На правах рукописи

Москалев Михаил Евгеньевич

ЗАКОНОМЕРНОСТИ ФОРМИРОВАНИЯ И МЕХАНИЗМЫ ОБМЕННОГО СМЕЩЕНИЯ В ПОЛИКРИСТАЛЛИЧЕСКИХ ПЛЁНКАХ Ni-Mn/Fe-Ni

1.3.12. Физика магнитных явлений

Автореферат диссертации на соискание ученой степени кандидата физико-математических наук

Екатеринбург – 2021

Работа выполнена на кафедре магнетизма и магнитных наноматериалов и в отделе магнетизма твёрдых тел НИИ ФПМ Института естественных наук и математики Федерального государственного автономного образовательного учреждения высшего образования «Уральский федеральный университет имени первого Президента России Б.Н. Ельцина»

Научный руководитель:	Васьковский Владимир Олегович, доктор физико-математических наук, профессор, заведующий кафедрой магнетизма и магнитных наноматериалов Института естественных наук и математики ФГАОУ ВО «УрФУ имени первого Президента России Б.Н. Ельцина», г. Екатеринбург.
Официальные оппоненты:	Комогорцев Сергей Викторович, доктор физико-математических наук, доцент, заведующий лабораторией физики магнитных плёнок ФГБУН Института физики им. Л.В. Киренского СО РАН, г. Красноярск.
	Моргунов Роман Борисович , доктор физико-математических наук, профессор РАН, главный научный сотрудник отдела строения вещества ФГБУН Института проблем химической физики РАН, г. Черноголовка.
Ведущая организация:	Федеральное государственное бюджетное образовательное учреждение высшего образования «Московский государственный университет имени

Защита состоится «24» декабря 2021 г. в 11:00 часов на заседании диссертационного совета 24.1.133.01 на базе ФГБУН Института физики металлов им. М.Н. Михеева УрО РАН по адресу: 620108, Екатеринбург, ул. С. Ковалевской, 18.

М.В. Ломоносова», Физический факультет, г. Москва.

С диссертацией можно ознакомиться в библиотеке и на сайте ФГБУН Института физики металлов им. М.Н. Михеева УрО РАН, <u>http://imp.uran.ru/?q=ru/node/6941</u>.

Автореферат разослан «__» ____ 2021 г.

Ученый секретарь диссертационного совета 24.1.133.01, доктор физико-математических наук

Чарикова Татьяна Борисовна

ОБЩАЯ ХАРАКТЕРИСТИКА РАБОТЫ

Актуальность темы исследования.

Многослойные плёночные среды, в составе которых присутствуют обменно-связанные ферро- и антиферромагнитные слои, находят широкое применение в сферах записи информации и магнитной сенсорики [1,2]. Это возможно благодаря наблюдаемому в таких средах эффекту обменного смещения, заключающемуся в сдвиге по оси магнитного поля петли гистерезиса ферромагнитного слоя, на который действует эффективное «закрепляющее» поле со стороны антиферромагнитного слоя [3,4]. Величину этого сдвига принято называть полем обменного смещения $H_{\rm ex}$. По мере увеличения температуры эта характеристика имеет выраженную тенденцию к снижению и становится равной нулю при достижении температуры блокировки $T_{\rm b}$.

Практическое применение такого рода сред в технических устройствах требует от них повышенной температурной стабильности, непосредственно связанной с температурной стабильностью магнитных свойств антиферромагнетика. В связи с этим высокий интерес представляет химически упорядоченное антиферромагнитное соединение θ -NiMn (структура L_{10} , CuAu-I), в массивных образцах обладающее температурой Нееля T_N до 1070 К. Как следствие, в пленках на основе Ni-Mn температура блокировки способна достигать 650 К, и что, вероятно, еще более важно, сохранять стабильное значение поля обменного смещения до 425 К [5-8]. Другим преимуществом данного соединения является его намного большая доступность в сравнении с другими широко используемыми антиферромагнетиками – Ir-Mn, Pt-Mn – так как в его составе не содержатся драгоценные металлы. Практически безальтернативно используемый в индустриальных применениях антиферромагнитный сплав Ir-Mn содержит в своём составе по меньшей мере 20 ат.% иридия – одного из самых редких металлов на планете [9]. Уход от использования металлов группы платины в целом и иридия в частности как критического материала является одной из приоритетных задач, поставленной советом Евросоюза в 2011 году [9]. В это же время разработка функциональных сред с обменным смещением является одной из приоритетных задач, выделяемых научным сообществом в наши дни [1,10].

