaction of two rectilinear dislocations leads to a number of in-
teresting conclusions. Consider first the case of two screw dislocations. Suppose that
a force acting per unit of length of a screw dislocation was caused by another disloca-
tion. This force is determined by formulas (5.73) and (5.37). It has a radial direction:

F⃗ = μb1b2 ⃗r
2πr2

,

where ⃗r = (x, y) is the radius vector joining the dislocation centers in the Oxy-plane.
As charged filaments, dislocations of the same sign (b1b2 > 0) repel, and dislocations
of different signs (b1b2 < 0) attract.
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The force of the interaction of two edge dislocations is not radial, but is character-
ized by a significant angular dependence. Imagine that slip planes of the dislocations
are parallel. We will choose the Oxz-plane parallel to the slip plane and direct the Oz-
axis parallel to the dislocation lines. Then the force can be calculated directly using
formulas (5.74) and (5.59). If a dislocation coincides with the Oz-axis (Figure 5.18), it
acts on another dislocation passing through the point x = r cos θ, y = r sin θ in the
Oxy-plane with a force whose projection onto the slip plane has the form:

F1 = μb1b2 cos θ cos 2θ
2π (1 − ν) r . (5.75)

This projection of the force is of great interest since the dislocation can mechanically
displace only in the slip plane. The disappearance of the projection F1 corresponds to
a configuration of two dislocations, equilibriumwith respect to the slip of the configu-
ration. From formula (5.75), it follows that F1 = 0 for θ = π/4 and θ = π/2. It is easy to
verify that the first of the variants (Figure 5.19 (a)) corresponds to the condition of sta-
ble equilibrium of two dislocations of opposite signs (b1b2 < 0). The result explains
the formation of dipoles from edge dislocations. The second variant (Figure 5.19 (b))
corresponds to the condition of stable equilibrium of two dislocations of the same
sign (b1b2 > 0). Straight line edge dislocations with identical Burgers vectors lying in
parallel slip planes have a tendency to collect in one plane perpendicular to their slip
planes.

θ
x

y

O

F1

r

Fig. 5.18: A component of the interaction force of edge disloca-
tions, parallel to a slip plane.

θ=

x

y

O

π
4

x

y

O
(a) (b)

Fig. 5.19: A stable configuration of two edge
dislocations of opposite signs (a) and the same
signs (b).
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The set of a largenumber of parallel edgedislocations located inaplaneperpendicular
to their Burgers vectors is called a dislocation wall. The ability of dislocations to align
in the walls is referred to as polygonization.

Now, wewill calculate shear stresses created by an infinitely extended dislocation
wall. The element σ12 of the stress tensor produced by all wall dislocations is given by
the sum:

σ12 = Dx
∞∑

n=−∞

x2 − (y − nw)2
[x2 + (y − nw)2]2 ,

where w > b is the distance between dislocations in the wall. For x > w, this expres-
sion reduces to the form [41]:

σ12 ≈ 4π2D x
w2 exp(−2πxw ) cos 2πyw .

Thus, when moving away from the wall, the stresses decrease exponentially. Against
the field of a single dislocation, the elastic field of the wall is concentrated in a layer
of thickness in the order of the distance between dislocations.

ψ

w

Fig. 5.20: Dislocation model of the boundary between crystallites.

A dislocation wall, if any, leads to a misorientation between two parts of the crystal
by the angle ψ ≈ b/w (Figure 5.20). Hence, it follows that the dislocation wall is a
model of the boundary of two blocks, or subgrains, of a crystal with a small misorien-
tation. The formation of a regular boundary between crystallites includes both the slip
of dislocations near the boundary (often over long distances) and their creep along the
normal to the slip plane over small distances, which is required by the condition for a
uniform dislocation distribution along the boundary.
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5.5 An Expansion in Multipole Moments of Fields Created
by Dislocation Systems

There are many experimental studies that evidence the existence of intense sound
emission when plastically deforming crystals; it is caused by migrating dislocations
and various dislocation reactions. The research results allow the acoustic emissions
to be seen as a promising, nondestructive testing and control method.

Elastic fields produced by moving dislocations are represented in quadratures
(5.48). Therefore, to compare the predictions of the theory with the experimental data,
it is necessary to evaluate appropriate integrals. In most cases, this cannot be done
because of the complexity of the integrands. Therefore, attempts have been made to
calculate the asymptotics of the elastic fields for small and large distances r from the
dislocation system, under limitations of the size d of the region containing the dislo-
cations and the radiation wavelength λ. In the dipole approximation, the sound radi-
ation of a number of dislocation systems has been studied by [31, 35, 42–45]. However,
the dipole approximation does not provide a complete understanding of the acoustic
emissions of dislocations. For example, in the case of a closedmovingdislocation loop
of unchanged dimensions and shape, there is no dipole radiation [45]. Getting higher
approximations by expanding exact expressions for the elastic fields over the small
parameters d/λ, λ/r < 1 faces serious computational difficulties. In addition, solving
a wide range of problems in the theory of strength and plasticity requires more detail,
not limited to the radiation zone information on fields created by arbitrarily moving
dislocations. Obtaining such information is an extremely difficult task, however.

A systematic analysis of the elastic fields from dislocations may be carried out
by expanding Green’s function of a problem at hand, in a system of orthogonal func-
tions that take into account the symmetry of the field source distribution [46]. Such
a technique has been shown [47] to make it possible to write down any term in the
expansion of the elastic fields without resorting to cumbersome calculations. The ex-
pansion itself is valid, both for small, large, or intermediate distances from the dis-
location system, for any size of the region that contains the dislocations, and for an
arbitrary variation frequency of the fields. Let us present the results of this approach.

For further analysis, it is useful to write the elastic fields βnm(x⃗, t), 𝑣m(x⃗, t) and
their sources Dhi(x⃗, t), I( ⃗x, t) in the form of Fourier integrals in time. For example:

𝑣m(x⃗, t) = ∞∫
−∞

dωe−iωt𝑣m (x⃗, ω) .
The integral representations of the elastic fields (5.48) have the form of convolutions.
Therefore, after the Fourier transform, the nonlocal time coupling between the elastic
fields and their sources is replaced by a local connection between the corresponding
Fourier images. Formulas for the Fourier components of the elastic field are expressed
in the form of derivatives of a small number of fundamental integrals over spatial co-
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ordinates:

𝑣m (x⃗, ω) = − ∑
α=a,b

N̂(α)mfj (ω, ∇)∫d3 x⃗󸀠I(fj) (x⃗󸀠, ω) eikα|x⃗−x⃗󸀠|󵄨󵄨󵄨󵄨x⃗ − x⃗󸀠󵄨󵄨󵄨󵄨 ;

βnm (x⃗, ω) = ∑
α=a,b

{N̂(α)mfj (ω, ∇) ∫d3 x⃗󸀠Pn(fj) (x⃗󸀠, ω) eikα|x⃗−x⃗󸀠|󵄨󵄨󵄨󵄨x⃗ − x⃗󸀠󵄨󵄨󵄨󵄨 +
+iωM̂(α)mj (ω, ∇)∫ d3 x⃗󸀠Inj (x⃗󸀠, ω) eikα|x⃗−x⃗󸀠|󵄨󵄨󵄨󵄨x⃗ − x⃗󸀠󵄨󵄨󵄨󵄨 } ,

(5.76)

where ka = ω/cl, kb = ω/ct, and the operators N̂(α)mfj and M̂
(α)
mj have the form:

N̂(a)mij (ω, ∇) = 1
2π [(12 − c2t

c2l
) δij∂m − c2t

ω2 ∂m∂i∂j] ; N̂(b)mij (ω, ∇) = 2c2t ∂jM̂
(b)
mi (ω, ∇) ;

M(a)mj (ω, ∇) = − 1
4πω2 ∂m∂j ; M(b)mj (ω, ∇) = 1

4π [ δmj

c2t
+ 1
ω2 ∂m∂i] .

TheFourier imagesof the sources Ifj(x⃗, ω)and Pnij(x⃗, ω) = εnjhDhj(x⃗, ω)are combined
in

I(fj) = 1
2 (Ifj + Ijf ) ; Pn(ij) = 1

2 (Pnij + Pnji) .
In obtaining formulas (5.76), we have taken into account the relation:

(∆ + k2) eik|x⃗−x⃗󸀠|󵄨󵄨󵄨󵄨x⃗ − x⃗󸀠󵄨󵄨󵄨󵄨 = −4πδ(3)(x⃗ − x⃗󸀠) ,
where ∆ is the three-dimensional Laplace operator.

Because of the connection (5.27), the tensors Dfj(x⃗, ω) and Ifj(x⃗, ω) are not inde-
pendent:

Dfj (x⃗, ω) = 1
iω εfkl∂kIlj (x⃗, ω) , ω ̸= 0 . (5.77)

A consequence of the equality turns out to be the connection of the Fourier images
βnk(x⃗, ω) and 𝑣k(x⃗, ω) for ω ̸= 0:

βnk (x⃗, ω) = − 1
iω [∂n𝑣k (x⃗, ω) − Ink (x⃗, ω)] . (5.78)

Formulas (5.76) to (5.78) are basic for further calculations.

A System of Rectilinear Dislocations

Wemakeuseof the linearity of thebasic equations and, inparticular, consider systems
of screwand edgedislocations. The dislocations are assumed to bemoving in their slip
planes. Hence, the condition Ikk = 0 is fulfilled. Suppose that a coordinate system is
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chosen so that the dislocation lines is orthogonal to the plane x3 = 0. Because of the
symmetry of the problem, the elastic fields and their sources depend only on three
variables: x1, x2, t. Therefore, in (5.76), we can calculate the integral over x3:

∞∫
−∞

dx󸀠3
eikα|x⃗−x⃗󸀠|󵄨󵄨󵄨󵄨x⃗ − x⃗󸀠󵄨󵄨󵄨󵄨 = πiH(1)0 (kα 󵄨󵄨󵄨󵄨󵄨 ⃗r − ⃗r󸀠󵄨󵄨󵄨󵄨󵄨) ,

where ⃗r = (x1, x2) is a two-dimensional vector in the Oxy-plane, and 0 ≤ arg kα ≤ π,
H(1)0 (x) is the Bessel function of a third kind [48].

For a system of screw dislocations, the densities of the Burgers vector and its flux
in the Oxy-plane have the form:

ρ( ⃗r, t) = n( ⃗r, t)b3 , ⃗i( ⃗r, t) = n( ⃗r, t)b3 V⃗ .

Here, n( ⃗r, t) is the average number of dislocations with the Burgers vector b⃗ =(0, 0, b3) and velocity V⃗ = (V1(t), V2(t)) in the Oxy-plane, which intersects with
the unit area of the plane near a point with the radius vector ⃗r. According to (5.77),
their Fourier components are related by

− iωρ ( ⃗r, ω) + div ⃗i ( ⃗r, ω) = 0 . (5.79)

Equation (5.79) is used for transforming the coefficients of asymptotic expansions.
The nonzero components of the elastic fields (5.76) have the form:

(β23 ( ⃗r, ω) , −β13 ( ⃗r, ω)) = −∇⃗A0 + ikbA⃗ ; 𝑣3 ( ⃗r, ω) = ct (∂1A2 − ∂2A1) , (5.80)

where kb = ω/ct; A0 = A0( ⃗r, ω) and A⃗( ⃗r, ω) = (A1( ⃗r, ω), A( ⃗r, ω)) are the scalar and
vector potentials in the problem:

(A0, A⃗) = i
4 ∫d2 ⃗r󸀠H(1)0 (kb 󵄨󵄨󵄨󵄨󵄨 ⃗r − ⃗r󸀠󵄨󵄨󵄨󵄨󵄨) (ρ ( ⃗r󸀠, ω) , 1ct ⃗i ( ⃗r󸀠 , ω)) . (5.81)

Taking equations (5.79) and (5.81) into account, it is easy to verify that the components
of the trivector (A0, A⃗) satisfy the equations

− (∆ + k2b) (A0, A⃗) = (ρ, ⃗i/ct) ; −ikbA0 + div A⃗ = 0 .

The latter coincide in form with the equations for the Fourier components of the po-
tentials of a system of uniformly charged parallel filaments in electrodynamics [46].

