На правах рукописи

Проценко Владимир Сергеевич

ЭЛЕКТРОННЫЕ СВОЙСТВА И ПРОВОДИМОСТЬ СИСТЕМ КВАНТОВЫХ ТОЧЕК

01.04.07 — Физика конденсированного состояния

Автореферат

диссертации на соискание учёной степени кандидата физико-математических наук

Екатеринбург — 2020

Работа выполнена в Федеральном государственном бюджетном учреждении науки Институте физики металлов имени М.Н. Михеева Уральского отделения Российской академии наук (ИФМ УрО РАН).

- Научный руководитель: Катанин Андрей Александрович, доктор физико-математических наук, профессор РАН, профессор кафедры общей физики, ФГАОУ ВО МФТИ, Московская обл., г. Долгопрудный; главный научный сотрудник лаборатории теоретической физики ИФМ УрО РАН, г. Екатеринбург.
- Официальные оппоненты: **Кучинский Эдуард Зямович**, доктор физикоматематических наук, ведущий научный сотрудник, заведующий лабораторией теоретической физики, ФГБУН ИЭФ УрО РАН, г. Екатеринбург.

Островский Павел Михайлович, доктор физико-математических наук, старший научный сотрудник сектора квантовой мезоскопики, ФГБУН ИТФ им. Л.Д. Ландау РАН, Московская обл., г. Черноголовка.

Ведущая организация: ФГБУН Физико-технический институт им. А.Ф. Иоффе Российской академии наук (ФТИ им. А.Ф. Иоффе), г. Санкт-Петербург.

Защита состоится 29 января 2021 г. в 14:30 часов на заседании диссертационного совета Д 004.003.01 на базе ФГБУН Института физики металлов им. М.Н. Михеева УрО РАН по адресу: 620108, г. Екатеринбург, ул. С. Ковалевской, 18.

С диссертацией можно ознакомиться в библиотеке ИФМ УрО РАН и на сайте института www.imp.uran.ru.

Автореферат разослан «____» ____ 2020 г.

Ученый секретарь Диссертационного совета Д 004.003.01, доктор физико-математических наук

Чарикова Татьяна Борисовна

Общая характеристика работы

Актуальность и степень проработанности темы. В последнее десятилетие развитие технологий изготовления наноструктур сделало возможным создание систем упорядоченных квантовых точек. Структурная единица данных систем – квантовая точка, представляет собой объект, движение электронов в котором ограничено во всех трех пространственных направлениях и характеризуется дискретным спектром энергии. Система квантовых точек может быть присоединена к макроскопическим проводящим контактам так, что становятся возможны процессы туннелирования электронов между контактами и квантовыми точками. Даже относительно простые системы, включающие лишь несколько квантовых точек, которые имеют связь с контактами, демонстрируют большое число квантовых эффектов, не всегда имеющих прямые аналоги в объемных материалах. Особый интерес представляют геометрии систем, содержащие кольцевые включения квантовых точек. Учет электрон-электронного взаимодействия в таких системах является принципиально важным, поскольку оно может приводить к возникновению особого состояния - сингулярной ферми-жидкости, связанного с формированием локальных магнитных моментов в системе и возникающего уже при относительно малой величине взаимодействия [1,2].

На сегодняшний день изучение возможности формирования локальных магнитных моментов в системах с кольцевыми конфигурациями квантовых точек ограничено рассмотрением систем с несколькими квантовыми точками, образующими полностью симметричные структуры. Данное обстоятельство связано с отсутствием вычислительно доступных и в то же время надежных методов учета кулоновского взаимодействия. Трудность описания произвольных геометрий систем и неравновесных процессов в рамках существующих подходов даже для системы двух квантовых точек оставляет открытыми вопросы о формировании локальных магнитных моментов при наличии асимметрии системы и приложении напряжения между контактами.

Новые возможности исследования данных систем открывает метод функциональной ренормализационной группы (ренормгруппы) [3]. Данный метод надежно описывает эффекты электрон-электронного взаимодействия в равновесных и неравновесных режимах [4], не требуя больших вычислительных ресурсов. Это позволяет рассматривать конфигурации квантовых точек, недоступные для анализа в рамках применяемых в настоящее время численных подходов. Однако, применение данного метода для исследования систем квантовых точек, содержащих кольцевые включения, наиболее интересных с точки зрения исследования влияния электрон-электронного взаимодействия на эффекты квантовой интерференции и магнитного упорядочения, обнаруживает нефизическое поведение вершин электрон-электронного взаимодействия, которое приводит в том числе к резкому подавлению проводимости [5]. Данное обстоятельство требует существенной модификации стандартных схем метода функциональной ренормгруппы.

Цель данной работы заключается в выявлении особенностей формирования локальных магнитных моментов и электронного транспорта кольцевых систем двух и четырех квантовых точек, соединенных с электронными резервуарами (контактами), методом функциональной ренормгруппы.

В диссертационной работе были поставлены и решены следующие актуальные **задачи**:

1. Адаптировать метод функциональной ренормгруппы для описания эффектов электрон-электронного взаимодействия в системах квантовых точек в состоянии сингулярной ферми-жидкости.

2. Установить возможность формирования локальных магнитных моментов и выявить связанные с этим особенности электронного транспорта для систем двух и четырех квантовых точек при наличии различных типов асимметрии параметров перескока.

3. Для систем двух и четырех квантовых точек проанализировать формирование локальных магнитных моментов при приложении конечного напряжения к контактам, в частности, установить связь особенностей электронного транспорта и переходов между различными магнитными состояниями систем.

Основные положения, выносимые на защиту:

1. Метод функциональной ренормализационной группы с контрчленом позволяет описать эффекты электрон-электронного взаимодействия в состоянии с локальным магнитным моментом (состоянии сингулярной фермижидкости).

2. Формирование локального магнитного момента в системе двух квантовых точек возможно для различных типов асимметрии параметров пе-

4

рескока между квантовыми точками и контактами. В зависимости от типа асимметрии системы переход в состояние с магнитным моментом может сопровождаться или разрывным поведением проводимости в точке фазового перехода, или ее непрерывным поведением, при котором проводимость имеет антисимметричный резонанс в окрестности фазового перехода.

3. Для системы четырех квантовых точек в режиме, когда в системе существует один локальный магнитный момент, и матричные элементы перескока электрона для противоположных квантовых точек, имеющих гибридизацию с контактами, ненулевые, имеет место подавление проводимости для одной из проекций спина, достигаемое в малом магнитном поле.

4. Возможно формирование состояний с локальными магнитными моментами в системах двух и четырех квантовых точек в широком диапазоне напряжений между контактами (напряжений смещения) вблизи равновесия. При дальнейшем росте напряжения смещения имеет место разрушение магнитных моментов, и, в зависимости от параметров систем, оно происходит в один или два этапа. При двухэтапном процессе промежуточная фаза обладает дробным значением магнитного момента.