Выбор $Fe_{20}Ni_{80}$ (твёрдый раствор со структурой A1, гранецентрированная кубическая) в качестве ферромагнитного слоя в системах с обменным смещением в первую очередь продиктован практически нулевым значением констант магнитной анизотропии и магнитострикции, что особенно важно в тонкоплёночных средах. Низкое значение коэрцитивной силы (как правило, не превышающее 1 Э), присущее однослойным плёнкам $Fe_{20}Ni_{80}$, делает такой слой превосходным индикатором как присутствия антиферромагнетизма в смежном слое Ni-Mn, так и структурных неоднородностей в нем. Так обменная связь с антиферромагнитным слоем может привести к сдвигу петли гистерезиса и/или увеличению коэрцитивной силы ферромагнетика даже в отсутствие сдвига сдвига петли. Кроме того, осаждение пермаллоя на аморфный или слой с существенно отличающейся структурой также приведет к увеличению коэрцитивной силы.

Степень разработанности темы.

Несмотря на определенный интерес к обменно-связанным структурам на основе Ni-Mn в научной среде в прошедшие десятилетия, в литературе нет консенсуса о способах получения плёнок, их последующей обработки, сопровождающих этот процесс фазовых преобразованиях, и в конечном счете реализации обменного смещения [5-8]. Выводы некоторых исследований во многом противоречит другим работам. В значительной степени это связано с использованием различных методов получения пленок, выбором буферных слоев и параметров отжига. К примеру, в работе [7] по данным рентгеноструктурного анализа образцов, отожженных в течение 30 с при различных

температурах, делается вывод о том, что в пленках Fe₁₉Ni₈₁ (20 нм)/Ni₅₀Mn₅₀ (50 нм)/Fe₁₉Ni₈₁ (5 нм), имеет место мартенситоподобный фазовый переход, происходящий менее чем за 30 с при температурах свыше 300 °C. В тоже время существуют работы, в которых делается вывод о том, что для формирования θ -NiMn плёночные образцы необходимо отжигать в течение десятков часов [5,8]. Данные противоречия служат одним из аргументов в пользу необходимости исследования подобных структур. Другим обоснованием в пользу выбора данной тематики служит необычное температурное поведение поля обменного смещения H_{ex} и коэрцитивной силы H_c , заключающееся в том, что с ростом температуры до 420 К для первой наблюдается существенный рост, сопровождающийся заметным снижением второй [5]. Такое поведение является крайне нетипичным и не получило удовлетворительного объяснения. Помимо этого, неисследованным остаётся проблема заметного расхождения наблюдаемого значения температуры блокировки ($T_b \approx 600$ ÷700 К) и температур Нееля антиферромагнитных фаз Ni-Mn – $T_N \approx 400$ ÷450 К для γ -Ni-Mn и $T_N \approx 1070$ К для θ -NiMn. Для большинства же сред величина T_b оказывается близкой к T_N антиферромагнитного слоя.

Цели и задачи.

Целью данной работы является установление закономерностей и механизмов формирования обменного смещения с высокой температурой блокировки, а также его необратимого исчезновения при её достижении в плёнках типа Ni-Mn/Fe-Ni, полученных методом магнетронного распыления.

Для достижения данной цели были поставлены следующие задачи:

1. Получить объекты исследования – однослойные и многослойные поликристаллические тонкие плёнки, включающие слой Ni-Mn, в том числе плёнки Ni-Mn/Fe-Ni, проявляющие термически устойчивый эффект обменного смещения.

2. Установить закономерности формирования магнитных и структурных свойств плёнок Ni-Mn/Fe-Ni, в том числе с буферным слоем Fe-Ni, с различным составом и толщиной слоя Ni-Mn.

3. Определить фазовый состав и кристаллическую структуру однослойных плёнок Ni-Mn различного состава в исходном состоянии и после отжига.

4. Выявить влияние буферного слоя Fe-Ni и ультратонких прослоек на магнитные и структурные свойства плёнок Ni-Mn/Fe-Ni с различным составом и толщиной слоя Ni-Mn.

5. С использованием специализированных измерительных протоколов установить механизмы, ответственные за температурное поведение магнитных свойств отожжённых плёнок типа Ni-Mn/Fe-Ni.

6. Выявить роль структурных преобразований в формировании и необратимом исчезновении эффекта обменного смещения в плёнках Ni-Mn/Fe-Ni с буферным слоем и без него.

7. Обобщить полученные экспериментальные данные и сформулировать физическую модель, раскрывающую связь между составом, структурным состоянием и эффектом обменного смещения в плёнках с закрепляющим слоем Ni-Mn.

Научная новизна.

В работе впервые установлены закономерности структурных преобразований, приводящие к формированию равновесной антиферромагнитной фазы *θ*-NiMn как из первоначально аморфного состояния, так и из неравновесной неупорядоченной антиферромагнитной фазы *γ*-Ni-Mn.

На основе анализа распределения температур блокировок впервые получена зависимость эффективной константы анизотропии антиферромагнитного слоя Ni-Mn от его толщины и от температуры. Возрастающий характер последней позволил объяснить наблюдаемый в ряде образцов аномальный рост поля обменного смещения с увеличением температуры.

Впервые установлено, что причиной необратимых изменений и исчезновения эффекта обменного смещения в плёнках типа Ni-Mn/Fe-Ni при нагреве их до температур, достигающих температуры блокировки, является декомпозиция фазы *θ*-NiMn.