Here, ∆ is the two-dimensional Laplace operator. Forω ̸= 0, these equations allow
us to express the distortion field only through the vector potential A⃗ and write down
the result as (5.78):

(β23, −β13) = − 1
ikb

∇⃗div A⃗ + ikbA⃗ = − 1
iω [∂2𝑣3 − i1, −∂1𝑣3 − i2] . (5.82)
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Suppose that d is the characteristic size of the region that contains the disloca-
tions, and the origin of the coordinate system was selected somewhere inside the dis-
location distribution. We can study the elastic fields outside the region. We represent
the quantity | ⃗r − ⃗r󸀠| through the polar coordinates in the plane x3 = 0 (r󸀠 < d, r > d):

󵄨󵄨󵄨󵄨󵄨 ⃗r − ⃗r󸀠󵄨󵄨󵄨󵄨󵄨 = √r2 + r󸀠2 − 2rr󸀠 cos (ψ − ψ󸀠) .
For the expansion of the fields βnm(x⃗, ω), 𝑣m(x⃗, ω) into a series inmultipolemoments,
we use the addition theorem for cylindrical functions [48]:

H(1)0 (M) = +∞∑
m=−∞

Jm(p)H(1)m (s)eim(ψ−ψ󸀠) , (5.83)

whereM = √p2 + s2 − 2ps cos(ψ − ψ󸀠), and Jm(p) andH(1)m (s) are the Bessel functions
of the first and third kind, respectively. Using (5.83) from (5.80) to (5.82), we find an
asymptotic series for the elastic fields (for ω ̸= 0) in a region without dislocations:

𝑣3 = ict
4

+∞∑
n=−∞

(b(n)1 ∂2 − b(n)2 ∂1)H(1)n (kbr) einψ ; βk3 = −∂k𝑣3
iω

, k = 1, 2 . (5.84)

It should be emphasized that the formulas for the coefficients of the expansion

b⃗(n) (ω) = (b(n)1 , b(n)2 ) = ∫d2 ⃗re−inψJn (kbr) ⃗i ( ⃗r, ω)
impose no restrictions on the frequency ω and size of the region d, which contains
dislocations.

To compare the approach set forth above with the results of other works, we take
the traditional limitation of these works. Suppose that the wavelength of the acoustic
oscillations was much larger than the dimensions of the dislocation system: d ≪ k−1b ;
the expressions for the multipole coefficients would become simpler:

b⃗(m) ≈ β⃗(m) 1
m! ( kb2 )m

, β⃗(m) = ∫d2 ⃗r ⃗i ( ⃗r, ω) rme−imψ ;

b⃗(−m) ≈ β⃗(m)+ (−1)mm! ( kb2 )m
, β⃗(m)+ = ∫d2 ⃗r ⃗i ( ⃗r, ω) rmeimψ ; m ≥ 0 .

(5.85)

In the particular case of one oscillating screw dislocation, the first term in the expan-
sion (5.84) in the approximation (5.85) reproduces the result of [31].

Formulas (5.84) and (5.85) give a complete picture of the multipole radiation of
screw dislocations in the wave zone distinguished by the condition: d ≪ k−1b ≪ r.
After simple transformations and integrations by parts, the asymptotic series (given
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that (5.79) holds) reduces to the form:

(β23, −β13) = ikb
2

√ kb
2πr exp(ikbr − iπ

4 ) [p⃗ − n⃗ (n⃗ ⋅ p⃗) + m (−n2, n1) −
− ikb4 (Q⃗ − n⃗ (n⃗ ⋅ Q⃗)) + ⋅ ⋅ ⋅ ] ;

𝑣3 = ikbct
2

√ kb
2πr exp(ikbr − iπ

4 )[n1p2 − n2p1 + m − ikb
4 (n1Q2 − n2Q1) + ⋅ ⋅ ⋅ ] ,

(5.86)
where n⃗ = ⃗r/r, Qj = Kjini; the lower spatial indices i, j run through the values 1, 2; the
summation is performed over twice-occurring indices. The dipole (p⃗) and quadrupole(Kij)moments of the dislocation system, as well as the analog of the magnetic dipole
moment m of electrodynamics [46], have the form:

p⃗ = ∫ d2 ⃗r ρ ( ⃗r, ω) ⃗r ; Kij = ∫ d2 ⃗r ρ ( ⃗r, ω) (2ri rj − δijr2) ;

m = 1
2ct

∫d2 ⃗r [i2 ( ⃗r, ω) r1 − i1 ( ⃗r, ω) r2] .
In general, the sound energy flux density is given by the expression [49]:

Πi(x⃗, t) = −σik(x⃗, t)𝑣k(x⃗, t) .
As in the case of the spectral expansion of fluctuations [50], the spectral expansion of
acoustic emission over frequencies is found using the formula:

dεdω = −2πni [σik (ω) 𝑣k (−ω) + σik (−ω) 𝑣k (ω)]dωdS , (5.87)

which gives an average energy flux over the period of oscillations through the site dS
with the normal n⃗within the frequency interval from ω to ω+dω. Themultiplier 2π is
introduced to maintain the correct relations between the averaged quantities written
in the t and ω variables.

Using (5.86) and (5.87), we compute the angular distribution of the differential
intensity of the dipole radiation per unit dislocation length:

dεp (ω, ψ)
dψ

= ρ
2
c3t k

3
b |n1p2 − n2p1|2 .

Providing that all the components of the vector p⃗(ω) have the same phase, we get:

dεp (ω, ξ)
dξ = ρ

2 c
3
t k

3
b sin 2ξ

󵄨󵄨󵄨󵄨p⃗ (ω)󵄨󵄨󵄨󵄨2 , (5.88)

where ξ is an angle between ⃗r and p⃗. Integrating over ξ , we find the total spectral
density of the dipole radiation:

εp (ω) = π
2 ρc

3
t k

3
b
󵄨󵄨󵄨󵄨p⃗ (ω)󵄨󵄨󵄨󵄨2 . (5.89)
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For a single oscillating screw dislocation, as well as in the case of annihilation of two
screw dislocations, formulas (5.88) and (5.89) lead to the findings of [51] and [44].

For the dipole (m) and quadrupole (Kij)moments, a similar calculation yields:

dεm (ω, ψ)
dψ = ρ

2 c
3
t k

3
b |m|2 ; dεK (ω, ψ)dψ = ρc3t k

5
b

32 |n1Q2 − n2Q1|2 .

In contrast to the radiation of the dipole p⃗, the radiation of the dipole m has a cylin-
drical symmetry.

The features of calculating the elastic fields in the near zone (d ≪ r ≪ k−1b )maybe
explained by the example of a screw dislocation system. A complete analysis of other
dislocation systems is given in [47]. In the near zone, to take the terms proportional to
δ(1)(ω) into account, we should employ the relations (5.80). In the region (d ≪ r ≪
k−1b ), thedistortionfieldmainly contributes to the scalar potential. Therefore, the basic
calculation formulas are:

(β23, −β13) ≈ − (∂1A0, ∂2A0) ; 𝑣3 = ct (∂1A2 − ∂2A1) ;
(A0
ctA⃗

) ≅ 1
2π [(α(0)

β⃗(0)
) ln L

r + ∞∑
m=1

1
2mrm {(α(m)

β⃗(m)
) eimψ + (α(m)+

β⃗(m)+
) e−imψ}] ;

α(m) = ∫ d2 ⃗r ρ ( ⃗r, ω) rme−imψ ; α(m)+ = ∫d2 ⃗r ρ ( ⃗r, ω) rmeimψ .

We have entered the constant L (the sample size) that is insignificant for determining
the observable quantities under the sign of the logarithm, in order to make its argu-
ment dimensionless.

After simple transformations, the asymptotic series are written in the form:

(β23, −β13) = Bn⃗
2πr δ
(1) (ω) + 2n⃗ (n⃗ ⋅ p⃗) − p⃗

2πr2
− 1
4π ∇⃗Kijninj

r2
+ ⋅ ⋅ ⋅ ;

𝑣3 = ikbct
2πr (n1p2 − n2p1) + ikbct

4πr2 (n1Q2 − n2Q1) + ⋅ ⋅ ⋅ .
Here, Bδ(1)(ω) = ∫d2 ⃗rρ( ⃗r, ω), (0, 0, B) is the total Burgers vector of the dislocation
system. The first term in the distortion expansion coincideswith the field of an immov-
able screw dislocation. In the near zone, the formulas for elastic fields do not contain
the multipole factor m. The fundamental allowance for the dipole approximation is
related to the quadrupole moment Kij of the screw dislocations system.

For a system of parallel edge dislocations in the region r > d, the multipole ex-
pansions of the elastic fields are:

𝑣m (x⃗, ω) = −πi ∑
α=a,b

Ñ(α)mfj (ω, ∇) +∞∑
n=−∞

H(1)n (kαr) einψI(fj)n (ω, α) ; βk3 = −∂k𝑣3iω .

(5.90)
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Here, the lower indices run through 1, 2 and the frequency isω ̸= 0. The differentiation
operators and the coefficients are determined by the formulas:

Ñ(a)mfj = − c2t
2πω2 ∂m∂f ∂j , Ñ

(b)
mfj = N(b)mfj ; I(fj)n (ω, α) = ∫d2 ⃗r I(fj) ( ⃗r, ω) Jn (kαr) e−inψ .

If the wavelength of the oscillations of the elastic field is much larger than the dimen-
sions of the dislocation system (for d ≪ k−1α ), the multipole coefficients are simplified:

I(fj)m (ω, α) ≈ 1
m! ( kα2 )m τ(fj)m (ω) , I(fj)−m (ω, α) ≈ (−1)m

m! (kα2 )m
τ+(fj)m (ω) ;

τ(fj)m (ω) = ∫ d2 ⃗r I(fj)m ( ⃗r, α) rme−imψ , τ+(fj)m (ω) = ∫d2 ⃗r I(fj)m ( ⃗r, α) rmeimψ ,
(5.91)

where m = 0, 1, 2, . . . For a single oscillating edge dislocation, the first term in the
expansion (5.90) in the approximation (5.91) comes to the result of [42].

In the wave zone (d ≪ k−1α ≪ r) for the elastic fields, we obtain the series:

( 𝑣p
βsp

) = −c2t √ ω
2πr ∑

α=a,b
( −1
nsc−1α

) Φ(α)pfj
c5/2α

exp(ikαr − iπ
4 ) ⋅

⋅ [τ(fj)0 + +∞∑
m=1

1
m! (−ikα2 )m (τ(fj)meimψ + τ+(fj)me

−imψ)] ;

Φ(a)ikm = ninknm , Φ(b)ikm = (δik − nink) nm , n⃗ = ⃗r/r .
The spectral density of the dipole radiation has the form:

dε (ω, ψ)
dψ

= 2ρ |ω| [nlτ(lm)0 (ω) τ∗(ms)0 (ω) ns + 󵄨󵄨󵄨󵄨nlτ(lm)0 (ω) nm 󵄨󵄨󵄨󵄨2 ( c4t
c4l

− 1)] ,

where ψ is an angle between the vector ⃗r and the Ox-axis. As the dislocations move
in a slip plane (along the Ox-axis), only the component (I12) of the dislocation flux
density tensor differs from zero. In this case, we have:

dε (ω, ψ)
dψ = 2ρ |ω| [cos2 2ψ + sin2 2ψ c4t

c4l
] 󵄨󵄨󵄨󵄨τ(12)0 (ω)󵄨󵄨󵄨󵄨2 ;

ε (ω) = 2πρ |ω| 󵄨󵄨󵄨󵄨τ(12)0 (ω)󵄨󵄨󵄨󵄨2 (1 + c4t
c4l

) .
(5.92)

Comparison of expressions (5.88), (5.89) and (5.92) indicates a significant difference
in the frequency and angular distributions of radiation for the screw and edge dis-
locations. This means that, according to the acoustic emission data, it is possible to
determinewhich dislocations are responsible for the process of plastic deformation of
the crystal.