5. Вольтамперные характеристики и дифференциальные проводимости систем двух и четырех квантовых точек обнаруживают резкие особенности при напряжениях, соответствующих переходам между различными магнитными состояниями. Для системы четырех квантовых точек выявлено наличие эффектов отрицательной дифференциальной проводимости и спиновой поляризации тока, вызванных наличием электрон-электронного взаимодействия в системе.

Научная новизна:

1. В данной работе метод функциональной ренормгруппы впервые был применен для описания квантовых фазовых переходов в системах квантовых точек.

2. Предложен оригинальный метод анализа возможности возникновения состояний с локальными магнитными моментами в системах двух и четырех квантовых точек. Проведен полуаналитический анализ влияния локального кулоновского взаимодействия на электронные свойства и проводимость для широкого диапазона параметров рассматриваемых систем.

5

3. Впервые была проанализирована эволюция магнитных моментов в системах квантовых точек при приложении конечного напряжения к контактам. Установлена связь особенностей электронного транспорта и переходов между различными магнитными состояниями систем.

Научная и практическая значимость. Результаты, представляемые в диссертации, вносят вклад в теорию квантовых фазовых переходов и позволяют глубже исследовать механизмы формирования магнитных моментов в системах квантовых точек. Выявленные в данной работе взаимосвязи магнитных и транспортных свойств могут быть использованы при экспериментальном обнаружении теоретически предсказанных магнитных состояний систем квантовых точек. В практическом плане представленные результаты могут быть востребованы при проектировании устройств квантовой электроники.

Методы исследования. В качестве основного метода исследования применяется метод функциональной ренормализационной группы. Результаты данного метода комбинировались с полуаналитическим анализом. В целях сравнения используется также метод численной ренормализационной группы и приближение среднего поля.

<u>Достоверность</u> полученных результатов оценивается их сравнением с данными других работ и применением других методов, в том числе, сравнением с данными метода численной ренормализационной группы.

Соответствие Паспорту научной специальности. Изложенные в диссертации результаты соответствуют пункту 5 «Разработка математических моделей построения фазовых диаграмм состояния и прогнозирование изменения физических свойств конденсированных веществ в зависимости от внешних условий их нахождения» Паспорта специальности 01.04.07 – Физика конденсированного состояния.

Апробация работы. Основные результаты работы докладывались и обсуждались на следующих научных мероприятиях: XVII Всероссийская молодежная конференция по физике полупроводников и наноструктур, полупроводниковой опто- и наноэлектроники, С.-Петербург, 2015; Международная конференция «Ab-initio based modeling of advanced materials» (AMM-2016), Екатеринбург, 2016; XVIII Всероссийская молодежная конференция по физике полупроводников и наноструктур, полупроводниковой опто- и

наноэлектроники, С.-Петербург, 2016; Российская конференция по физике полупроводников «Полупроводники–2017», Екатеринбург, 2017; XXIII Международная конференция «Новое в магнетизме и магнитных материалах» (HMMM XXIII), Москва, 2018; семинарах ИФМ УрО РАН (г. Екатеринбург).

<u>Личный вклад</u>. Представленные в диссертационной работе результаты получены автором под научным руководством д.ф.-м.н., профессора РАН Андрея Александровича Катанина. Автором лично осуществлялась разработка программного обеспечения, реализующего метод функциональной ренормализационной группы, и проведение представленных в диссертационной работе численных и аналитических расчетов. Выбор объектов и методов исследования, анализ полученных результатов, работа над подготовкой публикаций проводились автором совместно с научным руководителем.

Публикации. Основные результаты, представленные в диссертации, изложены в 4 статьях в рецензируемых журналах, включённых в перечень ВАК и индексируемых в базе Web of Science.

Объем и структура работы. Диссертационная работа состоит из введения, трёх глав, заключения и списка цитируемой литературы. Полный объём диссертации составляет 146 страниц, включая 42 рисунка. Список литературы содержит 127 наименований.

Краткое содержание диссертации

Во **введении** обоснована актуальность диссертационной работы, сформулированы цели и задачи исследования, отражена научная новизна и практическая значимость полученных результатов. Приведены положения, выносимые на защиту.

В первой главе рассматривается общая квантово-механическая модель системы квантовых точек, соединенной с двумя макроскопическими контактами (электронными резервуарами), и выводится выражение для функции Грина \mathcal{G}_0 при отсутствии электрон-электронного взаимодействия (раздел 1.1). Приводится обзор метода функциональной ренормализационной группы и осуществляется вывод ренормгрупповых уравнений (раздел 1.2). Данный метод позволяет учесть электрон-электронное взаимодействие посредством решения дифференциальных уравнений для собственно-энергетической части Σ и эффективного (перенормированного) двухчастичного межэлектронного взаимодействия \mathcal{V} , зависящих от масштаба Λ . Уравнения функциональной ренормгруппы однозначно определяются заданием функции Грина \mathcal{G}_0 , процедурой введения в \mathcal{G}_0 масштаба Λ (схемой отсечки), удовлетворяющей условиям $\mathcal{G}_0^{\Lambda=\Lambda_{\text{ini}}} = 0$ и $\mathcal{G}_0^{\Lambda=0} = \mathcal{G}_0$, а также начальными условиями, которые определяют Σ и \mathcal{V} на начальном масштабе Λ_{ini} . Интегрирование уравнений осуществляется в пределах от $\Lambda = \Lambda_{\text{ini}}$ до конечного масштаба $\Lambda = 0$. В качестве примера в разделе 1.3 рассмотрены результаты метода функциональной ренормгруппы для системы, состоящей из одной квантовой точки. В разделе 1.4 приводятся детали численной реализации метода функциональной ренормгруппы.

<u>Во второй главе</u> представлены результаты анализа проводимости и магнитных свойств системы двух квантовых точек в пределе нулевой температуры и нулевого напряжения между контактами методом функциональной ренормализационной группы.

<u>В разделе 2.1</u> формулируется квантово-механическая модель системы двух квантовых точек и приводится выражение для функции Грина при отсутствии взаимодействия. Описаны используемые при расчетах схемы метода функциональной ренормгруппы.