Теоретическая и практическая значимость работы.

Исследуемые в работе среды являются перспективными для использования в сфере записи информации и магнитной сенсорики. Величина температуры блокировки (~ 650 K), достигнутая в плёнках на основе Ni-Mn, находится на уровне свойств лучших сред с обменным смещением. Стабильность обменного смещения в температурном интервале от 300 K до 425 K является лучшей для соответствующих функциональных сред на основе антиферромагнетиков.

Проведённая в работе оценка величины константы анизотропии антиферромагнитного слоя Ni-Mn разной толщины позволила получить температурную зависимость данной характеристики материала. Эта методика может быть использована для изучения температурного поведения константы анизотропии поликристаллических антиферромагнетиков в других системах с обменным смещением.

Полученные в работе данные о структурных преобразованиях, происходящих в исследованных объектах во время отжига, могут быть полезными в целом для понимания механизмов протекания данных процессов в многослойных поликристаллических тонких плёнках на основе сплавов 3*d*-металлов, роли в них первоначального состояния образцов и их слоистой конфигурации.

Объектами исследования являлись многослойные поликристаллические тонкие плёнки, включающие слой Ni-Mn, как единственный функциональный элемент, так и входящий в состав обменносвязанных структур с ферромагнитным слоем Fe-Ni.

Предметом исследования являлось установление условий образования, количественное описание и модельная интерпретация эффекта обменного смещения в многослойных поликристаллических плёнках Ni-Mn/Fe-Ni, в связи с их структурными свойствами и температурой.

Методология и методы исследования.

Исследуемые в работе однослойные и многослойные плёнки были получены методом магнетронного напыления на установке АЈА АТС Orion-8. Аттестация образцов по толщине производилась с помощью стилусного профилометра DekTak-150, контроль химического состава осуществлялся с использованием рентгеновского флуоресцентного спектрометра Rigaku NanoHunter. Структурные свойства образцов исследовались методом просвечивающей электронной микроскопии с использованием аппарата JEM-2100 и методом рентгеновской дифракции на дифрактометрах Philips X'Pert PRO, Дрон-3М и Panalytical Empyrean. Изучение магнитных свойств образцов осуществлялось с помощью магнитооптического Керр-микроскопа evico magnetics, вибрационного магнитометра LakeShore Cryotronics 7407, измерительного комплекса PPMS DynaCool производства компании Quantum Design.

Положения, выносимые на защиту.

1. Наблюдаемый в плёнках на основе слоя Ni-Mn эффект обменного смещения является следствием реализации в нём одной из двух структурных модификаций, обладающих антиферромагнитным упорядочением: неравновесной химически неупорядоченной фазы γ -Ni-Mn или равновесной химически упорядоченной фазы θ -NiMn. Температура блокировки в первом случае составляет до 450 K и зависит от состава слоя, во втором – достигает 650 K.

2. Неравновесная антиферромагнитная фаза *γ*-Ni-Mn может быть стабилизирована в плёночном состоянии при использовании буферного слоя Fe₂₀Ni₈₀.

3. Химически упорядоченная антиферромагнитная фаза *θ*-NiMn может быть получена при вакуумном отжиге, либо путём возникновения из рентгеноаморфного состояния, либо в результате декомпозиции неравновесной фазы *γ*-Ni-Mn. В первом случае этот процесс также проходит через стадию образования промежуточной фазы *γ*-Ni-Mn.

4. Причиной необратимого исчезновения обменного смещения в плёнках, содержащих фазу *θ*-NiMn, после высокотемпературного воздействия является декомпозиция указанной фазы, происходящая с участием прилегающих ферромагнитных слоёв Fe-Ni.

5. Наблюдаемый в интервале температур от 125 К до 400 К рост поля обменного смещения предположительно является следствием возрастания эффективной константы анизотропии антиферромагнитного слоя Ni-Mn.

Степень достоверности результатов.

Исследуемые в диссертации плёночные образцы были получены с использованием современных технологий напыления. Эксперименты, выполненные в рамках диссертации, были проведены на высокоточном измерительном оборудовании. Полученные результаты проанализированы с использованием актуальных мировых методик в рамках современных моделей и не противоречат ранее опубликованным данным в выбранной предметной области. Результаты диссертации были опубликованы в рецензируемых научных изданиях и представлены на научных конференциях высокого уровня.

Апробация результатов.