The calculation of the fields of rectilinear dislocations admits a useful gener-
alization. Consider a system of dislocations whose lines are not rectilinear, but are
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stretched out along the Oz-axis. We expand the elastic fields 𝑣m(x⃗, ω), βnm(x⃗, ω) into
Fourier integrals (series) in the variable x3:

𝑣m ( ⃗r, κ, ω) = 1
2π

∞∫
−∞

dx3e−iκx3𝑣m (x⃗, ω); βnm ( ⃗r, κ, ω) = 1
2π

∞∫
−∞

dx3e−iκx3βnm (x⃗, ω),
where ⃗r = (x1, x2) is a two-dimensional vector in theOxy-plane. Taking formulas (5.76)
and (5.78) into account, and the relation [52]:

∞∫
−∞

dx3
eikα|x⃗|−iκx3
2π 󵄨󵄨󵄨󵄨x⃗󵄨󵄨󵄨󵄨 = − i

2H
(1)
0 (r√k2α + (|κ| eiπ/2)2) ,

we may make a conclusion that, when conservatively moving the dislocations, the
multipole expansions of the Fourier components have the form of expression (5.90).
The indices run through the values 1, 2, 3 and sowe should offer the following replace-
ment:

𝑣m ( ⃗r, ω) ⇒ 𝑣m ( ⃗r, κ, ω) , βnm ( ⃗r, ω) ⇒ βnm ( ⃗r, κ, ω) ;
I(fj)m (ω, α) ⇒ I(fj)m (ω, κ, α) = ∫d2 ⃗rI(fj) ( ⃗r, κ, ω) Jm (r√k2α + (|κ| eiπ/2)2) e−imψ ;

H(1)m (kαr) ⇒ 1
2πH
(1)
m (r√k2α + (|κ| eiπ/2)2) ;

Jm (rkα) ⇒ Jm (r√k2α + (|κ| eiπ/2)2) ; ∂3 ⇒ iκ .

(5.93)
In the particular case of a single oscillating dislocation fixed by equidistant points,
under the condition |d√k2α − κ2| ≪ 1, the first term of the relations corresponding
to (5.90) and (5.93) coincides with the formula found in [43] by another method.

A System of Dislocation Loops

Let us examine a system of dislocation loops that perform conservative motion
(Ikk = 0) in a region with a characteristic size d. Suppose that the origin of the co-
ordinate system lies inside the dislocation distribution, and that the fields 𝑣m , βnm
are considered in a region not containing dislocations. For ω ̸= 0, the multipole
expansions of the fields (5.76) and (5.78):

𝑣m (x⃗, ω) = −4πi ∑
α=a,b

+∞∑
l=0

l∑
p=−l

kαÑ(α)mfj (ω, ∇) h(1)l (kαr) Ylp (θ, φ) I(fj)lp (ω, α) ;
βnm = −∂n𝑣miω

(5.94)
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are obtained using the relation [46]:

eik|x⃗−x⃗󸀠|󵄨󵄨󵄨󵄨x⃗ − x⃗󸀠󵄨󵄨󵄨󵄨 = 4πik
+∞∑
l=0

l∑
p=−l

jl (k 󵄨󵄨󵄨󵄨󵄨x⃗󸀠󵄨󵄨󵄨󵄨󵄨) h(1)l (k 󵄨󵄨󵄨󵄨x⃗󵄨󵄨󵄨󵄨) Y∗lp (θ󸀠, φ󸀠) Ylp (θ, φ) .
Here, jl(z), h(1)l (z) are the spherical Bessel functions; Ylp(θ, φ) are spherical harmon-
ics; |x⃗|, θ, φ are spherical coordinates; the operators Ñ(α)mfj(ω, ∇)have beendefined ear-
lier; the lower spatial indices run through the values 1, 2, 3; the summation is made
over twice occurring indices:

I(fj)lp (ω, α) = ∫ d3 x⃗ I(fj) (x⃗, ω) jl (kα 󵄨󵄨󵄨󵄨x⃗󵄨󵄨󵄨󵄨) Y∗lp (θ, φ) .
If the wavelength of the oscillations of the elastic field is much greater than the

dimensions of the dislocation system (d ≪ k−1α ), the exact values of the coefficients
may be replaced by approximate ones:

I(fj)lp (ω, α) ≈ klα(2l + 1)!! τ(fj)lp (ω) , τ(fj)lp (ω) = ∫d3 x⃗ I(fj) (x⃗, ω) 󵄨󵄨󵄨󵄨x⃗󵄨󵄨󵄨󵄨l Y∗lp (θ, φ) .
With this restriction, the first term in expression (5.94) (l = 0) reproduces the result
of [35].

In the wave zone (for d ≪ k−1α ≪ |x⃗|) we find:
( 𝑣m
βsm

) = −2c2t ∑
α=a,b

( −1
nsα−1

) Φ(α)mfj󵄨󵄨󵄨󵄨x⃗󵄨󵄨󵄨󵄨 α2 exp (ikα 󵄨󵄨󵄨󵄨x⃗󵄨󵄨󵄨󵄨)
+∞∑
l=0

l∑
p=−l

(−ikα)l+1(2l + 1)!! τ(fj)lp (ω) Ylp (θ, φ) ;
Φ(a)ikm = ninknm , Φ(b)ikm = (δik − nink) nm , ni = xi/ 󵄨󵄨󵄨󵄨x⃗󵄨󵄨󵄨󵄨 .

(5.95)
The terms corresponding to the values l = 0, 1 agree with the formulas obtained in
[35, 45] after tedious calculations.

The above results allowus to go beyond the traditional limitations: d ≪ k−1α ≪ |x⃗|.
For example, using (5.94),wederive anexpression for the spectral density of thedipole
radiation of the system of dislocation loops:

dε (ω, Ω)
dΩ

= 4ρω2

ct
[( ctcl )

5 󵄨󵄨󵄨󵄨nl I(lm)00 (ω, a) nm 󵄨󵄨󵄨󵄨2 + nl I(lm)00 (ω, b) I∗(ms)00 (ω, b) ns −
− 󵄨󵄨󵄨󵄨nlI(lm)00 (ω, b) nm󵄨󵄨󵄨󵄨2] ; (5.96)

ε (ω) = 16πρω2

5ct
[23 ( ctcl )

5 󵄨󵄨󵄨󵄨I(lm)00 (ω, a)󵄨󵄨󵄨󵄨2 + 󵄨󵄨󵄨󵄨I(lm)00 (ω, b)󵄨󵄨󵄨󵄨2] .

It is valid in a wide area, where the weaker inequalities k−1α ≪ |x⃗|, d < |x⃗| are fulfilled.
Here, dΩ is a solid angle element. In thewave zone (5.96), they agreewith the results of
[35, 45]. Formulas (5.96), in particular, deal with the radiation that ariseswhen annihi-
lating double kinks in the dislocation line (Figure 5.21) without restrictions of g ≪ k−1α
on the kink height g as in [45].
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b −ν b
ν −VVg Fig. 5.21: Annihilation of kinks in the line of dislo-

cation.

For kinks of rectangular form, in expressions (5.96), we should put that:

I(fk)00 (ω, α) ≅ 1
8π√2 (εfhnbk + εkhnbf ) unνhiωkα

[√π
2− kαgJ1/2 (kαg) S−3/2,−1/2 (kαg) −
− kαgJ−1/2 (kαg) S−1/2,1/2 (kαg) ] ,

Here, νh is the unit tangent vector to the kink line, un is the relative rate of kinks at
the moment of the collision, Jμ(z) is the Bessel function, and Sμ,𝑣(z) is the Lommel
function [48, 52].

5.6 The Peierls Model of a Dislocation Core

Crystal deformations over large distances from a dislocation are well described by the
linear theory of elasticity. However, the region of a dislocation core requires special
investigation. In the core, significant displacements of atoms from equilibrium posi-
tions occurs, along with switching of bonds between atoms. The structure of the core
is responsible for the dislocationmobility in crystals. The distribution of atoms in the
dislocation core depends on the periodic potential generated by atomic planes adja-
cent to the dislocation slip surface, as well as on deformations of the crystal in the
outer region relative to the core.

The simplest model of the dislocation core was proposed by Peierls [53]. Its se-
quential generalization of a dynamic case is given in [54]. According to [53, 54], the
dislocation core is “smeared” in the slip plane. In the core region, the energy of in-
teraction between neighboring atomic planes (the Peierls energy EP) is taken into ac-
count for the nearest neighbor approximation:

EP = 1
∆S ∫

A

Φ(w⃗)njdSj . (5.97)

Here w⃗(x, t) = u⃗+(x, t) − u⃗−(x, t) is the relative displacement of atoms along two sides
of a slip plane A with a normal nj. The integration is performed over the slip plane
and ∆S is the area per atom. The formof the potential energy Φ(w⃗) per atom inplane A
is determined by the symmetry of the crystal. Figure 5.22 illustrates the approach of
Peierls on the example of an edge dislocation in a cubic crystal.

The crystal halves above and below plane A are described in the approximation
of an elastic continuum. In plane A, the stresses σij, based on the relations of the
linear theory of elasticity, must be balanced by inelastic forces from the lattice. This
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a

b

B
C

x

y

Fig. 5.22: The Peierls model of an edge dislocation
in a cubic crystal. The material above (y > 0) and
below (y < 0) the slip plane is described in the ap-
proximation of an elastic continuum. The interaction
between the atomic planes B and C is taken into
account in the nearest neighbor approximation.

condition defines the dynamics of the dislocation core and has the form [54]:

σij(x⃗, t)nj − 1
∆S

∂Φ
∂wi(x⃗, t) = 0, x⃗ ∈ A . (5.98)

The elastic stresses can be represented as:

σij(x⃗, t) = σextij (x⃗, t) + ∞∑
𝑣=0

∫Φ(𝑣)ijkl(x⃗ − x⃗󸀠)∂𝑣t βPkl (x⃗󸀠, t) d3 x⃗󸀠 , (5.99)

where σextij (x⃗, t) is the stress due to forces applied to the outer surface of the body. The
second term represents the expansion of the elastic stresses from the dislocation. For
an unbounded medium, the kernels (Φ(𝑣)ijkl(r − r󸀠)) of integral operators are calculated
in [37]. They come from formulas (5.48) and (5.56). The plastic distortion βPkl(x⃗, t) dif-
fers from zero only on the slip dislocation surface:

βPkl(x⃗, t) = wl(x⃗, t)nk , x⃗ ∈ A .

The nonlinear equations, (5.98) and (5.99), completely trace the evolution of a dis-
placement w⃗(x⃗, t) under the action of external forces.

Suppose that λ and r0 are the characteristic spatial scale of a weakly changeable
elastic field and the core size of the Peierls dislocation, respectively, and that they sat-
isfy the condition: λ ≫ r0. Then, if the dislocation migrates quasistationarily, i.e., its
velocity is low, equations (5.98) and (5.99) may be replaced by averaged ones, as is
done when describing a flat cluster of moving dislocations [29]. This section covers
dynamic equations obtained by averaging for the straight Peierls dislocations in an
unbounded medium and in a plate. We consider the motion of a dislocation in a glide
plane, which passes through the center of the plate parallel to its surfaces. Let us ex-
amine, for definiteness, a dislocation in a cubic crystal. Suppose that the dislocation
is parallel to theOz-axis, and y = 0 is its slip plane. Thiswould lead to equations (5.98)
and (5.99) acquiring the form:

m∂tv + βv = b (−ML̂[ρ] + σext − Nb
2πa

sin 2πw
b ) , ∂tρ + ∂x(ρv) = 0 . (5.100)
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Here, ρ = −∂xw, M = μ/2(1 − ν), N = 2μ(3 − 2ν)−1 and M = N = μ/2 for an edge and
screwdislocation, respectively.w(x, t) is a nonzero component of the relativedisplace-
ment vector of atoms, b is a lattice constant in the slip plane, a is a lattice constant in
the orthogonal direction, m > 0 is the effective dislocation mass [29], σext is an exter-
nal shear stress field, and v is the displacement velocity in the slip plane. The quantity−βv simulates the dissipative force of themedium resistance to the dislocationmotion
(β > 0).

At a great distance from the dislocation, the crystal lattice should be perfect. This
is possible under the condition:

w (x = +∞, t) − w (x = −∞, t) = −∞∫
−∞

dx∂xw(x, t) = −b . (5.101)

The validity of (5.101) for an edge dislocation is obvious, as can be seen in Figure 5.1.
According to (5.101), the inhomogeneous relative displacement w(x, t) can be consid-
ered equivalent to the presence of small fictitious dislocations distributed along the
Ox-axis. Fictitious dislocations located in the interval from x to x+dx govern the plas-
tic shear ρ(x, t)dx = −∂xwdx in the plane y = 0. The second equation (5.100) expresses
the law of conservation of the plastic shear as the fictitious dislocations migrate. The
entire set of the fictitious dislocations simulates the core of a real dislocation and car-
ries a complete plastic shear b. The quantity −ML̂[ρ] should be compared to the shear
stress caused by the fictitious dislocations in the slip plane (for y = 0). Formulas (5.37),
(5.44), and (5.59) for elastic stresses from adislocationmake it possible to immediately
write the kernel of the integral operator L̂. Elastic stresses of an edge dislocation in a
plate are found in [55].