Исследуемая система состоит из двух квантовых точек QD1 и QD2, каждая их которых соединена с левым (L) и правым (R) макроскопическими контактами, как показано на Рисунке 1. Предполагается, что квантовые точки эквивалентны и один уровень энергии для каждой квантовой точки играет роль в физических процессах. Левый и правый контакты также полагаются эквивалентными. Гамильтониан системы имеет вид:

$$\mathcal{H} = \sum_{j=1}^{2} \mathcal{H}_{dots}^{j} - \sum_{\alpha = L,R} \sum_{j} \sum_{\sigma} (t_{j}^{\alpha} c_{\alpha,0,\sigma}^{\dagger} d_{j,\sigma} + \text{H.c.}) + \mathcal{H}_{\text{leads}}, \quad (1)$$

где $\mathcal{H}^{j}_{\text{dots}}$ – гамильтониан изолированной j-й (j=1,2) квантовой точки:

$$\mathcal{H}_{\text{dots}}^{j} = \sum_{\sigma} \epsilon_{\sigma} n_{j,\sigma} + U\left(n_{j,\uparrow} - \frac{1}{2}\right) \left(n_{j,\downarrow} - \frac{1}{2}\right), \qquad (2)$$

 $d_{j,\sigma}$ $(d_{j,\sigma}^{\dagger})$ – ферми-операторы уничтожения (рождения) электрона на *j*-й квантовой точке со спином $\sigma \in \{\uparrow (1/2), \downarrow (-1/2)\}, c_{\alpha,k,\sigma} (c_{\alpha,k,\sigma}^{\dagger})$ – ферми-операторы уничтожения (рождения) электрона на узле *k* контакта α

Рисунок 1 — Схематическое представление системы двух квантовых точек QD1 и QD2, соединенных с левым (L) и правым (R) контактами.

 $(\alpha = L, R), n_{j,\sigma} = d^{\dagger}_{j,\sigma} d_{j,\sigma}$ – оператор числа электронов со спином σ на квантовой точке QDj, U – параметр локального кулоновского взаимодействия и t^{lpha}_j – матричный элемент перескока электрона между контактом lpha и j-й квантовой точкой. Положение уровней энергии квантовых точек ϵ_{σ} может быть изменено посредством приложения запирающего напряжения V_q или магнитного поля $H: \epsilon_{\sigma} = V_g - \sigma H$. Отметим, что здесь и далее величины V_g и Hприводятся в энергетических единицах. Гамильтониан H_{leads} в (1) определяет контакты, каждый из которых моделируется полубесконечной цепочкой однотипных атомов:

$$\mathcal{H}_{\text{leads}} = -\tau \sum_{\alpha=L,R} \sum_{k=0}^{\infty} \sum_{\sigma} (c^{\dagger}_{\alpha,k+1,\sigma} c_{\alpha,k,\sigma} + \text{H.c.}), \qquad (3)$$

где τ – матричный элемент перескока между ближайшими узлами контактов и узельная энергия принята за начало отсчета. Предполагается, что для контактов выполнено приближение широкой зоны [5], которое может быть определено посредством предельных переходов $au o \zeta au$ и $t^{lpha}_j o \zeta^{1/2} t^{lpha}_j$, при $\zeta \to \infty$ [5]. В этом случае связь квантовых точек с контактами характеризуется параметрами гибридизации $\Gamma_{ij}^{\alpha} = \pi t_i^{\alpha} t_j^{\alpha} \rho_{\text{lead}}(0)$, где $\rho_{\text{lead}}(\omega)$ – локальная плотность состояний на последнем узле контакта (i, j = 1, 2). С учетом этого приближения контакты играют роль «бесструктурных» электронных резервуаров, имеющих постоянную плотность состояний.

В разделе 2.2.1 демонстрируется, что имеющиеся в настоящее время («стандартные») схемы метода функциональной ренормгруппы не позволяют исследовать состояние сингулярной ферми-жидкости рассматриваемой системы (состояние с локальным магнитным моментом в системе). Для этого рассмотрена система, имеющая симметричную связь квантовых точек с контактами, когда $t_{1(2)}^{L(R)} = t$. Известно [1,2], что в пределе бесконечно малого 9 магнитного поля $H \to 0$ состояние сингулярной ферми-жидкости является основным состоянием данной системы в интервале напряжений $|V_g| < V_g^c$, где V_g^c – напряжение, соответствующее квантовому фазовому переходу в парамагнитное состояние системы. При этом проводимость G при $|V_g| < V_g^c$ близка к максимально возможному значению $G_{\text{max}} = 2e^2/h$, достигая его при $V_g = 0$ и $H \to 0$ [1].

На Рисунке 2 представлены результаты метода функциональной ренормгруппы для зависимости G(H) при $V_g = 0$, использующего резкую [5] и оптимизированную (Литима) [6] схемы отсечки функции Грина \mathcal{G}_0 , которые являются «стандартными» схемами метода функциональной ренормгруппы. Проводимость рассчитывалась по формуле Ландауэра [7], которая для рассматриваемой системы принимает вид: $G = \sum_{\sigma} G_{\sigma}$, где $G_{\sigma} =$ $2G_{\max} \left| \sum_{j,j'} \sqrt{\Gamma_{jj}^R \Gamma_{j'j'}^L} \mathcal{G}_{j,j';\sigma}^{\Lambda \to 0}(0) \right|^2$ – проводимость для электронов со спином σ , $\mathcal{G}^{\Lambda}(i\omega)$ – функция Грина системы с учетом эффектов электрон-электронного взаимодействия (здесь и далее верхний индекс обозначает функциональную зависимость от Λ). На Рисунке 2 также представлена зависимость G(H), рассчитанная методом численной ренормгруппы (NRG) в программном пакете «NRG Budapest code» [8]. Данные схемы метода функциональной ренормгруппы предсказывают качественно отличное от NRG метода поведение проводимости в области малых магнитных полей. Установлено, что наблюдаемое рассогласование результатов связано с расходимостью и нефизическим поведением собственно-энергетической части Σ^{Λ} и вершины двухчастичного взаимодействия \mathcal{V}^{Λ} в области малых магнитных полей, рассчитываемых в рам-

Рисунок 2 — Проводимость G как функция магнитного поля H при $\Gamma_{ij}^{\alpha} = U/4$ и $V_g = 0$ в методе функциональной ренормгруппы (РГ) с резкой и Литима схемами отсечки, методе NRG и методе функциональной ренормгруппы с контрчленом $\sigma I \chi_1^{\Lambda}$ ($\tilde{H}/U = 0.1, \Lambda_c/U = 0.05$) при отсечке Литима. ках метода функциональной ренормгруппы. Сопоставление области значений (U,V_g) , соответствующей расходимости вершин электрон-электронного взаимодействия в методе функциональной ренормгруппы, с фазовой диаграммой симметричной системы, полученной в работе [2], позволяет заключить, что случаи, когда «стандартные» подходы метода функциональной ренормгруппы оказываются неприменимыми, соответствуют фазе сингулярной фермижидкости системы.

