МИНОБРНАУКИ РОССИИ

Федеральное государственное бюджетное учреждение науки ИНСТИТУТ ФИЗИКИ МЕТАЛЛОВ имени М.Н. Михеева Уральского отделения Российской академии наук

УТВ	ЕРЖДАН	O:
Дире	ектор инс	титута
акад	емик РАН	I
		Н.В. Мушников
«	>>	2019 г.

РАБОЧАЯ ПРОГРАММА

по дисциплине «Современные магнитные материалы» специальность 01.04.11 «Физика магнитных явлений»

Всего учебных часов / зач. ед. -252/ 7 Всего аудиторных занятий, час. -120Всего часов на самостоятельную работу аспиранта, час. -132 Рабочая программа составлена на основании Федерального государственного образовательного стандарта высшего образования (далее — ФГОС ВО) по направлению подготовки научно-педагогических кадров в аспирантуре 03.06.01 Физика и астрономия (Приказ Минобрнауки России от 30 июля 2014 года №867), с изменениями, утвержденными Приказом Минобрнауки России от 30.04.2015 г. №464 «О внесении изменений в федеральные государственные образовательные стандарты высшего образования (уровень подготовки кадров высшей квалификации)»; программы-минимум кандидатского экзамена по специальности 01.04.11 «Физика магнитных явлений», утвержденной приказом Минобрнауки РФ от 08.10.2007 № 274; паспорта специальности научных работников 01.04.11 «Физика магнитных явлений»; учебного плана аспирантуры ИФМ.

1. ОБЩИЕ ПОЛОЖЕНИЯ

В курсе «Современные магнитные материалы» изучаются вопросы, рассматривающие те задачи, которые стоят перед научными работниками в настоящее время. Круг рассматриваемых тем выходит далеко за рамки конкретной тематики аспиранта, заставляет его шире взглянуть на интересы всего мирового научного сообщества, заставляет аспиранта знакомиться последними публикациями в научной периодике.

Рабочая программа составлена на основе:

- Федерального государственного образовательного стандарта высшего образования (далее ФГОС ВО) по направлению подготовки научно-педагогических кадров в аспирантуре 03.06.01 Физика и астрономия (Приказ Минобрнауки России от 30 июля 2014 года №867), с изменениями, утвержденными Приказом Минобрнауки России от 30.04.2015 г. №464 «О внесении изменений в федеральные государственные образовательные стандарты высшего образования (уровень подготовки кадров высшей квалификации)»;
- программы-минимум кандидатского экзамена по специальности 01.04.11 «Физика магнитных явлений»;
- паспорта специальности научных работников специальности 01.04.11 «Физика магнитных явлений»;
- учебного плана ИФМ по основной образовательной программе послевузовского профессионального образования (аспирантура) по специальности 01.04.11 «Физика магнитных явлений».

2. СТРУКТУРА И СОДЕРЖАНИЕ РАБОЧЕЙ ПРОГРАММЫ

2.1. Распределение часов учебных.

Вид занятий	Количество часов
Лекции	120
Самостоятельная работа	132
ИТОГО	252

2.2. Содержание дисциплины

2.2.1. Наименование тем, их содержание, объем в часах лекционных занятий

2.2.1. Hannehobanne 1em, nx codepikanne, oobem b lacax nekanonnibix sanirini		
Темы лекционных	Содержание	Объем
занятий		В
		часах
1. Роль и место	Общая классификация.	12
магнитных материалов		
в технике.		
2. Влияние различных	Связь между структурой и свойствами	14
факторов на магнитные	материала. Влияние химического состава и	
свойства.	примесей, механических и магнитострикционных	
	напряжений, магнитной кристаллографической	