For an unbounded medium, the operator L̂ coincides with the Hilbert transform:

L̂ [ρ] ≡ Ĥ [ρ] = V.p.
π

+∞∫
−∞

dx󸀠

x󸀠 − x
. (5.102)

The letters “V. p.” stand for an understanding of the integral above as the Cauchyprin-
cipal value. In the case of a screw dislocation, the dynamic equations (5.100) general-
ize (5.46).

In a plate with a thickness of d (d ≫ a), the operator is L̂ ≡ T̂:

T̂[ρ] = V.p.
d

∞∫
−∞

ρ(x󸀠)dx󸀠
sh [π(x󸀠 − x)/d] .

For the energy (5.97), Peierls took the simplest approximation:

EP = N
2a (bπ)

2 ∞∫
−∞

sin2 (πwb )dx . (5.103)
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The coefficient N in (5.103) is chosen so that, at large distances from the dislocation
core, the static solution of model (5.100) should reproduce the solution of the linear
theory of elasticity. For example, for an edge dislocation in an unbounded medium,
the approximate solution of model (5.100) with |x| ≫ |b|, σext = 0

w
a ≈ Mb

πNx = (3 − 2ν) b
4π(1 − ν)x = ∂2uG1

󵄨󵄨󵄨󵄨󵄨y=0
is consistent with formula (5.58).

It is necessary to note that the dynamic equations (5.100) are applicable, only for
describing a single dislocation or synchronous motion of a periodic sequence of iden-
tical dislocations. This is because the relative motions of different dislocations do not
need to be taken into account.

How well model (5.100) meets the experimental data can be judged only after
constructing its solutions. The nonlocal term L̂[∂xw] and the strong nonlinearity
sin(2πw/b) in equation (5.100) make it difficult to integrate. Within the Peierls model,
an analytical description of the static configurations [55] is known: a) for one dislo-
cation and two dislocations with opposite Burgers vectors in a constant field, and
b) for several periodic chains of dislocations. The integration method was based on
the Fourier transform and was not very constructive. The authors of [56] proposed an
effective technique for solving the Peierls model explicitly, bymethods used in soliton
theory. Below, we offer the results of this approach,where dynamic generalizations of
the static configurations are obtained. Furthermore, we showhow the equations of the
model and its solutions change when studying the motion of different dislocations.

The Peierls Dislocation in an Unbounded Medium

We show that in the case of an unbounded medium, the integration of model (5.100)
can be carried out using methods of complex analysis. We use the substitution:

w = ib
2π

ln f(x − ν(t))
f∗(x − ν(t)) . (5.104)

It can be demonstrated that, from the mathematical point of view, a meromorphic
function f(z) meets the solutions of the dislocation type. We recall that a function is
said to be meromorphic in a given domain if it is an analytic function everywhere ex-
cept for in a certain number of poles. Each complex zero (pole) x = ν1 + iν2 of the
order n of the function f(z) corresponds to a single dislocation with the Burgers vec-
tor B = bn (B = −bn). Indeed, when

f(x) = [eiπ/2 (ν2 + i(x − ν1))]n ,

where ν∗k = νk (k = 1, 2), we have:

w = −bn (1
2
+ 1
π
arctg x − ν1

ν2
)
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and, consequently, w(x = −∞) − w(x = +∞) = bn. The parameters ν1 and ν2 have a
clear physical meaning: they determine the coordinates of the dislocation center and
the size of its core, respectively.

Applying Cauchy’s theorem on residues, it is not difficult to verify that the identity

Ĥ [ 1
x − ν ] = − i sign Imν

x − ν
(5.105)

holds. This property allows us to pass from the integrodifferential equations (5.100)
to ordinary differential equations. For definiteness, suppose that the zeros and poles
of f(z) lie in the upper half-plane and ∂z ln f(z) → ∞ is |z| → ∞. Then, using (5.105),
we obtain a useful relation:

iĤ [∂x ln f(x)
f∗(x) ] = ∂x ln[f(x)f∗(x)] . (5.106)

Having substituted (5.104), (5.106) into (5.100), we obtain:

m∂2t ν1 + β∂tν1 = b (Mb
2π [ ∂xff + ∂xf∗

f∗ ] + σa − Nb
4πai [ f

∗

f − f
f∗ ]) . (5.107)

Setting equal (separately) the two linearly independent groups of terms in (5.107), i.e.,
a part containing poles and a part not containing them, we find:

m∂2t ν1 = bσa − β∂tν1 ,

f∗ [−Mb
2π

∂xf + Nb
4πia

f∗] + f [−Mb
2π

∂xf∗ − Nb
4πia

f] = 0 .
(5.108)

For a single dislocation or a periodic sequence of identical dislocations, the func-
tion f(z) is an entire function with simple zeros. Its explicit form can be found if f(x)
satisfies the simpler linear equation:

− Mb
2π ∂xf + Nb

4πia f
∗ + iλNb

2πa f = 0 . (5.109)

Here, λ is a real parameter. The solution of equation (5.109), with the necessary ana-
lytic properties, has the form:

f(x) = exp( iπ2 ) sh [ ρ2 + iN sh ρ
2Ma x] , λ = ch ρ

2 ,

and describes a periodic chain of identical dislocations. In the chain, the size of each
dislocation core r0 = ρL/(4π) depends on the distance (L = 4πMa/(N sh ρ)) between
the closest dislocations.

In the limit ρ → 0, the chain period increases indefinitely, and we arrive at an
expression corresponding to a single dislocation:

f(x) = exp( iπ2 )(1 + iNx
Ma ) ;

w(x, t) = −b (12 + 1
π
arctg x − ν1(t)

r0
) , r0 = Ma

N
.

(5.110)
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At an infinitely large distance from the dislocation, the crystal lattice should be per-
fect:

w(x = +∞) = −b , w(x = −∞) = 0 , lim
|x|→∞

sin2 πw/b = 0 .

We have chosen the integration constant in (5.110) so that this condition should be
satisfied. The half width of the edge dislocation r0 depends on the Poisson ratio and
can take values in the interval 3a/4 ≤ r0 ≤ a.

The description of the motion of the dislocation center (5.108) is equivalent to the
problem of the dynamics of a material point. If ν1(0) = 0, ∂tν1 = 𝑣0, we have:

ν1(t) = t∫
0

[[[
b
m

t󸀠∫
0

σa(t󸀠󸀠)dt󸀠󸀠 + 𝑣0]]]
exp{− β

m (t − t󸀠)}dt󸀠 , βm > 0 . (5.111)

Formulas (5.110) and (5.111) give an idea of the motion of the Peierls dislocation in
the arbitrarily time dependent shear stress field. For a motionless dislocation, the ob-
tained formulas become known earlier [55].

The discreteness of the crystal lattice must lead to a periodic resistance force
against the dislocation motion. However, such a force is absent in model (5.100). This
is due to averaging the description. The discreteness of the crystal lattice is smoothed
out in formula (5.103), by replacing the summation of atomic bonds in the slip plane
by integration:

+∞∑
n=−∞

Φ (x = nb) ⇒ 1
b

+∞∫
−∞

Φ(x)dx = N
2a ( bπ)

2 ∞∫
−∞

sin2 (πwb ) dx = EP .

The simplest way to account for the discreteness of the system is as follows [57]. We
use the solution (5.110) and calculate the energy of discrepancy of the crystal with a
dislocation using the formula:

E = +∞∑
n=−∞

Φ (x = nb) = Nb
2a ( bπ)

2 +∞∑
n=−∞

sin2 [πb w (x = nb)] =
= Nb
2a (bπ)

2 +∞∑
n=−∞

r20(nb − ν1)2 + r20
.

By means of (5.43), we perform the summation:

+∞∑
n=−∞

r20(nb − ν1)2 + r20
≈ πr0

b (1 + 2e−2πr0/b cos 2πν1b ) .

Hence, we come to an expression for the periodic Peierls–Nabarro force acting on a
dislocation in a crystal:

F = − ∂E
∂ν1

= 2Mbe−2πr0/b sin 2πν1
b

.



332 | 5 Dislocations and Martensitic Transitions

The maximum value of this force determines those shear stresses that should be ap-
plied to the crystal so that the dislocation begins to move in its slip plane:

σs = 1
b max F = 2Me−2πr0/b ∼ (10−2 − 10−4) μ .

Dislocations in a Plate

In the previous section, we have sought solutions of (5.100) in the class of functions of
the form f(z) = c∏k(z − νk)/∏n(z − μn) (the products can also be infinite). Choosing
f(z) in such a way, we not only take into account the presence of dislocations, but we
also apply a remarkable mathematical property. If one expands the function Ĥ[∂xw]
into simple fractions, we obtain the expression:

∑
k
( ak
x − νk

+ bk
x − ν∗k

) +∑
n
( cn
x − μn

+ dn
x − μ∗n

) .

It is essential that the same analytic structure belongs to the expansion of the func-
tion sin(2πw/b). Consequently, after substituting (5.104) into (5.100), we should set
the coefficients of the linearly independent functions (x − νk)−1, (x − ν∗k )−1, (x − μn)−1,(x − μ∗n)−1 equal to zero. The condition (5.109) tacitly performs this operation. It is in-
teresting to note that the requirement of the residues at the poles of equation (5.100)
vanishing does not trace the dynamics of the dislocation centers because time in these
conditions enters as a parameter.

Guided by the above qualitative considerations, we proceed to constructing solu-
tions in a plate. We have the natural generalization (5.105):

T̂ 1
sh [π (x − ν) /d] = − i

sh [π (x − ν) /d] sign [sin(2πd Imν)] .

The solutions of the model should be sought in the form (5.104) in the class of mero-
morphic functions:

f(x) = ∏k (sh Ak − sh (iBk))∏n (sh Cn − sh (iDn)) ;
Ak = π

d (x − ν(1)k ) , Bk = π
d ν
(2)
k , Cn = π

d (x − μ(1)n ) , Dn = π
d μ
(2)
n .

The real parameters ν(1)k , μ(1)n and ν(2)k , μ(2)n determine the coordinates of dislocation
centers and the dimensions of their cores. In particular, we seek the solution for one
dislocation in the following way:

f(x) = sh A1 − sh (iB1) , 0 < ν(2)1 < d/2 ,
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Then:
∂xw = ib

2d [ 1
sh (A1 − iB1) − 1

sh (A1 + iB1) ] ,

T̂∂xw = b
2d [ 1

sh (A1 − iB1) + 1
sh (A1 + iB1) ] ,

sin 2πw
b

= −ith (iB1) [ 1
sh (A1 − iB1) + 1

sh (A1 + iB1)] .

(5.112)

Plugging relations (5.112) into equations (5.100), and equating the coefficients for the
linearly independent functions 1/ sh(A1 ± iB1), we find:

w = −b(1
2
+ 1
π
arctg sh [π (x − ν1(t)) /d]

sin πν(2)1 /d ) , tg π
d
ν(2)1 = Mπa

Nd
.

The dependence of ν1(t) is the same as in (5.111). The image forces from the plate sur-
face cause the Peierls dislocation core to compress.

For periodic chains of identical dislocations, the function f(x) involves an in-
finite product of factors of the type shAk − sh(iBk). Moreover, the functions ∂xw
and sin(2πw/b) are expanded into simple fractions of type (5.112). In [56], the authors
have solved model (5.100) exactly. Its solutions correspond to synchronous oscilla-
tions of N identical periodicity dislocation chains inserted into each other.

Interaction of Dislocations

The previous sections have covered in full the dynamics of only a single dislocation.
A description of dislocation chains is valid provided that all the dislocations have the
same initial velocities and oscillate synchronously. To consistently describe the inter-
action between dislocations of a system, it is necessary to change equations (5.100).
This can be done within the approach proposed in [54] if one regards plastic displace-
ments wi from individual dislocations as independent variableswhen varying the sys-
tem’s action.