Основные результаты были представлены на 19 российских и зарубежных международных научных конференциях: Международная молодёжная научная конференция «Физика. Технологии. Инновации» - 2016, 2018, 2019, 2020 (Екатеринбург, Россия); 54-ая Международная научная студенческая конференция – 2016 (Новосибирск, Россия); Всероссийская научная конференция студентов-физиков и молодых учёных – 2016 (Ростов-на-Дону, Россия), 2017 (Екатеринбург, Россия); VII Euro-Asian Symposium «Trends in Magnetism» – 2016 (Красноярск, Россия); 2019 (Екатеринбург, Россия); Всероссийская школа-семинар по проблемам физики конденсированного состояния вещества – 2016, 2017 (Екатеринбург, Россия); Moscow International Symposium on Magnetism – 2017 (Москва, Россия); XXIII Международная конференция «Новое в магнетизме и магнитных материалах» – 2018 (Москва, Россия); 8th Baikal International Conference «Magnetic materials. New technologies» – 2018 (Иркутск, Россия); 9th Joint European Magnetic Symposia – 2018 (Майнц, Германия); Magnetic Frontiers. Magnetic Sensors – 2019 (Лиссабон, Португалия); Annual Conference on Magnetism and Magnetic Materials MMM-2020 Virtual Conference – 2020 (Палм Бич, США); IEEE International Magnetics Virtual Conference Intermag – 2021 (Лион, Франция), Конференция по использованию рассеяния нейтронов в исследовании конденсированных сред РНИКС – 2021 (Екатеринбург, Россия).

Связь работы с научными программами и темами.

Приведённые в работе результаты были получены, в том числе, в рамках выполнения № 18-72-10044 «Физико-технологические следующих проектов. Проекта РНФ основы формирования функциональных свойств плёночных нанокомпозитов для магнитомикроэлектроники», проекта РНФ № 19-72-00141 «Применение методов машинного обучения для прогнозирования свойств и поиска новых магнитных пленочных структур с однонаправленной магнитной анизотропией», государственного задания Министерства науки и высшего образования Российской Федерации FEUZ-2020-051 «Исследование магнитных явлений в атомных системах на основе 4f и 3d- переходных металлов в состояниях с различной пространственной размерностью и магнитополевых эффектов в механически твердых и мягких

магнитных композитах как материалах для перспективных инженерных и медико-биологических технологий».

Публикации.

По теме диссертации опубликованы 4 статьи в рецензируемых российских и зарубежных научных изданиях, входящих в перечень ВАК и индексируемых в базах данных Web of Science и Scopus. Опубликовано 19 тезисов российских и зарубежных международных конференций. Список работ приведён в конце диссертации.

Личный вклад автора.

Автором диссертации совместно с научным руководителем д.ф.-м.н., профессором В.О. Васьковским выбрана тема диссертации, направление исследования, сформулированы цель диссертации и задачи, требующие решения для её достижения. Автором совместно с к.ф.-м.н. В. Н. Лепаловским методом магнетронного распыления получены серии однослойных и многослойных плёночных структур, представляющих собой объект исследования, произведён отжиг образцов различной длительности при различных температурах. Автором диссертации были проведены измерения магнитооптических петель гистерезиса. С участием автора осуществлялись большинство исследований структурных свойств плёнок методом просвечивающей электронной микроскопии и дифрактометрии. Автором диссертации обработка рентгеновской выполнена всех экспериментальных данных. Автор принимал непосредственное участие в анализе полученных результатов и подготовке всех научных публикаций по теме диссертации.

Структура и объём диссертации.

Диссертация состоит из оглавления, введения, пяти глав, заключения, списка использованных обозначений и сокращений, списков литературы и публикаций по теме диссертации, и содержит 141 страницу, 81 рисунок и 1 таблицу. Список литературы насчитывает 138 наименований.

ОСНОВНОЕ СОДЕРЖАНИЕ РАБОТЫ

Во введении обоснована актуальность темы диссертации, показана степень её разработанности, поставлены цель исследования и задачи, необходимые для её достижения, представлена научная новизна, теоретическая и практическая значимость работы, положения, выносимые на защиту, показана степень достоверности и апробации результатов, связь с научными проектами и темами, указан личный вклад автора диссертации, её объём и структура.

В первой главе представлен обзор литературы по теме диссертации. Приведено исчерпывающее современных моделей эффекта обменного смешения описание R поликристаллических тонких плёнках, дано детальное описание сплавов и соединений бинарной ИХ структурных системы Ni-Mn, магнитных и свойств. В частности, равновесной антиферромагнитной фазы θ-NiMn. Подробно описаны существующие в литературе противоречивые данные о реализации эффекта обменного смещения в поликристаллических плёнках со слоем Ni-Mn, особенности наблюдаемого при формировании антиферромагнитной фазы *θ*-NiMn термоустойчивого эффекта обменного смещения, чем подтверждается необходимость и актуальность исследования выбранной тематики.

Во второй главе описаны материалы и методика эксперимента. Объекты исследования – многослойные поликристаллические тонкие плёнки, включающие слой Ni-Mn, как единственный функциональный элемент, так и входящий в состав обменносвязанных структур с ферромагнитным слоем Fe-Ni – были получены методом магнетронного распыления на установке AJA ATC Inc.

Orion-8 UHV путём осаждения на стеклянные подложки в присутствии планарного однородного магнитного поля напряжённостью 250 Э. Контроль химического состава слоёв образцов осуществлялся с помощью рентгеновского флуоресцентного спектрометра на полном внешнем отражении Rigaku NanoHunter, контроль их толщины – с помощью стилусного профилометра Veeco DekTak 150.