<u>В разделе 2.2.2</u> для описания состояния сингулярной фермижидкости предложена модификация «стандартных» схем метода функциональной ренормгруппы, заключающаяся во включении в ренормгрупповой поток вспомогательного магнитного поля. Технически, это достигается за счет включения в обратный «затравочный» пропагатор системы дополнительного слагаемого $\sigma I \chi^{\Lambda} \equiv \sigma I (H^{\Lambda} - H)$ – контрчлена:

$$\tilde{\mathcal{G}}_{0,\sigma}^{\Lambda} = \left\{ \left[\mathcal{G}_{0,\sigma}^{\Lambda} \right]^{-1} + \sigma I \chi^{\Lambda} \right\}^{-1}, \qquad (4)$$

где I – единичная матрица размерности 2×2 и χ^{Λ} удовлетворяет условиям:

$$\begin{cases} \chi^{\Lambda = \Lambda_{\rm ini} \to \infty} = \tilde{H}, \\ \chi^{\Lambda = \Lambda_{\rm fin} \to 0} = 0. \end{cases}$$
(5)

Выражения (4) и (5) позволяют трактовать χ^{Λ} как вспомогательное, зависящее от Λ , магнитное поле, которое задает дополнительное к H магнитное поле \tilde{H} в начале ренормгруппового потока (при $\Lambda = \Lambda_{\rm ini}$) и обеспечивает его выключение в конце ренормгруппового потока (при $\Lambda = 0$). Таким образом, включение контрчлена позволяет начать ренормгрупповой поток в магнитном поле $H^{\Lambda=\Lambda_{\rm ini}} = H + \tilde{H}$ при U = 0 и в конце ренормгруппового потока достичь состояния системы при наличии электрон-электронного взаимодействия ($U \neq 0$) в физическом поле $H^{\Lambda=0} = H$ (включая случай $H \to 0$).

На Рисунке 2 представлен результат расчета проводимости методом функциональной ренормгруппы с отсечной Литима при использовании контрчлена $\sigma I \chi_1^{\Lambda} = \sigma I \tilde{H} \min(1, \Lambda/\Lambda_c)$, реализующего линейное выключение поля \tilde{H} при $\Lambda < \Lambda_c$. Параметр Λ_c выбирается приблизительно равным величине масштаба, соответствующего началу расщепления энергий состояний, отвечающих разным проекциям спина. Предложенная модификация метода функциональной ренормгруппы приводит к корректному поведению проводимости в области малых магнитных полей. Несмотря на небольшое отличие полученных для проводимости результатов от расчетов NRG методом, величина проводимости на одну проекцию спина в методе функциональной ренормгруппы с конрчленом $G_{\sigma}(H=0)|_{V_g=0} \approx 0.98e^2/h$, что близко к максимально возможному значению проводимости.

На Рисунке За приведены результаты метода функциональной ренормгруппы с контрчленом для средних чисел заполнения $\langle n_{s(a)} \rangle = \sum_{\sigma} \langle n_{s(a),\sigma} \rangle = \sum_{\sigma} \langle n_{s(a),\sigma} \rangle$, где определены связывающие (s) и антисвязывающие (a) состояния $d_{s(a),\sigma} = (d_{1,\sigma} \pm d_{2,\sigma})/\sqrt{2}$. При $|V_g| < V_g^c$ антисвязывающее состояние характеризуется единичным заполнением, при котором $\langle n_{a,\uparrow} \rangle = 1$ и $\langle n_{a,\downarrow} \rangle = 0$. В соответствии с NRG результатами работ [1,2] это соответствует состоянию сингулярной ферми-жидкости, характеризующемуся наличием локального магнитного момента S = 1/2 на антисвязывающее состоянию сингулярной $\langle \mathbf{S}_{s(a)}^2 \rangle = (1/4) \sum_{\sigma,\sigma'} \langle (d_{s(a),\sigma}^{\dagger} \boldsymbol{\sigma} d_{s(a),\sigma'})^2 \rangle$ ($\boldsymbol{\sigma}$ – вектор матриц Паули) для связывающего и антисвязывающего состояний, полученный методом функциональной ренормгруппы с контрчленом. Для антисвязывающего состояния состояния средние $\langle \mathbf{S}_a^2 \rangle / S(S+1) = 1$ в области $|V_g| < V_g^c$, что подтверждает наличие локального магнитного можента в данном диапазоне напряжений, и обращается в ноль при $|V_g| > V_g^c$. Для всего диапазона напря-

Рисунок 3 — Результат метода функциональной ренормгруппы с контрчленом для $\langle n_{s(a)} \rangle$ (a) и $\langle \mathbf{S}_{s(a)}^2 \rangle$ (b). Штриховые линии – результаты для связывающего состояния, сплошные линии – для антисвязывающего состояния. Напряжение $\pm V_g^c$ (стрелки) соответствует квантовому фазовому переходу. Параметры системы и метода расчета соответствуют Рисунку 2. жений $\langle \mathbf{S}_s^2 \rangle / S(S+1) \approx 1/2$, что соответствует значению среднего квадрата оператора спина в парамагнитном режиме ($\langle n_{s,\sigma} \rangle \approx \langle n_s \rangle / 2$) и не демонстрирует существенного изменения при $V_g = \pm V_g^c$. В соответствии с NRG расчетами работы [1] метод функциональной ренормгруппы с контрчленом предсказывает наличии ферромагнитных корреляций квантовых точек ($\langle \mathbf{S}_1 \mathbf{S}_2 \rangle > 0$) в области существования локального магнитного момента.

Анализ зависимостей собственно-энергетической части Σ от Λ показывает, что получаемый при $\Lambda = 0$ физический результат не зависит от выбора вида контрчлена, когда поле \tilde{H} обеспечивает сходимость уравнений функциональной ренормгруппы (в остальном выбор \tilde{H} произволен). Таким образом, предложенная модификация метода функциональной ренормгруппы позволяет продолжить ренормгрупповой поток в фазу сингулярной фермижидкости и корректно описать возникновение локального магнитного момента и электронный транспорт системы.

<u>В разделе 2.3</u> метод функциональной ренормализационной группы, дополненный техникой включения контрчлена в ренормгрупповой поток, применяется для исследования влияния асимметрии параметров перескока между квантовыми точками и контактами. При расчетах используется контрчлен $\sigma I \chi_1^{\Lambda}$ ($\tilde{H}/U = 0.1, \Lambda_c/U = 0.05$) и отсечка Литима.

В подразделах 2.3.1 и 2.3.2 рассмотрены системы, допускающие построение антисвязывающего состояния, которое, как и для рассмотренной в разделе 2.2 симметричной системы [1,2], характеризуется полным отсутствием матричных элементов перескока с контактами, т.е. $t_a^{L(R)} = 0$. Это реализуется при асимметрии туннелирования электронов через контакты, через квантовые точки и комбинации указанных асимметрий.