Let us first look into a case of moving two dislocations with opposite Burgers vec-
tors in the one slip plane in an unbounded medium. The energy dissipation is ne-
glected. We write down the total plastic displacement in a form consistent with the
known static solution of [55]:

w = bi
2π ln[e−iγ(t) (x − ν) (x − η∗)(x − ν∗) (x − η)] , ν = ν1(t) + iν2(t) ,

η = η1(t) + iν2(t) , ν2 > 0 , ν∗s = νs (s = 1, 2) , η∗1 = η1 , γ∗ = γ .
(5.113)

The variational principle of least action was proposed to describe the dynamics of
dislocations [54].Weuse (5.113) as a trial function and vary the functional of action [54]
by the coordinates of dislocations. Suppose the motion is quasistationary. Then the
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functions ν2(t) and γ(t) depend weakly on time and the effective mass of dislocations
is constant. From this it follows that the equations of dynamics take the form:

μ1∂2t ν1 = MĤ [∂xw] + σext(t) − Nb
2πa sin 2πw

b ,

−μ1∂2t η1 = MĤ [∂xw] + σext(t) − Nb
2πa

sin 2πw
b

.
(5.114)

Here, μ1 = m/b,m is the effectivemass of each dislocation. Simple calculations yield:

∂2t (ν1 + η1) = 0 , μ1∂2t (ν1 − η1) = Mb
π

1
ν1 − η1

+ σext(t) ,
ν2 = Ma

N cos γ , γ = arcsin 2Ma
N (ν1 − η1) .

Hence, it follows that the center of mass of the dislocations move with a constant ve-
locity. The relative motion is determined by an external field and by the strength of
the interaction between the dislocations (∼ 1/(ν1 − η1)). The sizes of the dislocation
cores ν2 depend on the time varying distance ν1 − η1 between dislocations through
the parameter γ. The timedependence ν2 is stronger, the smaller the distance between
dislocations. Equations (5.114) can also be used to describe relative synchronous oscil-
lations of two dislocation chains with opposite Burgers vectors. An appropriate exact
solution has been found in [56].

It is worth noting that, when |ν1 − η1| ≫ 2Ma/N ∼ 2ν2, expression (5.113) for w
is a superposition of single dislocations (5.110). The center of each dislocation moves
in an effective field generated by other dislocations. The technique of approximately
describing the dislocation system can be elaborated for the case of being the distance
l between the dislocationmuch larger than the characteristic size r0 of the dislocation
core [56]. This statement can be exemplified through the interaction of two disloca-
tions. Although the integration in (5.114) is carried out in infinite limits, the integral
is mainly contributed to by the dislocation core region of the order size r0 (∂xw,is a
generalization of the sum of δ-functions of the linear theory). For l ≫ r0, nonsingular
cores of integral equations can be expanded in powers of the small parameter r0/l.
Thus, for two dislocations located at the center of the plate, we have:

μ1∂2t ν1 = MT̂ [∂xw1] + σ(1)eff (t) − Nb
2πa

sin 2πw1
b

, (x ∼ ν1(t)) ,
μ2∂2t η1 = MT̂ [∂xw2] + σ(2)eff (t) − Nb

2πa sin 2πw2
b , (x ∼ η1(t)) ,

σ(1,2)eff (t) = σext(t) ∓ Mbε2,1
d sh [π (ν1 − η1) /d] ,

(5.115)

in the main approximation. Here, bε1 = −∫∞−∞ dx∂xwi (εi = ±1, i = 1, 2), and μi
are constant parameters related to the effective mass of the i-th dislocation as (μi ∼
mi/bεi). We have also taken into account that, near the core of a dislocation with the
number i (x ≈ ν1 or x ≈ η1), the approximate equalityw(x) ≈ wi(x)+bk is satisfied; k is
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an integer, wi(x) is the displacement caused by the i-th dislocation. Thus, the analysis
of the interaction between dislocations boils down to the previously considered prob-
lem of the motion of one dislocation in an alternating external field (compare (5.100)
and (5.115)). In the limit |ν1 − η1| → ∞, the system (5.115) splits into two equa-
tions (5.100) that delineate themotionof independentdislocations in anexternal field.

5.7 Weakly Nonlinear Soliton-like Excitations in a
Two-Dimensional Martensitic Transition Model

The term martensitic pertains to diffusionless phase transitions of the displacement
type. They can be described by shear deformations. Martensitic transformations take
place due to ordered cooperative atomic motion in a crystal lattice. The relative dis-
placement of neighboring atoms is small. They amount to a small part of the inter-
atomic distance. However, these displacements result in rearranging the unit cell of
the crystal lattice. So, the martensitic transformation can be considered to be reduced
to deformation of the unit cell of the initial phase. For a wide class of crystals, a de-
crease in temperature causes a transition from a phase with a cubic lattice to a phase
with an orthorhombic or tetragonal symmetry lattice. A high temperature phase is
called austenite, and a low temperature phase is called martensite. Martensitic tran-
sitions, and phenomena and processes associated with them, are a challenge for ap-
plications because they are inherent in many structural materials. They significantly
affect their physical properties and, to a certain extent, allow these properties to be
controlled. Martensitic transformations are difficult to analytically depict.

For a 4mm/2mm (square/rectangle) martensitic phase transition, the authors of
[58, 59] have proposed amodel based on thenonlinear elasticity theory. It is analogous
to the Ginsburg–Landau model. Similar models are successfully used for describing
phase transitions in magnetic materials. Such a model serves as a good approxi-
mation for the martensitic transitions. Therefore, the latter are called ferroelastic
transitions. Of course, the ferroelastic transitions do not exhaust the whole variety
of martensitic transitions. The model appears to be a good approximation for the
cubic tetragonal martensitic transition in a number of real systems (Nb3Sn, V3Si,
In0.76Tl0.24, Fe0.72Pd0.28) [59]. A common feature of these compounds differing in
structure is that the atoms in them are displaced along the distinguished planes in
the square/rectangle type as themartensitic transition occurs. The phenomenological
description of first-kind phase transitions in 2D systems requires keeping invariants in
the expression for elastic energy up to higher powers of the order parameter (at least
up to the sixth power, inclusively). This causes significant nonlinearity of the prob-
lem. In addition, the heterogeneity of the structure of interphase boundaries should
be described by the inclusion of higher gradients of the displacement field into the
elastic energy. Essential nonlinearity and dispersion (to be introduced to the theory)
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would allow avoiding the use of fictitious dislocations of transformation [60] when
analytically describing the crystal lattice rearrangement.

Let us describe the basic relationships for a 2D model of the 4mm/2mm marten-
sitic transition. Suppose that Xi is the position of a material point in an elastically
deformed medium, xi is its position in an undeformed state, and ui = Xi(x⃗, t) − xi
is the displacement vector. The classical nonlinear theory of elasticity represents the
elastic deformation energy in terms of the Lagrangian strain tensor:

ηij = 1
2 [ui,j + uj,i + ur,iur,j] , ui,j = ∂ui

∂xj
. (5.116)

According to [59], the free energy for the 4mm/2mm phase transition has the form:

w = 1
2A1e21 + 1

2A2e22 + 1
2A3e23 + 1

4B2e
4
2 + 1

6C2e
6
2 + 1

2d1 (e21,1 + e21,2) +
+ 1
2d2 (e22,1 + e22,2) + 1

2d3 (e23,1 + e23,2) + d4 (e1,1e2,1 − e1,2e2,2) +
+ d5 (e1,1e3,2 + e1,2e3,1) + d6 (e2,1e3,2 − e2,2e3,1) . (5.117)

Here, Ai , B2, C2, dj(i = 1, 2, 3; j = 1, 2, . . . , 6) are phenomenological constants. The
fields e3 = η12 and e1 = (η11 + η22)/√2 are responsible for the shear deformation
and the dilatation of the medium, respectively. The field e2 = (η11 − η22)/√2 con-
trols the extension of the square into the rectangle and is an order parameter in the
Landau theory for a 4mm/2mm phase transition. In the context of Landau’s theory,
A2 is assumed to be temperature dependent in the vicinity of the transition, with this
dependence being such that A2 = 0 at the transition point. As usual, we neglect the
temperature dependence of other elastic moduli. To realize the first order phase tran-
sition, it is necessary to fulfill the conditions B2 < 0, C2 > 0. Expression (5.117) for the
energy qualitatively reproduces the observed hysteresis phenomena during the tran-
sition [59]. Equations of dynamics can be derived by varying the Lagrangian in the
fields ui:

L = ∫dx1dx2 [ρ2∂tui∂tui − w] , (5.118)

where ρ is the density of the medium in the undeformed state. Furthermore, we put
that ρ = const.

The formations of the type of flat domain walls and plane parallel domain struc-
tures were first investigated within the 2D martensitic transition model by [58]. How-
ever, as noted in [59], the expression for the energy, used in [58], differs from (5.117),
as it contains no terms compatible with the crystal symmetry. Therefore, it is insuf-
ficient to determine the phenomenological constants from experimental phonon dis-
persion curves. Theworks by [59, 61–64] have examined one-dimensional solutions of
the martensitic transition models, with the paper [59] taking the complete expression
for the energy (5.117) into account. However, in these papers, solutions of the type of
domainwalls and plane parallel domain structures have been obtained by neglecting
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nonlinear terms in the strain tensor (5.116). In this section, it is shown that the geomet-
ric nonlinearity must not be ignored, because it substantially changes the nature of
the interaction of even small amplitude modes. Equations describing the interaction
of phononmodes near the phase transition point are constructed. It is remarkable that
these equations admit two-dimensional soliton solutions. Regions of physical param-
eter values, where a certain type of soliton is realized and can be stable, are indicated.
The above findings have been secured in [65–67].

The Ground State of Crystals and the Spectrum of Linear Modes

Without an external load, the equilibrium state of crystals is characterized byhomoge-
neous static deformations, u(0)i,j = const. Theminimumenergy conditions ∂w/∂u(0)i,j = 0
give a 4mm phase with a square lattice (u(0)i,j = 0) and two versions of a 2mm phase
with a rectangular lattice (u(0)i,j ̸= 0). In this section, we consider statistical and dy-
namic formations in the 4mm phase background. An analysis carried out in [59, 61]
shows that the square lattice phase is metastable for 0 < τ ≡ 16C2A2/(3B22) < 1 and
thermodynamically stable for 1 < τ < 4/3.

Let us examine the propagation of elastic waves along a preferential direction in
the (x1, x2)-plane. A variation of the wave field in the direction orthogonal to the pref-
erential one is assumed to be weaker. To describe such waves, it is convenient to pro-
ceed from x1, x2 to the new variables:

ξ = x1 cosφ + x2 sinφ , η = −x1 sinφ + x2 cosφ .