		1
	анизотропии, температуры, механической	
	обработки, предыстории, формы изделия,	
	частоты, времени, технологии изготовления и	
	обработки на магнитные свойства.	
3. Материалы для	Их классификация и назначение. Физические	14
постоянных магнитов.	величины, характеризующие свойства	
	магнитотвердых материалов. Рабочая точка	
	постоянных магнитов. Определение	
	оптимальных размеров. Стабилизация	
	постоянных магнитов. Влияние температуры.	
	Последействие и старение магнитов. Основные	
	типы магнитотвердых материалов и природа их	
	высококоэрцитивного состояния: мартенситные	
	стали, дисперсионнотвердеющие сплавы,	
	холоднодеформируемые сплавы, сплавы со	
	сверхструктурой, магниты из порошков, сплавы	
	РЗМ. Промышленные марки постоянных	
	магнитов. Существующие стандарты.	
	Применение постоянных магнитов.	
4. Магнитомягкие	Классификация. Общие требования,	14
материалы.	предъявляемые к материалам. Магнитомягкие	17
материалы.	материалы для электрических машин и	
	трансформаторов. Нелегированное железо.	
	Сплавы Железо-кремний. Влияние кремния,	
	-	
	примесей, величины зерна,	
	кристаллографической текстуры и других	
	факторов на магнитные и электрические	
	свойства. Свойства холоднокатаной стали.	
	Сплавы железо-алюминий, железо-кремний-	
	алюминий, железо-кобальт и их свойства.	
	Ферритовые сердечники для силовых	
	трансформаторов. Существующие стандарты.	
	Предельно высокие свойства, полученные на	
	лабораторных образцах, и пути дальнейшего	
	повышения качества электротехнических сталей.	1.0
5. Магнитомягкие	Назначение, свойства и применение дросселей	12
материалы для	насыщения. Магнитные свойства, режимы	
магнитных усилителей.	обработок и предъявляемые требования к	
	материалам для сердечников	
6. Магнитомягкие	Назначение и свойства электромагнитных реле.	12
материалы для реле.	Требования, предъявляемые к материалам	
	сердечника и ярма. Применяемые материалы и	
	их свойства. Магнитные материалы в технике	
	связи и применяемые к ним требования.	
	Металлы и сплавы, применяемые для	
	сердечников дросселей и трансформаторов	
	малой мощности. Магнитодиэлектрики.	
	Ферриты. Преимущества и недостатки	

	различных материалов.	
7. Магнитные	Распространение электромагнитной волны в	14
материалы для	волноводе. Электрические и магнитные свойства	
микроволнового	ферритов при СВЧ. Материалы для СВЧ	
диапазона.	техники. Микроволновые элементы,	
	выполненные с применением ферритов.	
8. Магнитные	Виды магнитных запоминающих устройств.	14
материалы для	Принцип их действия и конструктивное	
запоминающих	оформление. Запоминающие устройства на	
устройств.	магнитной ленте, магнитном барабане,	
	магнитном диске, тороидальных ферритовых	
	сердечниках, ферритовых платах, тонких	
	магнитных пленках, цилиндрических доменах.	
	Трансфлюксоры. Твисторы. Магнитные линии	
	задержки.	
9. Сплавы с заданными	Сплавы с минимальными температурными	14
температурными	коэффициентами линейного расширения;	
коэффициентами	ферромагнитные сплавы низкими и средними	
теплового расширения.	температурными коэффициентами линейного	
	расширения; немагнитные сплавы с заданными	
	температурными коэффициентами линейного	
	расширения.	
	ИТОГО	120

2.2.2. Практические занятия, их наименование, содержание, объем в часах. Практические занятия не предусмотрены учебным планом.

2.2.3. Самостоятельная работа аспирантов

Воличи и томи тобочой	Попочения по почний пид сомосто стать чего	Тругис
Разделы и темы рабочей	Перечень заданий для самостоятельной	Трудо
программы самостоятельного	работы (рефераты, доклады, переводы,	емкост
изучения	расчеты, планирование эксперимента и	Ь
	т.п.)	Час.
1. Роль и место магнитных	Анализ научной литературы,	16
материалов в технике.	периодических научных журналов и	
	электронных источников с учетом	
	содержания дисциплины. Подготовка	
	доклада.	
2. Влияние различных факторов	Анализ научной литературы,	16
на магнитные свойства.	периодических научных журналов и	
	электронных источников с учетом	
	содержания дисциплины Подготовка	
	доклада.	
3. Материалы для постоянных	Анализ периодических научных	16
магнитов.	журналов и	
	электронных источников с учетом	
	содержания дисциплины. Технический	
	перевод зарубежных	

	первоисточников. Подготовка	
	доклада.	
4. Магнитомягкие материалы.	Анализ периодических научных	14
•	журналов и	
	электронных источников с учетом	
	содержания дисциплины. Технический	
	перевод зарубежных	
	первоисточников. Подготовка	
	доклада.	
5.Магнитомягкие материалы для	Анализ периодических научных	14
магнитных усилителей	журналов и	
	электронных источников с учетом	
	содержания дисциплины. Технический	
	перевод зарубежных	
	первоисточников. Подготовка	
	доклада.	
6. Магнитомягкие материалы для	Анализ периодических научных	14
реле.	журналов и	
	электронных источников с учетом	
	содержания дисциплины. Технический	
	перевод зарубежных	
	первоисточников. Подготовка	
	доклада.	
7. Магнитные материалы для	Анализ периодических научных	14
микроволнового диапазона.	журналов и	
	электронных источников с учетом	
	содержания дисциплины. Технический	
	перевод зарубежных	
	первоисточников. Подготовка	
	доклада.	
8. Магнитные материалы для	Анализ периодических научных	14
запоминающих устройств.	журналов и	
	электронных источников с учетом	
	содержания дисциплины. Технический	
	перевод зарубежных	
	первоисточников. Подготовка	
	доклада.	
9. Сплавы с заданными	Анализ периодических научных	14
температурными	журналов и	
коэффициентами теплового	электронных источников с учетом	
расширения	содержания дисциплины. Технический	
	перевод зарубежных	
	первоисточников. Подготовка	
	доклада.	
	ИТОГО	132