Случай асимметрии туннелирования электронов через контакты (раздел 2.3.1) состоит в рассмотрении конфигураций систем, когда туннелирование электронов вдоль путей L-QD1-R и L-QD2-R (см. Рисунок 1) характеризуется одинаковыми матричными элементами, а вдоль путей QD1-L-QD2 и QD1-R-QD2 – различными. Параметры гибридизации запишутся как $\Gamma_1^{L(R)} = \Gamma_2^{L(R)}, \Gamma_{1(2)}^R = \chi \Gamma_{1(2)}^L, \Gamma де \Gamma_j^{(L)R} = \Gamma_{jj}^{(L)R}$ и 0 < χ < 1. На Рисунке 4 показана зависимость проводимости от напряжения V_g при разной степени асимметрии системы (разных χ), полученная в рамках ренормгруппового подхода с контрчленом. Аналогично симметричному случаю [1], зависимость $G(V_q)$

Рисунок 4 — Проводимость *G* как функция напряжения V_g в методе функциональной ренормгруппы с контрчленом при $\Gamma_1^L = \Gamma_2^L = U/4$, $\Gamma_1^R = \Gamma_2^R = \chi \Gamma_1^L$ и $H \to 0$ для $\chi = 0.8$ (сплошная линия), 0.5 (штриховая линия) и 0.2 (штрихпунктирная линия).

демонстрирует скачок проводимости при некотором критическом напряжении $V_g^c = V_g^c(\chi)$, которое отвечает квантовому фазовому переходу системы в состояние сингулярной ферми-жидкости, устойчивому при $|V_g| < V_q^c$.

Случаи асимметрии туннелирования электронов только через контакты $(\Gamma_2^{L(R)} = \gamma \Gamma_1^{L(R)}, \ \Gamma_{1(2)}^R = \Gamma_{1(2)}^L)$ и комбинированной асимметрии $(\Gamma_2^{L(R)} =$ $\gamma \Gamma_{1}^{L(R)}, \Gamma_{1(2)}^{R} = \chi \Gamma_{1(2)}^{L}$), отвечающие конфигурациям системы, когда туннелирование электронов вдоль путей L-QD1-R и L-QD2-R не эквивалентно $(0 < \gamma, \chi < 1)$, рассматриваются в разделе 2.3.2. На Рисунке 5 показан результат вычисления проводимости методом функциональной ренормгруппы с контрчленом при различных η и $\gamma \neq 1$. В отличие от случая симметричной системы ($\gamma = 1$), проводимость непрерывна и обнаруживает асимметричный резонанс. Для объяснения указанного поведения проводимости рассмотрена эффективная модель системы, одночастичные параметры которой равны перенормированным параметрам, полученным в ходе ренормгруппового расчета. Показано, что антирезонанс проводимости связан с вкладом антисвязывающего состояния, который возникает благодаря генерации эффективного перескока t_{sa}^{σ} между связывающим и антисвязывающим состоянием при наличии асимметрии туннелирования электронов через квантовые точки. Это приводит к подавлению проводимости G_{σ} и соответственно частичному подавлению полной проводимости $G = G_{\uparrow} + G_{\downarrow}$, когда уровень энергии антисвязывающего состояния для электронов со спином σ равен уровню Ферми контактов. Анализ чисел заполнения $\langle n_{s(a),\sigma} \rangle$ и средних значений квадрата оператора спина $\langle {f S}^2_{s(a)}
angle$ для связывающего и антисвязывающего состояний в рамках ренормгруппового подхода с контрчленом демонстрирует наличие локального магнитного момента на антисвязывающем состоянии $(\langle \mathbf{S}_a^2 \rangle / \mathrm{S}(\mathrm{S}+1) \approx 1, \langle n_{a,\uparrow} \rangle \approx 1,$

Рисунок 5 — Проводимость $G(V_g)$ в методе функциональной ренормгруппы с контрчленом при $\Gamma_1^{L(R)} = U/4$, $\Gamma_2^{L(R)} = \gamma \Gamma_1^L$ и $H \to 0$ для $\gamma = 0.8$ (сплошная линия), 0.5 (штриховая линия) и 0.2 (штрихпунктирная линия). Нижняя линия – $G(V_g)$ при $\Gamma_2^{L(R)} = \gamma \Gamma_1^{L(R)}$, $\Gamma_{1(2)}^R = \chi \Gamma_{1(2)}^L$ с $\gamma = \chi = 0.2$ и $\Gamma_1^L = U/2$.

 $\langle n_{a,\downarrow} \rangle \approx 0$) при $|V_g| < V_g^c$, где критическое напряжении V_g^c отвечает минимуму резонанса проводимости.

В подразделе 2.3.3 предложен метод анализа наличия магнитного момента в системе двух квантовых точек с произвольной конфигурацией параметров перескока. Метод заключается в построении эффективной модели в базисе связывающего и антисвязывающего состояний, определенных требованием минимальной гибридизации антисвязывающего состояния с контактами. Показано, что магнитный момент определен когда $\Gamma_a^{L,R} \ll \Gamma_s^{L,R}$, где $\Gamma_{s(a)}^{L,R}$ – параметры гибридизации для связывающего (антисвязывающего) состояния. В этом случае на границе области, соответствующей состоянию с магнитным моментом, возникает асимметричный резонанс проводимости $G(V_g)$.

<u>В третьей главе</u> рассматривается система четырех квантовых точек, образующих кольцевую геометрию. Изучаются свойства системы вблизи равновесия ($V_b = 0$), а также формирование магнитных моментов и его связь с электронным транспортом в неравновесных режимах, определенных заданием конечного напряжения смещения V_b между контактами. Производится сравнение электронных свойств систем двух и четырех точек в равновесных и неравновесных режимах. Для описания эффектов электрон-электронного взаимодействия используется метод функциональной ренормализационной группы со схемой отсечки методом вспомогательных резервуаров [9], обобщенный на формализм неравновесных функций Грина [4].

<u>В разделе 3.1</u> дается модель системы четырех квантовых точек и обсуждаются детали расчетов. Рассматриваемая система включает четыре квантовые точки QD1-QD4, образующие кольцевую геометрию, соединенную

Рисунок 6 — Схематическое представление системы четырех квантовых точек (QD1-QD4), соединенных с левым (L) и правым (R) контактами.