Suppose that ξ is the coordinate along the wave propagation direction and that
the dependence of the field variables on η is weaker. It is not difficult to show
that the phonon spectrum has two Goldstone branches (ui ∼ exp i[k1ξ + k2η −
ωi(k1, k2)t] , k1 ≫ k2):

ρω2
i (k1, k2) = α(20)i k21 − α(11)i k1k2 + α(02)i k22 + α(40)i k41 , i = 1, 2 ;

α(20)i = 1
2 (α − εiδ) ; α(11)i = 1

2
εiδ−1 (μ2 − ν2) sin 4φ ;

α(02)i = α
2 + 1

4 εiδ
−1 {[δ−1 (μ2 − ν2) sin 4φ]2 − μ2 − ν2 − 3 (μ2 − ν2) cos 4φ} ;

α(40)i = 1
2 {12 (d1 + d2 + 2d4 + 1

2
d3) + ( 1√2d5 − d4) sin2 2φ − 1

2
εiδ−1 [ν (d1+

+d2 + 2d4 − 1
2d3) cos2 2φ + μ (d1 − d2 + 1

2d3 + √2d5) sin2 2φ]} ;

α = 1
2 (A1 + A2 + 1

2A3) , μ = (A1 − A2 + 1
2A3) , ν = 1

2 (A1 + A2 − 1
2A3) ,

δ2 = (ν cos 2φ)2 + (μ sin 2φ)2 , εi = ±1 .
(5.119)
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For the directions φ = 0, ±π/4 (mod π), the dispersion law (5.119) is diagonalized(α(11)i (φ) = 0) and agrees with that given in [59].
Effective 2D + 1 Equations of Nonlinear Dynamics of Phonon Modes

To derive simplified equations for low amplitude nonlinear waves against the back-
ground of the ground state (4mm phase), we will write down the dynamic equations
for the deviation ui of the displacement field from the equilibrium state, with accuracy
up to quadratic terms in the deviation amplitudes:

ρ∂tV + D(∇) : V + E(φ)∂ξ : ∂ξV ∘ ∂ξV = 0 . (5.120)

Here, V = (u1, u2), the differential operator D(∇) and the coefficients E(φ) are cum-
bersome, but can easily be calculated from (5.118). With the dependence of the field
variables on the coordinate η beingweak,we retained the derivatives over the variable
η in (5.120) only in the linear terms of the equations. In doing so,wehaveneglected the
fourth-order derivatives over η even in the linear terms. To build effective equations for
the dynamics of low amplitude waves that propagate along the directions met in the
condition α(11)i (φ) = 0, we can use the nonlinear perturbation theory. In this case, the
interaction of the Goldstone modes corresponding to a branch of the spectrum with
the index i is conveniently described in a reference frame moving with the velocity
si = ∂kωi|k=0. The solution of the equations should be sought in the form:

V = ∞∑
n=1

εnV(0)(x, y, τ) . (5.121)

Here, x = ε(ξ + si t), y = ε2η, τ = ε3t are slow variables. The parameter ε is necessary
for visual grouping of terms of the same magnitude order. At the end of the calcula-
tions, we set ε = 1. For the above directions of wave propagation, the solvability con-
ditions for the equations of lower orders in the parameter ε are fulfilled automatically.
The solvability requirement for a system arising in the order ε5 of perturbation theory
yields a closed effective equation that coincideswith the Kadomtsev–Petviashvili (KP)
equation (5.124). The KPmodel describes the propagation of waves in one direction at
a speed close to the speed of sound si. For the purpose of avoiding these limitations,
we apply a more general technique.

We go over from the fields u1 and u2 to normal modes R and Q:

S(∇)(u1
u2
) = (R

Q
) ; (u1

u2
) = S−1(∇)(R

Q
) .

TheoperatorS(∇) is chosen soas todiagonalize equations (5.120),whichare linearized
near the ground state V = 0:

ρ∂2t R + ρω2
1(i∂ξ , i∂η)R + ⋅ ⋅ ⋅ = 0 , ρ∂2t Q + ρω2

2(i∂ξ , i∂η) + ⋅ ⋅ ⋅ = 0 . (5.122)
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The explicit form of the differential operators ρω2
j (i∂ξ , i∂η), (j = 1, 2) in (5.122) is dic-

tated by the dispersion laws (5.119). We act as the operator S(∇) to equation (5.120).
The linear terms of the equations take the form (5.122). In the longwave approxima-
tion, to transform the nonlinear terms (5.121), it is sufficient for us to restrict ourselves
to the expressions for S(∇) and S−1(∇), which do not contain derivatives:
S(∇) = (1 N

N −1) , S−1(∇) = S(∇)
1 + N2 , N(ε1) = [μ sin 2φ]−1 (−ν cos 2φ − ε1δ) .

It should be emphasized that this approximation agrees with the reductive perturba-
tion theory (5.121). For directions that satisfy the condition sin 2φ = 0, it is convenient
to choose ε1 = − sign(ν cos 2φ). Then the expression for N permits the passage to the
limit of N → 0 as sin 2φ → 0.

When exciting one of the branches of the spectrum and R ≫ Q, the interaction
with the modes of the other branch can be neglected. Then the modes of the main
branch of the spectrum evolve by the closed equation:

ρ∂2t R + ρω2
1(i∂ξ , i∂η)R − g1∂2ξ R

2 = 0 ,

g1 = 3
4 (1 + N2)−1 [A1(cosφ + N sinφ) + 1

2A3(sinφ + N cosφ) sin 2φ+
+A2 cos 2φ(cosφ − N sinφ)] .

(5.123)

In the other limit case, when Q ≫ R, sin 2φ ̸= 0, an equation for Q comes out of (5.123)
after the formal substitution ε1 → −ε1, R → Q/N(ε1) as N−1(−ε) = −N(ε). For the
sake of definiteness, we will consider equation (5.123), omitting the lower index of the
parameters g1, α(ik)1 , etc.

Let us look into waves moving in one direction along the direction where
α(11)(φ) = 0, with velocities close to the speed of sound (s = √α(20)/ρ). Then, assum-
ing that R = R(x, η, t), where x = ξ+st, and taking into account that [ρ∂2t −α(20)∂2ξ ]R ≅
2ρs∂t∂xR, we reduce equation (5.122) to the KP model integrable by means of the in-
verse scattering problem [68]:

∂x [2ρs∂tR + α(40)∂3xR − g∂xR2] = α(02)∂2ηR . (5.124)

For purely one-dimensional motions (the dependence on η can be neglected),
equation (5.124) becomes the Korteweg–de Vries equation (KdV). It is essential that
neglecting of geometric nonlinearity in the expression for the tensor ηij within the
1D model destroys cubic displacement terms in the expression for the energy [59, 61].
Consequently, the equation for one-dimensional waves in the small amplitude limit
reduces a modified KdV equation with a stronger cubic nonlinearity (it is less impor-
tant for low-amplitude waves), rather than to the KdV equation with a nonlinearity
quadratic in displacements.

It has been shown in [66] that the low amplitude formations against the back-
ground of the 2mm phase are described by effective equations similar to (5.123). The
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only difference is to renormalize the elastic moduli and the constants of the wave in-
teraction due to spontaneous deformations (u(0)i,j ) ̸= 0. This circumstance ultimately
leads to a nontrivial temperature dependence of the parameters of the nonlinear ex-
citations.

Two-Dimensional Solitons as Precursors of a Martensitic Transition

Equation (5.123) allows a Bäcklund transformation: if u0 is a solution of equation
(5.123) and the function φ satisfies the equation

[ρD2
t + ρω2(iDξ , iDη) − 2gu0D2

ξ ] f ⋅ f = 0 , (5.125)

then u1 = −6α(40)g−1∂2ξ ln f + u0 is also a solution of equation (5.123) [65–67]. Here,
Dtf ⋅ g = (∂t − ∂t󸀠)f(t)g(t󸀠)|t=t󸀠, etc. The bilinear form (5.125) allows the employment
of the Hirota method [69] to obtain soliton like solutions of the equation (5.123). In
particular, the author of [65–67] has found an N-soliton exponential solution:

R = −6α(40)g−1∂2ξ ln f ,
f = ∑

μ=0,1
exp[[∑i>j Aijμiμj + N∑

i=1
μiηi]] , κ2(p, q) = −ρω2(ip, iq) ,

exp ηi = exp [Ωi t + piξ + qiη + η0i] , Ωi = σi [ρ−1κ2(pi , qi)] 1
2 , σi = ±1 ,

exp Aij = − [ρ(Ωi − Ωj)2 − κ2(pi − pj , qi − qj)] [ρ(Ωi + Ωj)2 − κ2(pi + pj , qi + qj)]−1 .
(5.126)

Here, ∑μ=0,1 means summation over all possible combinations of μ = 0, 1, and ∑i>j
means summation over all possible pairs of N elements. The parameters Ωj , pj , qi , η0j
must satisfy the reductions guaranteeing the reality of f .

When N = 2M, and the parameters are also connected in pairs in such a way that
Ωs = Ω∗s+M , ps = p∗s+M, etc., (s = 1, 2, . . . ,M), expression (5.126) controls a system
of M pulsating solitons. Such solitons become singular at some space time points, so
they are difficult to physically interpret.

When the parameters Ωj , pj , qi , η0j are real, solution (5.126) delineates elastic in-
teractions of N flat solitons of the type:

R(0) = −6α(40)d2
gch2θ

, θ = d(ξ + vt) , d2 = α(20) − ρv2

4α(40)
> 0 . (5.127)

Here, v is a real parameter (a soliton velocity). The flat solitons are not singular.
It is interesting to note that, for the solitons (5.126), (5.127) associated with the

branch of the spectrum ω1(k) of the linearized problem (ε1 = ± sign μ sin 2φ) and
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propagating in the directions φ = ±(π/4)(mod π) against the 4mm phase backdrop,
we have N = ∓1. Consequently, in the main approximation, we arrive at:

e1 ≈ [√2(1 + N2)]−1 ∂ξR(0)(cosφ + N sinφ) = 0 ,

e3 ≈ [√2(1 + N2)]−1 ∂ξR(0)(sinφ + N cosφ) = 0 ,

e2 ≈ [√2(1 + N2)]−1 ∂ξR(0)(cosφ − N sinφ) ̸= 0 .

(5.128)

Since the field e2 is a parameter of the theory order, its deviation from zero in the
soliton localization region means that the square lattice, typical of the ground state,
turns into a rectangular lattice inside the soliton (Figure 5.23). Although the rectan-
gular lattice corresponds to a new phase, in this case the phase transition does not
yet occur, since the amplitude of the soliton is small. However, forming the inhomo-
geneous internal structure of the ground state with deformations typical of the other
phase indicates theappearanceof tendencies for a phase transition to takeplace in the
system. Apparently, the solitons (5.128) can be interpreted as low amplitude twinned
interlayers parallel to the (110) planes, or as residual traces of the low temperature
2mm phase (martensite) against the background of the main 4mm phase (austen-
ite). Quasiperiodic finite zone solutions of the KP model (5.124) correspond to small
amplitude twinned strips. Relations (5.128) meet no other directions of the wave prop-
agation. Other solitons cannot be treated as precursors of a new phase, because their
excitations are far too involved. Interestingly, near the cubic tetragonal martensitic
transition, the twinned interlayers parallel to the (110) planes and tetragonal modula-
tions against the 4mm phase backdrop are experimentally observed [59, 70].

1X

2X

Fig. 5.23: A flat soliton (5.127) is a precursor of a
martensitic transition: φ = π/4, α(40)g > 0.
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x

y

Fig. 5.24: Deformations of a square lattice, gener-
ated by a cigar shaped soliton (5.129): φ = π/4,
α(40)g > 0.

Besides the exponential solutions, there are also polynomial solutions of the equation
(5.128). The simplest of them is a two-dimensional cigar shaped soliton:

R = 12α(40) [A2(ξ + vt)2 − (AB − 2C2)η2 + 2CAη(ξ + vt) − A]
g [1 + A(ξ + vt)2 + Bη2 + 2Cη(ξ + vt)]2 ;

A = [4α(02)(α(20) − ρv2) − (α(11))2] [12α(40)α(02)]−1 ,

B = (α(20) − ρv2) [α(02)]−1 A , C = α(11)A [2α(02)]−1 .

(5.129)

The requirement of boundedness of the solution (5.129) reduces it to the condition:
A, B > 0, AB − C2 > 0. The two-dimensional soliton (5.129) (Figure 5.24) is spatially
localized (R = O(r−2) as r → ∞); it can be motionless (v = 0). The initial assump-
tion of a weak dependence of the waves on the variable η implies a limitation on the
applicability region for solution (5.129):

α(11) ≪ 2α(02), (α(20) − ρv2) ≪ α(02) .

The solitons may emerge under the action of impulsive forces applied to the sur-
face of the sample. They can locally arise during its deformation, such as at grain
boundaries which have suffered a local phase transition. In addition, the solitons can
arise as pretransitional states as a result of energy exchange between different phonon
branches, and due to progressing instability in the phonon system [71].

Stability of Solitons

For working out various soliton scenarios, the answer to the question of the stability
of solitons is important. In the KP model (5.124), the stability or instability of solitons
depends on the sign of the combination of α(40)α(02). In [68] it is established that, for
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α(40)α(02) < 0, flat solitons of the type (5.127) are stable, relative to two-dimensional
perturbations. A nontrivial picture occurs for α(40)α(02) > 0. In this case, the flat soli-
tons of the KP model are unstable [72], but cigar-shaped solitons of the type (5.129)
that are stable relative to two-dimensional perturbations exist. The nonlinear stage of
development of the instability of flat solitons of the KP model has been investigated
by [72–76]. The author of [73], in particular, claims that anunstable flat soliton spreads
as a result of the excitation of small oscillations on its front, which move faster than
the soliton itself, overtake it, and take away a part of its energy. The radiated energy
is further dissipated in space due to dispersion effects. An alternative has been found
in [76]. Once the flat soliton decays, chains of cigar-shaped solitons and a new flat soli-
ton are formed, with the amplitudes of these new solitons being less than that of the
original soliton. Finally, there is no dissipation of the energy, but condensation into
new soliton structures is produced.