- 2.3 Учебно-методические материалы по дисциплине
- 2.3.1. Основная и дополнительная литература

Основная литература

- 1. С.В.Вонсовский. Магнетизм.- M.:: Hayka. 1071. 1032 c.
- 2. Г.С.Кринчик. Физика магнитных явлений. М.: МГУ. 1985. 335 с.
- 3. Е.С.Боровик, В.В.Еременко, А.С.Мильнер. Лекции по магнетизму. $M:\Phi U3MAT-\Pi UT.\ 2005.$ 510 с.
- 4. Н.А. Ашкрофт, Н.Мермин. Физика твердого тела, Т.1.- М.: Мир. 1979. 400 с.
- Н.А. Ашкрофт, Н.Мермин. Физика твердого тела, Т.2.- М.: Мир. 1979. 424 с.
- 6. Ч. Китель. Введение в физику твердого тела. М.: Наука. ГРФМЛ. 1978. 791 с.
- 7. С.В.Вонсовский, М.И.Кацнельсон
- 8. В.Ю.Ирхин, Ю.П.Ирхин. Электронная структура, физические свойства и корреляционные эффекты в d-f металлах и их соединениях . М.-Ижевск: НИЦ «Регулярная и хаотическая динамика»; Институт компьютерных исследований 2008.-476 с.
- 9. В.С.Тикадзуми. Физика ферромагнетизма, Магнитные свойства вещества. М.: Мир. 1983.-302 с.; Магнитные характеристики и практическое применение. М.: Мир. 1987.- 420 с.
- 10. Дж.Пейк. Парамагнитный резонанс.- М.: Мир. 1963. 280 с.
- 11. Ж. Винтер. Магнитный резонанс в металлах. Мир. 1976. 288 с.
- 12 В.С.Гречишкин. Ядерные квадрупольные резонансы в твердых телах. М.:Наука. 1973. $264 \, \mathrm{c}$.
- 13. И.Ахиезер, В.Г.Барьяхтар, С.В.Пелетминский. Спиновые волны. М.: Наука. 1967.- 368
- 14. Ч. Сликтер. Основы теории магнитного резонанса. М.: Мир. 1981. 448 с.
- 15. В.С.Шпинель. Резонанс гамма-лучей в кристаллах. М.:Наука. 1969. 408 с.

Дополнительная литература

- 16 У.Ф.Браун. Микромагнетизм. М.:Наука. 1985. 160 с.
- 17. Е.А.Туров, А.В.Колчанов, В.В.Меньшенин, И.Ф.Мирсаев, В.В.Николаев. Симметрия и физические свойства антиферромагнетиков. М.:ФИЗМАТЛИТ. 2001. 559 с.
- 18. Е.А.Туров. Физические свойства магнитоупорядоченных кристаллов. М.: Изд.-во АН СССР. 1963. 223 с.
- 19. К.Хандрих, С.Кобе. Аморфные ферро- и ферримагнетики. М. : Мир.: 1982. 295 с.
- 18.Е.А.Туров, М.П.Петров. Ядерный магнитный резонанс в ферро- и антиферромагнетиках. М.: 1969. 260 с.
- 20. Р.М. Уайт. Квантовая теория магнетизма. М.: Наука. 1985. 304 с.
- 21. С.А.Альтшулер, В.М.Козырев. Электронный парамагнитный резонанс . М.: Наука.

Физматгиз. 1961 - 361 с.

- 22. Б.Н. Филиппов, А.П. Танкеев «Динамические эффекты в ферромагнетиках с доменной структурой», 1987, Москва, Наука.
- 23 А.М. Косевич, Б.А.Иванов, А.С.Ковалев. Нелинейные волны намагниченности. Динамические и топологические солитоны. Киев. : Наукова думка: 1983. 190 с.
- 24. Н.М.Саланский, М.Ш.Ерухимов. Физические свойства и применение магнитных пленок. Новосибирск, Наука, сибирское отделение, 1973. 222 с.