через квантовые точки QD1 и QD4 с левым (L) и правым (R) контактом как показано на Рисунке 6. Для квантовых точек и контактов полагаются справедливыми приближения (и обозначения), сформулированные при описании системы двух квантовых точек (см. главу 2). Гамильтониан системы имеет вид:

$$\mathcal{H} = \sum_{j=1}^{4} \mathcal{H}_{dots}^{j} - \sum_{\sigma} \left[\left(t_{12} d_{1,\sigma}^{\dagger} d_{2,\sigma} + t_{24} d_{2,\sigma}^{\dagger} d_{4,\sigma} + t_{13} d_{1,\sigma}^{\dagger} d_{3,\sigma} + t_{34} d_{3,\sigma}^{\dagger} d_{4,\sigma} + t_{14} d_{1,\sigma}^{\dagger} d_{4,\sigma} + t_L c_{L,0,\sigma}^{\dagger} d_{1,\sigma} + t_R c_{R,0,\sigma}^{\dagger} d_{4,\sigma} \right) + \text{H.c.} \right] + \tilde{\mathcal{H}}_{\text{leads}}, \quad (6)$$

где \mathcal{H}_{dots}^{j} дается выражением (2), $t_{L(R)}$ – параметры перескока между квантовыми точками и контактами, t_{ij} (i,j = 1..4) – параметры перескока между квантовыми точками. Неравновесный режим системы задается путем приложения напряжения смещения $V_b \neq 0$ между контактами. В этом случае гамильтониан контактов $\tilde{\mathcal{H}}_{leads}$ принимает вид: $\tilde{\mathcal{H}}_{leads} = \mathcal{H}_{leads} - \sum_{\alpha=L,R} \sum_{k=0}^{\infty} \sum_{\sigma} \mu_{\alpha} c_{\alpha,k,\sigma}^{\dagger}$, где \mathcal{H}_{leads} дается выражением (3), μ_{α} – химический потенциал контакта α ($\alpha = L, R$), $\mu_L = -\mu_R = V_b/2$, $\mu_L - \mu_R = V_b$ (V_b приводится в энергетических единицах). При расчетах предполагается диагональная асимметрия параметров перескока $t_{12} = t_{34} = t$, $t_{13} = t_{24} = \gamma t$ ($0 < \gamma < 1$) и симметричная гибридизация квантовых точек с контактами $\Gamma_{L(R)} = \pi |t_{L(R)}|^2 \rho_{lead}(0) = \Gamma$.

<u>В разделе 3.2</u> рассматриваются возможные магнитные режимы системы четырех квантовых точек в равновесном случае (при $V_b = 0$). Ренормгрупповой анализ показывает, что, в зависимости от величины и соотношения между параметрами перескока t_{ij} , могут быть реализованы три различных магнитных состояния системы: режим с двумя или одним магнитным моментом, а также «парамагнитный» режим, при котором магнитные моменты в системе отсутствуют. Для анализа данных режимов аналогично системе двух квантовых точек был использован переход к базису связывающего-антисвязывающего состояний, построенных на состояниях квантовых точек QD2 и QD3. Случай двух локальных магнитных моментов в системе реализуется, когда все параметры перескока между квантовыми точками много меньше остальных параметров системы. Для этого режима имеем $\langle \mathbf{S}_{a(s)}^2 \rangle / S(S+1) \approx 1$, что соответствует наличию локального магнитного момента как на связывающем, так и на антисвязывающем состоянии. Реализация режимов с одним локальным магнитным моментом или «парамагнитного» режима системы зависит от величины параметра гибридизации антисвязывающего состояния с контактами: магнитный момент на антисвязывающем состоянии определен ($\langle \mathbf{S}_a^2 \rangle / S(S+1) \approx 1$) при малой гибридизации данного состояния с контактами, что достигается при $\gamma \gtrsim 0.6$.

<u>В разделе 3.3</u> исследуется линейная проводимость и эффекты спиновой фильтрации в системе четырех квантовых точек. На Рисунке 7 представлены результаты для линейной проводимости $G(V_g) = G_{\uparrow}(V_g) + G_{\downarrow}(V_g)$ при $t_{14} = 0$, полученные методом функциональной ренормгруппы, для различных геометрий систем $(t/\Gamma, \gamma) \in \{(0.05, 0.9), (0.5, 0.9), (0.5, 0.1)\}$, которые отвечают случаям двух, одного и отсутствию локальных магнитных моментов в системе при $V_g, V_b = 0$, соответственно. Спин-зависимая линейная проводимость G_{σ} для рассматриваемой системы рассчитывалась в рамках формализма Ландауэра [7]: $G_{\sigma} = (4e^2/h)\Gamma_L\Gamma_R |\mathcal{G}_{14;\sigma}^{\Lambda\to 0}(\omega=0)|^2$. Для случаев $(t/\Gamma, \gamma) = (0.05, 0.9)$ и $(t/\Gamma, \gamma) = (0.5, 0.9)$, которые характеризуются наличием локальных магнитных моментов при $V_g = 0$, зависимость проводимости

Рисунок 7 — Линейная проводимость $G(V_g)$ в методе функциональной ренормгруппы при $(t/\Gamma, \gamma) = (0.05, 0.9)$ (штриховая линия), $(t/\Gamma, \gamma) = (0.5, 0.9)$ (сплошная линия) и $(t/\Gamma, \gamma) = (0.5, 0.1)$ (штрих-пунктирная линия). Для всех случаев $U/\Gamma = 2$, $H/\Gamma = 10^{-3}$, $t_{14} = 0$.

от V_g демонстрирует появление резких особенностей в узкой окрестности запирающего напряжения $V_g^c = V_g^c\left(t,\gamma
ight)$ (отмечены на Рисунке 7 как V_g^{c1} для случая $(t/\Gamma, \gamma) = (0.5, 0.9)$ и V_g^{c2} при $(t/\Gamma, \gamma) = (0.05, 0.9)$). При $|V_g| < V_g^{c1(c2)}$ числа заполнения и спин-спиновые корреляционные функции близки к своим значениям при $V_g = 0$: $\langle {f S}^2_{a(s)} \rangle / S(S+1) \approx 1(1/2)$ при $(t/\Gamma, \gamma) = (0.5, 0.9)$ и $\langle {f S}^2_{a(s)} \rangle / S(S+1) \approx 1$ для $(t/\Gamma, \gamma) = (0.05, 0.9)$. При $|V_g| > V_g^{c1(c2)}$ реализуется режим, при котором $\langle {\bf S}_p^2 \rangle / S(S+1) \approx 1/2 \ (p=1..4),$ что отвечает отсутствию магнитных моментов в системе. Следовательно, напряжение $V_q^{c1(2)}$ соответствует точке квантового фазового перехода из состояния с одним или двумя локальными магнитными моментами в парамагнитное состояние системы. Таким образом, при наличии одного магнитного момента в окрестности $V_g = 0$ (случай $(t/\Gamma, \gamma) = (0.5, 0.9)$) фазовый переход, аналогично системе двух квантовых точек (см. Рисунок 5), сопровождается появлением асимметричного резонанса проводимости в окрестности точки фазового перехода V_q^{c1} . В случае $(t/\Gamma, \gamma) = (0.05, 0.9)$, который соответствует наличию двух локальных магнитных моментов при $|V_g| < V_g^{c2}$, проводимость демонстрирует резкий пик при $V_g \approx V_g^{c2}$. При $(t/\Gamma, \gamma) = (0.5, 0.1)$ на квантовых точках магнитные моменты отсутствуют и, как видно из Рисунка 7, проводимость $G(V_g)$ является плавной немонотонной функцией напряжения.