В главе подробно описана методика исследования магнитных свойств образцов с помощью магнитооптического Kepp-микроскопа evico magnetics, вибрационного магнитометра LakeShore Cryotronics Inc. 7407 VSM и измерительного комплекса Quantum Design Inc. PPMS DynaCool 9T. Приведено писание методик исследования структурных свойств тонкоплёночных образцов с помощью просвечивающей электронной микроскопии на установке JOEL 2100 и рентгеноструктурного анализа (PCA) с применением ряда различных дифрактометров.

В главе дано детальное описание методики получения распределения температур блокировок оценки величины эффективной константы анизотропии антиферромагнитного слоя K_{AFM}^{eff} . Научной группой из университета Йорка, являющейся одним из мировых лидеров в области модельного описания и экспериментального исследования поликристаллических тонких плёнок, в том числе таковых с обменным смещением, был предложен протокол измерений, позволяющий максимизировать упорядоченность антиферромагнитных зёрен и путём последовательных измерений петель гистерезиса получить распределение температур блокировок T_b плёночных структур ФМ/АФМ. Знание данного распределения, позволяющее определить медианную температуру блокировки $< T_b >$, вкупе с результатами структурных исследований позволяют оценить величину эффективной константы анизотропии антиферромагнитного слоя K_{AFM}^{eff} .

Третья глава диссертации посвящена выявлению общих закономерностей формирования обменного смещения в плёнках на основе системы Ni-Mn. Исследование показало, что реализация обменного смещения в плёнках типа 1 – стекло/Ta/Fe₂₀Ni₈₀/Ni_xMn_{100-x}/Fe₂₀Ni₈₀/Ta тесно связана с составом слоя Ni-Mn. Это иллюстрирует Рисунок 1, на котором представлена концентрационная зависимость поля обменного смещения основного слоя H_{ex} (x), полученная из данных магнитооптических измерений. Она немонотонна и показывает, что максимум Hex наблюдается вблизи x = 30 ат.%. При этом диапазон составов, в котором регистрируется обменное смещение (20 ат. $\% \le x \le 35$ ат. %), близок к концентрационной области существования антиферромагнитного твёрдого раствора у-Ni-Mn. Это высокотемпературная модификация, характеризующаяся ГЦК кристаллической структурой. Её стабилизация при комнатной температуре может быть достигнута путём закалки сплавов, содержащих помимо марганца некоторые стабилизирующие элементы, в частности, никель. В этих условиях в у-Ni-Mn реализуется антиферромагнитное упорядочение с температурой Нееля около 400 К. Таким образом, исходное обменное смещение в плёнках 1 можно связать с присутствием фазы y-Ni-Mn, образование которой в слоях Ni-Mn обусловлено сочетанием нескольких факторов. Помимо состава к ним относятся сама технология осаждения плёнок, которая в определённом смысле эквивалентна закалке, и эпитаксиальное действие вспомогательного слоя Fe-Ni, обладающего ГЦК кристаллической решёткой. Немаловажным обстоятельством для реализации обменного смещения является также наличие кристаллической текстуры в закрепляющем слое. В плёнках типа 1 она, по-видимому, наследуется от вспомогательного слоя Fe-Ni, обладающего текстурой типа (111).

Рисунок 1 – Зависимости поля обменного смещения *H*_{ex} и коэрцитивной силы *H*_c от концентрации никеля *x* в слое Ni_xMn_{100-x} для плёнок типа *1*.

Рисунок 2 – Дифрактограммы плёнок типа *l* с различной концентрацией никеля *x* в слое Ni_xMn_{100-x}. Использована геометрия *θ*-2*θ*, излучение Cu *K*_α.

Данные РСА подтверждают обоснованность представленной интерпретации свойств плёнок типа *1*. Это видно из Рисунка 2, на котором приведены фрагменты дифрактограмм нескольких образцов с разным составом слоя Ni_xMn_{100-x} из концентрационной области 15 ат.% < x < 40 ат.%. Все дифрактограммы содержат по два рефлекса, которые однозначно идентифицируются как принадлежащие поликристаллическим ГЦК-фазам Fe-Ni и γ -Ni-Mn. Причём отсутствие других рефлексов в широком диапазоне углов дифракции может свидетельствовать о сильной текстуре типа (111) в обеих фазах. Интегральные площади этих рефлексов немонотонным образом изменяются в зависимости от x. Это можно рассматривать как свидетельство соответствующего изменения концентрации ГЦК-фазы γ -Ni-Mn в слое Ni-Mn, которая достигает наибольшей величины в области x = 30 ат.%.