As compared to the KP model, the more general equation (5.123) requires modify-
ing the soliton stability conditions. Let us construct a criterion for the instability of the
flat soliton (5.127), relative to two-dimensional perturbations. Here, it is worth noting
that the solution of (5.127) exists only in a definite interval of soliton velocity values.
In particular, for α(40), α(20) > 0, the soliton velocity must be less than the sound ve-
locity 0 < v2 < α(20)/ρ. For α(20) > 0, α(40) < 0, the soliton moves with a supersonic
velocity.

We seek the solution of the perturbed equation (5.123) in the form [77]:

R = R(0) [θ + α(Yi , Ti)] + ∞∑
n=1

εnR(n) [θ + α(Yi , Ti), Yi , Ti] . (5.130)

Here ε is a small parameter characterizing the ratio of diffraction and nonlinearity,
Yi = εiη, Ti = εi t are slow variables, and i are natural numbers. By substituting the
expansion (5.130) into (5.123), arraying terms of the same order over ε, and by neglect-
ing higher powers of α (linear approximation), we obtain:

d4α(40) [−4∂2θ + ∂4θ] R(0) − gd2∂2θ [R(0)]2 = 0 ,

L̂R(1) = −[2vρd ∂α
∂T1

+ α(11)d ∂α
∂Y1

] ∂2θR(0) ; (5.131)

L̂R(2) = −ρ [ ∂2α
∂T21

∂θR(0) + 2vd ∂α
∂T2

∂2θR
(0) + 2vd ∂2R(1)∂θ∂T1

+ 2vd ∂α
∂T1

∂2θR
(1)]−

− α(11) [d ∂α
∂Y2

∂2θR
(0) + d ∂α

∂Y1
∂2θR
(1) + d ∂

2R(1)

∂θ∂Y1
]+

+ α(02) ∂
2α

∂Y2
1
∂θR(0) + gd2∂2θ [R(1)]2 ,

L̂φ ≡ d4α(40) [−4∂2θ + ∂4θ]φ − 2gd2∂2θ [R(0)φ] .

(5.132)

The conditions for the absence of secular terms in (5.131) and (5.132) are the
essence of the orthogonality conditions for the right-hand sides of these equations to
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the eigenfunction Ψ = ∫dθR(0)(θ) of the operator adjoint to L̂ (the emerging arbitrary
integration constants are eliminated by the requirement of decreasing R(i)(θ) at infin-
ity). For equation (5.131), the orthogonality condition is automatically satisfied. The
solution has the form:

R(1) = −[2vρ ∂α
∂T1

+ α(11) ∂α
∂Y1

] [R(0) + θ
2
∂θR(0)] /4d3α(40) .

The orthogonality condition for equation (5.132) gives an evolution of α in the geomet-
rical optics approximation:

γ1
∂2α
∂T21

− γ2
∂2α
∂Y2

2
− γ3

∂2α
∂Y1∂T1

= 0 , γ1 = ρ(α(20) − 4ρv2) ,
γ2 = α(02)(α(20) − ρv2) + 3

4 (α(11))2 , γ3 = 3vρα(11) .
(5.133)

From (5.133), the criterion of soliton instability follows:

γ23 + 4γ1γ2 < 0 .

In particular, for α(11) = 0, α(20) > 0, α(40) > 0, the solution (5.127) can be stable
only for α(02) > 0, with the range of the soliton motion velocities being narrower than
that determined by formula (5.127): 0 < v2 < α(20)/4ρ. In the region of high velocities(α(20)/4ρ < v2 < α(20)/ρ), such a soliton can be stable only for α(02) < 0.

The stability line canbe achieved by a soliton due to temperature inhomogeneities
or local stresses that change the shearmoduli and, therefore, affect the soliton stability
aswell as the temperature. As instability is in progress, the solitons can emit phonons.
Apparently, this allows us to take a fresh look at the problem of anomalous acoustic
emission near the martensitic phase transitions [78].



Exercises

1. Electrons and Holes in Metals and Semiconductors

Exercise 1
Show that:

Vb = (2π)3 /Va .

Exercise 2
Construct the first, second, and third Brillouin zones for a plane square lattice with
a lattice constant a. Consider cases when an elementary cell contains p = 1, 2, 3, 4
electrons. Depict the shape of the Fermi surface for each case in the reduced zone
scheme. Depict the 4-th Brillouin zone.

Exercise 3
1. Having substituted

Ψnk⃗( ⃗r) = unk⃗( ⃗r) exp (ik⃗ ⋅ ⃗r)
into the Schrödinger equation

ĤΨnk⃗ = εn(k)Ψnk⃗ ,

show that:

− ℎ2
2m ∆unk⃗ + V( ⃗r)unk⃗ − iℎ2

m (k⃗ ⋅ ∇)unk⃗ + ℎ2k2
2m unk⃗ = εn(k⃗)unk⃗ .

2. Considering the operator:

Ĥ󸀠 = − iℎ2
m

(k⃗∇) + ℎ2k2
2m

,

as a perturbation operator (|k⃗| ≪ π/a), calculate the corrections O(k) and O(k2)
to the electron energy εn(k⃗ = 0). Using this result, derive in terms of un0⃗ the ex-
pression for the average electron velocity V⃗ = (1/ℎ)(∂εn/∂k⃗)|k⃗=0, as well as the
tensor of its reciprocal effective massM−1ij = (1/ℎ)2(∂2εn/∂ki∂kj)|k⃗=0.

Exercise 4
Show that when an electron reflects from the Bragg planes in crystals with a center of
inversion, the wave functions of an electron are standing waves:

Ψ+ = √ 2
V exp{− iℎ ε+ ( K⃗2) t} sin 1

2 K⃗ ⋅ ⃗r ,
Ψ− = √ 2

V exp{− iℎ ε− ( K⃗2) t} cos 12 K⃗ ⋅ ⃗r ,
where V is the volume of the crystal. The electron energy is ε±(K⃗/2) = ε0(K⃗/2) ± |UK⃗ |.
https://doi.org/10.1515/9783110586183-006
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Exercise 5
Show that for free electrons:

∂f
∂T = − ∂f∂ε [ ε − μ

T + dμ
dT ] ,

∂f
∂ε

= − 1
4kBT

ch−2 ( ε − μ
2kBT

) ,

where f is the Fermi–Dirac distribution function.

Exercise 6
Suppose silver is a monovalent metal with a spherical Fermi surface. Calculate the
following values of:
1. the Fermi energy (eV) and the Fermi temperature
2. the radius of the Fermi sphere in k-space
3. the Fermi velocity
4. the cross sectional area of the Fermi surface
5. cyclotron frequency (Hz) in a magnetic field with a voltage H = 5000 Oe
6. a mean free path of electrons at room temperature (295 K) and near absolute zero

temperatures (20 K)
7. the radius of the cyclotron orbit in the field H = 5000 Oe
8. length of the edge of a cubic unit cell
9. length of the reciprocal lattice vectors
10. volume of the first Brillouin zone

There is table data for Ag: the density is d = 10.5g/cm3, the atomicweight isA = 107.87,
the specific resistance is ρ = 1.61 ⋅10−6Ω ⋅cm at T = 295 K, and ρ = 0.0038 ⋅10−6Ω ⋅cm
at T = 20K.

Exercise 7
Show that the expression for the density of electron levels in a crystal can be written
in two equivalent forms:

ν(ε) = 1
4π3

∫
ε(k)=ε

dS󵄨󵄨󵄨󵄨∇k⃗ε
󵄨󵄨󵄨󵄨 =

1
4π3

∫
Vb

δ (ε − ε(k⃗)) d3k⃗ .

Exercise 8
Check directly that the function φ = (Q/r) exp(−λr) is a solution of the differential
equation: −∆φ = 4πQδ( ⃗r) − λ2φ .
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Exercise 9
Check directly that the semiclassical equations of motion of an electron:

̇⃗r = V⃗ = 1ℎ ∂ε (k⃗)∂k⃗
, ℎ ̇k⃗ = − |e| {E⃗( ⃗r, t) + 1

c [V⃗(k⃗) × B⃗( ⃗r, t)]} ,

can be written in the Hamiltonian form:

̇⃗r = ∂H
∂p⃗

, ̇p⃗ = −∂H
∂ ⃗r ,

where H = ε((1/ℎ)[p⃗ + (|e|/c)A⃗( ⃗r, t)]) − |e|φ( ⃗r, t), wherein:
B⃗ = rot A⃗ , E⃗ = −∇φ − 1

c
∂A⃗
∂t , ℎk⃗ = p⃗ + |e|

c A⃗ .

Note
In the calculations, use the abbreviated notations:

[V⃗ × B⃗]s = espkVpBk , (rot A⃗)s = espk∇pAk ,

and identity:
espkeklm = δslδpm − δsmδpl ,

where espk is an absolutely antisymmetric unit tensor (e123 = 1).
Exercise 10
Show that the dispersion law:

ε(k⃗) = ℎ2
2 [ k21

m1
+ k22
m2

+ k23
m3

] ,

where k⃗ = (k1, k2, k3), governs the period ofmotion of an electron along a closed orbit
in amagnetic field B⃗ = (0, 0, B) by the formula T = (2πc)/(|e|B)√m1m2. The quantity
mc = √m1m2 is called the cyclotron mass of an electron.

Exercise 11
Show that a magnetic flux Φ enclosed by a closed orbit of an electron can only vary in
a constant magnetic field by quanta:

∆Φ = −hc|e|∆n .
Here h is the Planck constant, c is the speed of light in a vacuum, e is the charge of an
electron, and ∆n is an integer.
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Note
Use the Bohr–Sommerfeld formula:

∮ p⃗ ⋅ d ⃗r = (n + γ)2π ℎ ,
where n is an integer and γ is a phase correction (its typical value is γ ≈ 1/2). In the
given exercise

p⃗ = ℎk⃗ − |e|
c
A⃗ .

Exercise 12
1. Calculate the concentration of electrons and holes, as well as an expression for

the chemical potential in a strongly doped semiconductor of n-type (Nd ≫ ni),
provided that the donor levels are completely ionized.

2. Show that the chemical potential μ(T) in an n-type semiconductor in the region of
ultralow temperatures has a local maximum lying in the interval ((εc + εd)/2, εc).
Calculate the value of the maximum and the corresponding temperature.

2. Crystal Lattice Vibrations

Exercise 13
Show that for a one-dimensional diatomic lattice we have:

lim
q→0

(A1
A2

)󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨acoust = 1, lim
q→0

(A1
A2

)󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨optic = −M2
M1

,

where A1, A2 are the amplitudes of vibrations of lattice atoms with masses M1,M2,
respectively, and q is a wavenumber.

Exercise 14
Show that for a one-dimensional diatomic lattice the oscillation frequencies ωi(q)
(i = 1, 2) as q → 0 satisfy the following relations:

ω1(q) ≈ clq , ω2(q) ≈ ω0 (1 − γ2q2a2
8 ) ,

where
cl = √2α/(M1 + M2)a ,
ω0 = √2α√(M1 +M2)/(M1M2) ,
γ = 2√M1M2/(M1 +M2) ,

a is the distance between neighboring atoms with masses M1,M2, and α is the con-
stant of quasi-elastic interaction between atoms.

These relations imply that (∂ω2/∂q)|q=0 = 0, i.e., the curve ω2 = ω2(q) has a
horizontal tangent at a point q = 0.
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Exercise 15
Show that for a diatomic one-dimensional lattice we have:

∆ω = √2α ( 1√M2
− 1√M1

) ,

and for q = π/2a (M1 > M2),
∂ω1
∂q

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨q=π/2a = ∂ω2
∂q

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨q=π/2a = 0 .