Для $t_{14} = 0$ проводимости $G_{\uparrow}(V_g)$ и $G_{\downarrow}(V_g)$ отличны от нуля при всех напряжениях V_g за исключением $G_{\uparrow}(V_g)$ в узкой области вблизи резонанса. При $t_{14} \neq 0$ ситуация существенно меняется. На Рисунке 8 представлены результаты метода функциональной ренормгруппы для зависимостей $G_{\uparrow}(V_g)$ и $G_{\downarrow}(V_g)$ при $t_{14} = 2\Gamma$. Проводимость $G_{\uparrow}(V_g)$ исчезает при напряжении $V_g \approx 0.8\Gamma$, формируя плато почти нулевой проводимости. Для анализа

Рисунок 8 — Линейная проводимость G_{\uparrow} (сплошная линия) и G_{\downarrow} (штриховая линия) как функции напряжения V_g в методе функциональной ренормгруппы при $(t/\Gamma, \gamma) = (0.5, 0.9), t_{14} = 2\Gamma, U/\Gamma = 2$ и $H/\Gamma = 10^{-3}$.

механизма исчезновения проводимости в одном из спиновых каналов, были рассмотрены вклады в проводимость $G_{\sigma}(V_g)$ от собственных состояний системы, которые могут быть соотнесены с процессами резонансного и последовательного туннелирования электронов вдоль различных путей. Показано, что эффект полного подавления проводимости возникает из-за деструктивной интерференции процессов резонансного и последовательного туннелирования электронов с проекцией спина вдоль магнитного поля через систему.

<u>В разделе 3.4</u> приводится анализ неравновесных режимов системы четырех квантовых точек, определенных приложением напряжения смещения $V_b \neq 0$ между контактами. Изучаются процессы разрушения локальных магнитных моментов в системе с ростом напряжения V_b . Рассматриваются вольтамперные характеристики и дифференциальные проводимости, анализируется их связь с фазовыми переходами и приводится полуаналитический анализ эффектов отрицательной дифференциальной проводимости.

Результаты метода функциональной ренормгруппы для зависимостей $\langle \mathbf{S}_{a/s}^2 \rangle$ от напряжения V_b приведены на Рисунке 9 для случаев $(t/\Gamma, \gamma) \in \{(0.05, 0.9), (0.5, 0.9), (0.5, 0.1)\}$. Как отмечалось в разделе 3.3, при $V_g = 0$ указанные конфигурации параметров системы отвечают трем разным фи-

Рисунок 9 — Среднее значение квадрата оператора спи- $\langle {f S}^2_{s(a)}
angle$ на связывающем на (штриховая линия) и антисвязывающем (сплошная линия) состояниях как функция напряжения смещения V_b в методе функциональной ренормгруппы при V_a = 0(0.05, 0.9) $(t/\Gamma, \gamma)$ ДЛЯ (a), $(t/\Gamma, \gamma) = (0.5, 0.9)$ (b) и $(t/\Gamma, \gamma)$ (0.5, 0.1) (c). = Остальные параметры системы соответствуют Рисунку 7.

зическим ситуациям: сформированным магнитным моментам и на связывающем, и на антисвязывающем состояниях, магнитному моменту только на антисвязывающем состоянии и отсутствию магнитных моментов в системе. В случае $(t/\Gamma, \gamma) = (0.05, 0.9)$ рост напряжения V_b приводит к уменьшению значения $\langle {f S}_{a/s}^2 \rangle / S(S+1) \approx 1$, отвечающего равновесному случаю, что свидетельствует о подавлении магнитного момента как на связывающем, так и на антисвязывающем состоянии. В предельном случае $V_b \gg \Gamma$ достигается полное подавление сформированных при $V_b = 0$ магнитных моментов. При этом рассматриваемые зависимости имеют хорошо выраженный двухступенчатый характер, демонстрируя при $0.5 \lesssim V_b/\Gamma \lesssim 2.1$ наличие фазы с промежуточными значениями $\langle {f S}^2_{a/s}
angle$. Для случая $(t/\Gamma,\gamma)=(0.5,0.9)$ (один локальный магнитный момент) фаза с промежуточным значением магнитного момента не возникает и подавление магнитного момента на антисвязывающем состоянии происходит в один этап (см. Рисунок 9b). В случае, когда магнитные моменты при $V_g = 0$ в системе отсутствуют, $\langle {f S}_{s/a}^2 \rangle / S(S+1) \approx 1/2$ для произвольных напряжений смещения V_b, как видно из Рисунка 9с. Установлена связь перенормированных параметров системы с поведением чисел заполнения и спин-спиновых корреляционных функций.

Результаты ренормгруппового подхода для зависимости дифференциальной проводимости $G = e(dJ/dV_b)$ от напряжения V_b между контактами для рассмотренных выше геометрий системы приведены на Рисунке 10. Для расчета тока J используется формализм Ландауэра [7]. Дифференциальная

Рисунок 10 — Дифференциальная проводимость G как функция напряжения V_b в методе функциональной ренормгруппы при $V_g = 0$ для $(t/\Gamma, \gamma) = (0.05, 0.9)$ (пунктирная линия), $(t/\Gamma, \gamma) =$ (0.5, 0.9) (сплошная линия) и $(t/\Gamma, \gamma) = (0.5, 0.1)$ (штрихпунктирная линия: проводимость G умножена на 10). Остальные параметры соответствуют Рисунку 9. проводимость имеет резкие особенности при напряжениях, соответствующих переходам между различными магнитными состояниями: два резких пика при $(t/\Gamma,\gamma) = (0.05,0.9)$ и резкий асимметричный резонанс при $(t/\Gamma,\gamma) =$ (0.5,0.9). В случае отсутствия магнитных моментов $((t/\Gamma,\gamma) = (0.5,0.1))$ проводимость ведет себя плавно при изменении напряжения V_b . Для всех трех случаев наблюдается возникновение областей отрицательной дифференциальной проводимости. Показано, что появление эффектов отрицательной дифференциальной проводимости связанно с существенной зависимостью перенормированных параметров системы от напряжения на контактах V_b , которая вызвана электрон-электронным взаимодействием.

<u>В разделе 3.5</u> производится сравнение систем двух и четырех квантовых точек и обсуждаются их качественные отличия в равновесных и неравновесных режимах. В частности, для установления соответствия с системой четырех квантовых точек представлены результаты метода функциональной ренормгруппы для спин-зависимой проводимости $G_{\sigma}(V_g)$ системы двух квантовых точек при наличии прямого туннелирования электронов между контактами. Показано, что эффективность достигаемой спиновой фильтрации в системе четырех квантовых точек значительно превосходит соответствующую системе двух квантовых точек.