Фаза γ -Ni-Mn при комнатной температуре является неравновесной. По данным, полученным на массивных образцах, отжиг ведёт к её декомпозиции на равновесные фазы α -Mn и θ -NiMn. В нашей работе для изучения эффекта термического воздействия на свойства плёнок типа 1 был использован отжиг образцов, с наибольшим содержанием фазы γ -Ni-Mn (x = 30 ат.%). При этом отжиг не носил накапливающегося характера, а каждый образец отжигался при определённой температуре отжига T_a в течение 1 ч. Полученные результаты в форме зависимостей H_{ex} (T_a) и H_c (T_a) для основного слоя Fe-Ni представлены на Рисунке 3. Как видно, влияние отжига весьма существенно и различается по характеру в зависимости от интенсивности термического воздействия.

Результаты выборочного РСА подтверждают предположение о термоиндуцированном образовании фазы θ -NiMn. На Рисунке 4 для сравнения приведены дифрактограммы образцов типа $l \ c \ x = 30 \ ar.\%$ в исходном состоянии и после отжига при $T_a = 285 \ ^{\circ}$ С. Видно, что рефлекс, связанный со слоем Ni-Mn, после отжига смещается в область больших углов. Теперь его положение ($2\theta = 43,1^{\circ}$) соответствует кристаллической решётке ГЦТ θ -NiMn, а одиночный характер указывает на сильную кристаллическую текстуру типа (111) новой фазы.

Рисунок 3 – Зависимости поля обменного смещения *H*_{ex} и коэрцитивной силы *H*_c от температуры отжига *T*_a для плёнок типа *l* с *x* = 30 ат.%.

Рисунок 4 – Дифрактограммы плёнок типа *1* со слоями Ni₃₀Mn₇₀ в исходном состоянии и после отжига при $T_a = 285$ °C. Использована геометрия θ -2 θ , излучение Си K_{α} .

Антиферромагнитные фазы γ -Ni-Mn и θ -NiMn, присутствие которых в слое Ni-Mn обсуждалось выше, имеют определённую специфику температурного изменения свойств. В этой связи исследование влияния температуры на гистерезисные свойства плёнок типа l можно рассматривать как важную дополнительную характеристику фазового состояния слоя Ni-Mn.

На Рисунках 5 и 6 представлены зависимости поля обменного смещения и коэрцитивной силы от температуры измерения *T* для образцов с x = 30 ат.% в исходном состоянии и после отжига при 285 °C соответственно. Эти данные, полученные из магнитометрических измерений, показывают, что в случае неотожжённого образца с увеличением *T* наблюдается монотонное уменьшение H_{ex} . Оно заканчивается исчезновением обменного смещения при температуре блокировки T_b , попадающей в интервал 400 K ÷ 450 K. Это согласуется с литературными данными для плёночных структур, в которых обменное смещение связывается с присутствием γ -Ni-Mn, а также с тем фактом, что температура Нееля T_N для γ -Ni-Mn находится в области температур до 470 K [84,116]. Близость T_b и T_N , а также исключительно плавный ход кривой H_{ex} (*T*) указывают на ослабление энергии анизотропии зёрен γ -Ni-Mn как основную причину температурного уменьшения обменного смещения.

Температурные изменения коэрцитивной силы менее выражены и предсказуемо коррелируют с поведением $H_{ex}(T)$ при T < 350 К. Однако в окрестности T = 400 К имеет место заметное повышение H_c . Его можно связывать с эффективным увеличением неоднородности обменного взаимодействия, обусловленным его фрагментарным исчезновением на межслойной поверхности, а также с необратимым вращением магнитных моментов антиферромагнитных зёрен, чьей энергии анизотропии оказывается недостаточно для закрепления намагниченности ФМ слоя. Последующее резкое снижение коэрцитивной силы также вполне закономерно. Оно свидетельствует о переходе слоя Ni-Mn в парамагнитное состояние, и, соответственно, об исчезновении магнитного межслойного взаимодействия.

Рисунок 6 – Температурные зависимости поля обменного смещения *H*_{ex} и коэрцитивной силы *H*_c плёнки типа *l* с *x* = 30 ат.%, подвергнутого отжигу при *T*_a = 285 °C.

Отжиг существенно изменяет температурные зависимости и поля обменного смещения, и коэрцитивной силы. Как видно из сравнения Рисунков 5 и 6, существенно повышается общий уровень H_{ex} . Так, при комнатной температуре поле обменного смещения увеличивается почти двукратно, превышая значение 30 Э. Значительно расширяется и температурный диапазон существования обменного смещения. Это является косвенным подтверждением существенных структурных превращений, описанных выше, и, в частности, появления фазы θ -NiMn. В то же время достигнутая величина температуры блокировки (~600 K) плохо коррелирует с температурой Нееля, свойственной данной фазе (>1000 K). Это может косвенно свидетельствовать о наличии других механизмов исчезновения обменного смещения, нежели уравновешивание энергии тепловых флуктуаций и энергии анизотропии антиферромагнитных зёрен.