The last equalities mean that the curvesωi = ωi(q) (i = 1, 2) have horizontal tangents
at the boundaries of the first Brillouin zone for q = ±π/2a.
Exercise 16
Show that the dynamic matrix of crystals is real in crystals with a center of inversion:

φ∗ss󸀠(q⃗) = φss󸀠(q⃗) .
Exercise 17
Show that the equation of lattice dynamics can be rewritten in the form:

MκÜα ( lκ) = − ∑
l󸀠,κ󸀠,α󸀠

Φαα󸀠 ( l l󸀠

κ κ󸀠
)[Uα󸀠 ( lκ) − Uα󸀠 ( l󸀠κ󸀠)] .

Exercise 18
Show that if Rm = ma (1 ≤ m ≤ N) and k = 2π n/Na (m, n, N are integers), the
following identity holds:

1
N

N∑
m=1

exp (ikRm) = {{{
0 , when k ̸= 2π

a s ≡ K (s is integer) ;
1 , when k = 2π

a s ≡ K .

3. Superconductivity

Exercise 19
Estimate the electron-phonon interaction constant:

gs󸀠 k⃗󸀠 ,sk⃗ (q⃗j) ∼ i√ ℎN
2ωj(q⃗)

(e⃗ ⋅ ̃⃗q)
V√M e2a2δk⃗󸀠−k⃗,̃⃗q ,

where e⃗ ≡ e⃗ (κ q⃗
j
) is the polarization vector of a phonon; ̃⃗q = q⃗ + K⃗, q⃗ is the wave

vector of a phonon, and K⃗ is the reciprocal-lattice vector.
When K⃗ = 0, the quantity |(e⃗ ⋅ q⃗)| is maximum when e⃗ ‖ q⃗, i.e., the interaction of

electrons with longitudinal lattice vibrations is the most important.
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Exercise 20
Show that, in calculating the correction to the energy of two electrons through the
exchange of a virtual phonon, the matrix elements of the interaction operator have
the form:

󵄨󵄨󵄨󵄨󵄨⟨k⃗1, k⃗2, 0 󵄨󵄨󵄨󵄨󵄨Ĥint
󵄨󵄨󵄨󵄨󵄨 k⃗1 − q⃗, k⃗2, 1⟩ 󵄨󵄨󵄨󵄨󵄨2 = 󵄨󵄨󵄨󵄨󵄨⟨k⃗1, k⃗2, 0 󵄨󵄨󵄨󵄨󵄨Ĥint

󵄨󵄨󵄨󵄨󵄨 k⃗1, k⃗2 + q⃗, 1⟩ 󵄨󵄨󵄨󵄨󵄨2 = 󵄨󵄨󵄨󵄨󵄨gk⃗1 ,k⃗1−q⃗󵄨󵄨󵄨󵄨󵄨2 .

Exercise 21
Consider the case of remaining themodulus of a wave function Ψ( ⃗r) of the condensate
of Cooper pairs as a constant in the Ginzburg–Landau theory, but only the phase φ( ⃗r)
changes.

Show that the expression for the current density in a superconductor takes the
form: ⃗j = −[2e2mc A⃗ + |e| ℎ

m ∇⃗φ] ns ,
where ns = |Ψ|2 is the density of superconducting electrons (the wave function is
properly normalized).

4. Quantum Optics – Interaction of Radiation with Matter

Exercise 22
Show that the energy of an electromagnetic field in a cavity can bewritten in the form:

W = 1
2 ∫d3 ⃗r [ε0 E⃗2 + μ0H⃗2] = Σ⃗

k,λ
ℎωka∗k⃗λ(t)a ⃗kλ(t) .

Note
Use the identities:

1
V ∫

V

exp [i (k⃗ ± k⃗󸀠) ⋅ ⃗r]d3 ⃗r = δk⃗,∓k⃗󸀠 ;

(e⃗k⃗λ ⋅ e⃗k⃗λ󸀠) = δλλ󸀠 ; ([n⃗k⃗ × e⃗k⃗λ] ⋅ [n⃗±k⃗ × e⃗±k⃗λ󸀠]) = ± (e⃗k⃗λ ⋅ e⃗±k⃗λ󸀠) .
Exercise 23
Show that eigenvectors corresponding to a given number of photons can be written in
the form: |nk⃗λ⟩ = (â ⃗kλ )nk⃗λ√nk⃗λ! |0⟩ , ⟨nk⃗󸀠λ󸀠 |nk⃗λ⟩ = δk⃗k⃗󸀠δλλ󸀠 .
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Exercise 24
Show that the evolution of operators of creation and annihilation of photons is deter-
mined in the Heisenberg picture by the equations:

â ⃗kλ (t) = â
k⃗λ
(0) exp (−iωkt) , â

k⃗λ
(t) = â ⃗kλ (0) exp (iωkt) .

Exercise 25
Show that: [cos φ̂, sin φ̂] = 1

2i
{â+(n̂ + Î)−1 â − Î} .

Using the result, make sure that all diagonal elements of this commutator are zero
except for one: ⟨0| [cos φ̂, sin φ̂] |0⟩ = −1/2i .
Exercise 26
Show that: [n̂, cos φ̂] = −i sin φ̂ , [n̂, sin φ̂] = i cos φ̂ ,

Where:

n̂ = â+ â , exp (iφ̂) = (n̂ + 1)−1/2 â , exp (−iφ̂) = â+(n̂ + 1)−1/2 .
Exercise 27
Show that: |α⟩ = exp(αâ+ − 1

2 |α|2) |0⟩ ,

and |α⟩ = exp (αâ+ − α∗â) |0⟩ .
Note
Use the Baker–Hausdorff identity. If [Â, B̂] ̸= 0, [Â, [Â, B̂]] = [B̂, [Â, B̂]] = 0, then the
identity is valid:

exp (Â + B̂) = exp Â ⋅ exp B̂ ⋅ exp (−12 [Â, B̂]) .

Here, you should note that Â = αâ+, B̂ = −α∗â.
Exercise 28
Show that:

⟨α| cos2 φ̂ |α⟩ = 1
2
− 1
4
exp (− |α|2) + |α|2

2
cos 2θ exp (− |α|2) ∞∑

k=0

|α|2k
k!√(k + 1)(k + 2) ,

where α = |α| exp iθ.
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Exercise 29
Show that:

⟨α| Ê2z |α⟩ = ⟨E2z⟩ = ℎω
2ε0V

{1 + 4 󵄨󵄨󵄨󵄨󵄨α2󵄨󵄨󵄨󵄨󵄨 sin 2 (k⃗ ⋅ ⃗r − ωt + θ)} ,

where α = |α| exp iθ. Also, check that:
⟨α| Ê2z |α⟩ − ⟨α| Êz |α⟩2 = ℎωk

2ε0V
.

Exercise 30
Suppose two statistically independent mechanisms for line broadening existed:

φi(ε) = 1

√πδ2i exp[−
(ε − ε0)2

δ2i
] , i = 1, 2 .

Find the function of the compound line shape.

Exercise 31
Show that the average of the product of any two functions of the type:

A(t) = A(ω) exp (−iωt) + c.c. , B(t) = B(ω) exp (−iωt) + c.c. ,
over the period T = 2π/ω is determined by the relation:

⟨A(t) B(t)⟩ = 1
T

T∫
0

A(t)B(t)dt = 2Re {A(ω)B∗(ω)} .

Exercise 32
Show that coherent states |α⟩ satisfy the completeness condition:

1
π ∫ |α⟩ ⟨α| d2α = Î ,

where d2α = d(Reα)d(Imα).
Note
Use the completeness condition for vectors |n⟩:

Σ
n
|n⟩ ⟨n| = Î ,

as well as the value of the integral:

∫ α∗nαm exp (− |α|2) d2α = πn!δnm .
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Exercise 33
Argue that the identity:

1
π ∫ exp (β∗α − |α|2) (α∗)nd2α = (β∗)n ,

is valid. Using it, show that for any state of an electromagnetic field of the type:

|f ⟩ = f(â+) |0⟩ ≡ 1
π ∫ |α⟩ f(α∗) exp(−|α|22 ) d2α ,

where f(x) is an arbitrary function expanded in a power series, the equality:
⟨β|f⟩ = exp (− 󵄨󵄨󵄨󵄨β󵄨󵄨󵄨󵄨2 /2) f(β∗) ,

holds. Here |α⟩, |β⟩ are coherent states.
Exercise 34
Show that the Poisson distribution:

p(n) = ⟨n⟩n exp (− ⟨n⟩)
n! ,

determines the probability of locating n photons in a coherent state |α⟩.
Exercise 35
Show that any coherent state can be expressed through other coherent states:

|α⟩ = 1
π ∫ d2α󸀠 |α󸀠⟩ exp [−1

2
(|α|2 + 󵄨󵄨󵄨󵄨󵄨α󸀠󵄨󵄨󵄨󵄨󵄨2) + αα󸀠∗] .

This is a consequence of the nonorthogonality and overfilling of coherent states.

Exercise 36
Show that, for the quantity ℎg2

k⃗
nk⃗λ that characterizes the probability of transitioning

an atom from the ground state to an excited state under the action of an electromag-
netic wave, the following estimate (nk⃗λ ≫ 1) holds:

ℎg2
k⃗
nk⃗λ ∼ |e|2 ⟨nk⃗λ 󵄨󵄨󵄨󵄨󵄨Ê2 󵄨󵄨󵄨󵄨󵄨 nk⃗λ⟩ a2Bℎ−1 .

Note
Accept the estimate |D⃗12| ∼ aB for the matrix element |D⃗12|, where aB is the Bohr
radius of an atom.

Exercise 37
The operators exp(iφ̂) and exp(−iφ̂) introduced in considering coherent states do not
possess the exponential properties of the operators iφ̂ and −iφ̂. Verify that:

exp (−iφ̂) ⋅ exp (iφ̂) ̸= 1 .
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Note
Consider the action of the operator exp(−iφ̂)⋅exp(iφ̂)on a complete set of vectors {|n⟩}.
5. Dislocations and Martensitic Transitions

Exercise 38
Find the explicit form of the dynamic Green’s function, using the Fourier transform
method.

Exercise 39
Derive the static Green’s function by integrating the expression for the dynamic
Green’s function over time.

Exercise 40
Calculate the displacement fields of motionless rectilinear screw and edge disloca-
tions using the Green’s function. Select the Oz-axis along the dislocation line. The
Burgers vectors of the dislocations are b⃗ = (0, 0, b) and b⃗ = (b, 0, 0),respectively.
Exercise 41
Using the results of the previous exercise, calculate the components of the stress ten-
sor of rectilinear screw and edge dislocations.

Exercise 42
Calculate the elastic stresses of walls of rectilinear screw and edge dislocations.

Note
Use the formulas:

y
x2 + y2

= 1
2 ( 1

y + ix + 1
y − ix) ; x

x2 + y2
= 1
2i ( 1

y − ix − 1
y + ix) ;

ctgξ = ∞∑
n=−∞

1
ξ + nπ

.

Exercise 43
Using the results of the previous exercise, show that the shear stresses decrease ex-
ponentially with distancing away from the boundary of subgrains of a slightly misori-
ented crystal:

σ12 ≈ 4π2D x
w2 exp(−2πxw ) cos 2πyw , x ≫ w .



Exercises | 355

Note
Thegrainboundary is treated as awall of rectilinear edgedislocations. Thedislocation
lines are parallel to the Oz-axis and lie in the Oyz-plane. The distance w between the
dislocations in the wall is much larger than the length of their Burgers vector: w ≫ b.

Exercise 44
Show that for a system of parallel screw dislocations, the relations

iω∫ ρ ( ⃗r, ω) ⃗r d2 ⃗r = −∫ ⃗j( ⃗r, ω) d2 ⃗r ;
iω∫ ρ ( ⃗r, ω) (rs rp − δsp

2
r2) d2 ⃗r = −∫ [rp js( ⃗r, ω) + rs jp( ⃗r, ω) − δsp ( ⃗r ⋅ ⃗j( ⃗r, ω))]d2 ⃗r .

are valid.

Note
Use the law of conservation of the Burgers vector as dislocations move.

Exercise 45
Using multipole expansions, obtain the differential intensity of dipole radiation in a
wave zone for:
1. screw dislocations
2. edge dislocations
3. dislocation loops

Exercise 46
Using Cauchy’s theorem on residues, verify the validity of formulas:

1. Ĥ [ 1
x − ν ] = − i sign Im ν

x − ν ;

2. T̂ [ 1
sh π

d (x − ν)] = − i
sh π

d (x − ν) sign [sin (2πd Im ν)] .
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