Заключение

В диссертационной работе представлены результаты исследования формирования локальных магнитных моментов и электронного транспорта кольцевых систем двух и четырех квантовых точек, соединенных с электронными резервуарами (контактами), методом функциональной ренормгруппы.

Основные результаты работы состоят в следующем:

1. Предложена модификация метода функциональной ренормгруппы, позволяющая описывать корреляционные эффекты в системах квантовых точек, находящихся в фазе сингулярной ферми-жидкости, где электронэлектронное взаимодействие приводит к возможности формирования локальных магнитных моментов. Предложенный метод заключается в плавном выключении вспомогательного магнитного поля в ренормгрупповом потоке, что достигается за счет введения в функцию Грина системы дополнительного слагаемого – контрчлена. При анализе системы двух квантовых то-

21

чек показано, что данный подход устраняет расходимости вершин электронэлектронного взаимодействия, которые возникают в «стандартных» схемах метода функциональной ренормгруппы, и позволяет корректно описать состояние системы с локальным магнитным моментом.

2. В рамках ренормгруппового подхода с контрчленом исследована система двух квантовых точек при наличии асимметрии параметров перескока между квантовыми точками и контактами. Продемонстрирована возможность квантового фазового перехода в режим с локальным магнитным моментом (состояние сингулярной ферми-жидкости) и выявлены характерные зависимости проводимости как функции запирающего напряжения затвора. Показано, что в зависимости от характера асимметрии параметров перескока, система может демонстрировать два типа квантовых фазовых переходов в состояние сингулярной ферми-жидкости. А именно, квантовый фазовый переход, сопровождающийся, аналогично симметричному случаю, скачкообразным изменением проводимость имеет асимметричный резонанс вблизи точки фазового перехода.

3. Показано, что когда в системе четырех квантовых точек существует один локальный магнитный момент и матричные элементы перескока электрона для противоположных квантовых точек, имеющих гибридизацию с контактами, ненулевые, имеет место подавление проводимости для одной из проекций спина. Установлено, что из-за деструктивной квантовой интерференции данный эффект может быть реализован при наличии малого магнитного поля и не возникает в системе двух квантовых точек.

4. Методом функциональной ренормгруппы для функций Грина-Келдыша в системах двух и четырех квантовых точек было исследовано формирование локальных магнитных моментов в неравновесных режимах, когда между контактами приложено конечное напряжение смещения. Рассчитаны зависимости тока, дифференциальной проводимости, спин-спиновых корреляторов, средних чисел заполнения и эффективных (перенормированных) параметров от напряжения смещения между контактами. Показано, что формирование локальных магнитных моментов возможно в широком диапазоне напряжений смещения вблизи равновесия. Вне данного диапазона рост напряжения между контактами приводит к разрушению локальных магнит-

22

ных моментов, которое в зависимости от параметров системы происходит в один или два этапа. Обнаружено, что при двухэтапном процессе промежуточная фаза обладает дробным значением магнитного момента. Выявлено, что вольтамперные характеристики и дифференциальная проводимость систем обнаруживают резкие особенности при напряжениях, соответствующих переходам между различными магнитными состояниями.

5. Для системы четырех квантовых точек продемонстрировано наличие эффектов отрицательной дифференциальной проводимости и спиновой поляризации тока, вызванных наличием электрон-электронного взаимодействия в системе.

Публикации автора по теме диссертации

A1. Protsenko, V. S. Interaction-induced local moments in parallel quantum dots within the functional renormalization group approach / V. S. Protsenko, A. A. Katanin // Phys. Rev. B. – 2016. – Vol. 94, № 19. – P. 195148 (8).

A2. Protsenko, V. S. Quantum phase transition and conductivity of parallel quantum dots with a moderate Coulomb interaction / V. S. Protsenko, A. A. Katanin // J. Phys.: Conf. Ser. – 2016. – Vol. 690, № 1. – P. 012028 (6).

A3. Protsenko, V. S. Functional renormalization group study of parallel double quantum dots: Effects of asymmetric dot-lead couplings / V. S. Protsenko,
A. A. Katanin // Phys. Rev. B. - 2017. - Vol. 95, № 24. - P. 245129 (10).

A4. Protsenko, V. S. Local magnetic moments and electronic transport in closed loop quantum dot systems: A case of quadruple quantum dot ring at and away from equilibrium / V. S. Protsenko, A. A. Katanin // Phys. Rev. B. – 2019. – Vol. 99, № 16. – P. 165114 (18).

Цитируемая литература

1. Žitko, R. Quantum phase transitions in systems of parallel quantum dots / R. Žitko, J. Bonča // Phys. Rev. B. – 2007. – Vol. 76, № 24. – P. 241305 (4).

Žitko, R. Ground State of the Parallel Double Quantum Dot System /
 R. Žitko, J. Mravlje, K. Haule // Phys. Rev. Lett. - 2012. - Vol. 108, № 6. - P.
 066602 (5).

3. Metzner, W. Functional renormalization group approach to correlated fermion systems / W. Metzner, M. Salmhofer, C. Honerkamp // Rev. Mod. Phys. – 2012. – Vol. 84, № 1. – P. 299-352.

4. Gezzi, R. Functional renormalization group for nonequilibrium quantum many-body problems / R. Gezzi, Th. Pruschke, V. Meden // Phys. Rev. B. – 2007. – Vol. 75, № 4. – P. 045324 (14).

5. Karrasch, C. Functional renormalization group approach to transport through correlated quantum dots / C. Karrasch, T. Enss, V. Meden // Phys. Rev. B. – 2006. – Vol. 73, № 23. – P. 235337 (16).

6. Litim, D. F. Optimized renormalization group flows / D. F. Litim // Phys. Rev. D. -2001. - Vol. 64, Nº 10. - P. 105007 (17).

7. Meir, Y. Landauer formula for the current through an interacting electron region / Y. Meir, N. S. Wingreen // Phys. Rev. Lett. – 1992. – Vol. 68, № 16. – P. 2512-2515.

8. Density matrix numerical renormalization group for non-Abelian symmetries / A. I. Toth, C. P. Moca, O. Legeza, G. Zaránd // Phys. Rev. B. – 2008. – Vol. 78, № 24. – P. 245109 (11).

9. Jakobs, S. G. Nonequilibrium functional renormalization group with frequency-dependent vertex function: A study of the single-impurity Anderson model / S. G. Jakobs, M. Pletyukhov, H. Schoeller // Phys. Rev. B. – 2010. – Vol. 81, № 19. – P. 195109 (31).

Отпечатано на Ризографе ИФМ УрО РАН тираж 100 экз. заказ № 81 Объем 1 п.л. Формат 60×84 1/16 620108, г. Екатеринбург, ул. С. Ковалевской, 18