Интерпретация изложенных выше результатов в значительной степени опирается на положение о том, что вспомогательный слой пермаллоя оказывает влияние на структурное состояние осаждённого на него слоя Ni-Mn. Однако его справедливость нуждается в прямом подтверждении путём проведения экспериментов, аналогичных описанным выше в отсутствии вспомогательного слоя. Кроме того, в практическом плане введение вспомогательного слоя является дополнительным фактором, усложняющим получение плёночных структур с обменным смещением. Это явилось основанием для исследования плёнок типа 2 – стекло/Ta/Ni_xMn_{100-x}/Fe₂₀Ni₈₀/Ta, не содержащих вспомогательного слоя пермаллоя.

Состав слоя Ni_xMn_{100-x} в серии плёнок типа 2 варьировался в диапазоне $x = 15\div70$ ат.%. Для разных *x* плёнки проходили предварительную аттестацию, а затем разделялись на части, каждая из которых отжигались при определённой температуре из диапазона 200÷400 °C. Полученные результаты в виде зависимостей H_{ex} (*x*) представлены на Рисунке 7. Как видно, в исходном состоянии ни один из образцов не обнаруживает обменного смещения несмотря на то, что область изменения *x* включала интервал $x = 20\div35$ ат.%, в котором на плёнках типа *1* обменное смещение в исходном состоянии наблюдалось. Таким образом, можно заключить, что фаза γ -Ni-Mn в плёнках типа *2* в исходном состоянии не образуется.

Рисунок 7 – Зависимости поля обменного смещения от концентрации никеля в слое Ni-Mn для плёнок типа 2, отожжённых при различных температурах T_a.

Рисунок 8 – Дифрактограммы плёнок типа 2 с x = 30 ат.%, отожжённых при различных температурах T_a и в исходном состоянии. Использована геометрия θ-2θ, излучение Cu K_α.

В пользу такого вывода свидетельствуют и данные рентгеноструктурного анализа. На Рисунке 8 приведена дифрактограмма образца с x = 30 ат.%. На ней присутствует лишь рефлексы, соответствующие плоскостям (111) и (200) Fe-Ni. Рефлексов, соответствующих слою Ni-Mn, на Рисунке 8 не наблюдается, что свидетельствует о рентгеноаморфном состоянии. Представленные результаты со всей определённостью говорят о фазовых превращениях в слое Ni-Mn, инициированных отжигом. О характере этих превращений можно судить по дифрактограммам, показанным на Рисунке 8. Как видно, после отжига на них появляется новый рефлекс, который, как и в случае плёнок типа *1*, можно соотнести с тетрагональной фазой θ -NiMn. Очевидно, что именно она ответственна за обменное смещение в отожжённых плёнках. Причём из сравнения интегральных интенсивностей рефлексов фаз θ -NiMn и Fe-Ni при разных T_a можно заключить, что наибольшее относительное количество тетрагональной фазы образуется при $T_a = 300$ °C, что коррелирует с условиями реализации наибольшего поля обменного смещения.

В данной главе диссертации также описано исследование влияния толщины слоя Ni-Mn, как инструмента модификации магнитных свойств плёнок. При уменьшении толщины закрепляющего слоя становится возможным уменьшить термочувствительность $H_{\rm ex}$. Так, в случае толщины слоя Ni-Mn равной 12,0 нм поле обменного смещения остается стабильным от комнатной температуры до 400 K.

Результаты исследований для плёнок Ni-Mn/Fe-Ni с различной толщиной Ni-Mn приведены на Рисунке 10. При уменьшении толщины слоя Ni-Mn в поведении поля обменного смещения (при 300 K) и температуры блокировки можно выявить признаки эффекта масштабирования. Изменение коэрцитивной силы не столь существенно. Показательно, что плёнка с толщиной слоя Ni-Mn $h_{\text{Ni-Mn}}$ = 14 нм демонстрирует термическую стабильность с высокой температурой блокировки около 610 К. Остаётся неясным, определяется ли температура блокировки исключительно потерей энергии анизотропии антиферромагнетика или она является следствием структурных преобразований, например, декомпозицией фазы θ -NiMn. Любопытно, что ни одна из плёнок не обнаруживает обменного смещения после температурных измерений, несмотря на охлаждение в магнитном поле напряжённостью 1000 Э.

Рисунок 9 – Температурные зависимости поля обменного смещения *H*_{ex} для плёнок типа 2 с различной толщиной слоя Ni-Mn *h*_{Ni-Mn}.

Рисунок 10 – Зависимости поля обменного смещения H_{ex} , коэрцитивной силы H_c и температуры блокировки T_b от толщины слоя Ni-Mn h_{Ni-Mn} в плёнках типа 2. Значения H_{ex} и H_c приведены для температуры T = 300 K.

В данной главе также исследовано влияние ультратонкой (толщиной до 1 нм) прослойки тантала на обменное смещение и его температурную стабильность в плёнках Fe₂₀Ni₈₀(5 нм)/Ni₃₅Mn₆₅(20 нм)/Ta/Fe₂₀Ni₈₀(40 нм). Введение прослойки тантала достаточно быстро приводит к уменьшению коэрцитивной силы, также, как и поля обменного смещения (см. Рисунок 11).

Рисунок 11 – Зависимости поля обменного смещения H_{ex} , коэрцитивной силы H_c и температуры блокировки T_b от толщины прослойки тантала h_{Ta} в плёнках типа I. Значения H_{ex} и H_c приведены для температуры T = 300 K.

Использование прослойки тантала толщиной 0,3 нм приводит к примерно десятикратному падению поля обменного смещения при 300 К по сравнению с плёнкой без прослойки. Поле обменного смещения и коэрцитивная сила оказываются более чувствительными к введению прослойки тантала, чем к уменьшению толщины слоя Ni-Mn. Объяснением данного явления может служить несколько факторов. Наличие немагнитных кластеров не только способно ослаблять межслойное обменное взаимодействие, но и ослаблять эпитаксиальную связь между слоями, что в случае Ni-Mn имеет важнейшее значение для структурного превращения, происходящего в слое Ni-Mn во время отжига. Кроме того, из-за своей большой массы осаждающиеся атомы тантала

способны повреждать нижележащие слои. Температура блокировки после введения прослойки тантала также снижается, по-видимому, по схожим с вышеописанными причинам.

Результаты, представленные в данной главе диссертации, были опубликованы в работах [A1-A3] списка публикаций по теме диссертации.

Четвёртая глава посвящена установлению роли структурных преобразований в формировании и необратимом исчезновении обменного смещения в плёнках Ni-Mn/Fe-Ni.

В результате исследования структурных свойств плёнок Та (5 нм)/Ni_xMn_{100-x} (50 нм)/Та (5 нм) без смежных слоёв Fe-Ni в исходном состоянии и после часового отжига T = 300 °C было установлено следующее. В исходном состоянии образцы являются рентгеноаморфными. Присутствие некоторого количества нетекстурированных зёрен γ -Ni-Mn в аморфной матрице наблюдается лишь в наиболее богатых марганцем образцах. Аморфизации плёнок способствует присутствие буферного слоя тантала, относительно низкая температура подложки и высокая скорость осаждения – наименьшей она была именно в случае образцов богатых марганцем. Отжиг приводит лишь к слабой кристаллизации образцов. После отжига плёнки по-прежнему представляют собой аморфную матрицу, в которой помимо зёрен γ -Ni-Mn появляются зёрна θ -NiMn, о чём свидетельствуют данные PCA (см. Рисунок 12). Положение пиков после отжига оказывается между положениями, соответствующими пикам (111) γ -Ni-Mn и θ -NiMn. Это может свидетельствовать о сосуществовании двух фаз из-за незавершённого структурного превращения.

Рисунок 12 – Рентгеновские дифрактограммы образцов Ni₉Mn₉₁ (*a*, *б*), Ni₂₉Mn₇₁ (*в*, *г*), Ni₄₈Mn₅₂ (*d*, *e*) после часового отжига при 300 °C, полученные в стандартной геометрии *θ*-2*θ* (левый столбец) и геометрии скользящего падения первичного пучка GIXRD (правый столбец). Использовано излучение Со *K*_α, шкала интенсивности дана в масштабе квадратного корня. Цифрами *I* и *2* на рисунках обозначены пики, соответствующие плоскостям (011) β-Ta и (111) *θ*-NiMn соответственно.

В данной главе представлено исследование магнитных и структурных свойств плёнок Fe-Ni (5 нм)/Ni₃₀Mn₇₀ (20 нм)/Fe-Ni (40 нм) и Fe-Ni (40 нм)/Ni₃₀Mn₇₀ (20 нм)/Fe-Ni (5 нм), то есть образцов стандартной и обратной конфигураций, отожжённых в течение 1 ч при относительно низкой температуре $T_a = 250$ °C. Цель данного эксперимента состояла в получении дополнительной информации о роли буферного слоя Fe-Ni и порядка осаждения слоёв в процессе формирования антиферромагнитной фазы θ -NiMn.

Структурное преобразование неупорядоченной антиферромагнитной фазы γ -Ni-Mn в упорядоченную антиферромагнитную фазу θ -NiMn в такого рода образцах оказывается незавершённым. Содержание θ -NiMn в двух образцах может быть оценено из сравнения интегральных площадей пиков двух антиферромагнитных фаз как 58,4 % и 12,9 % соответственно. Заметную роль в скорости преобразования, по-видимому, играет эпитаксиальная связь между слоем Ni-Mn и предшествующего ему слоя Fe-Ni. В случае образца Fe-Ni (5 нм)/Ni₃₀Mn₇₀ (20 нм)/Fe-Ni (40 нм) она оказывается слабее, чем в случае плёнки Fe-Ni (40 нм)/Ni₃₀Mn₇₀ (20 нм)/Fe-Ni (5 нм), в силу меньшей толщины первого по порядку осаждения слоя Fe-Ni.

Рисунок 13 – Температурные зависимости поля обменного смещения *H*_{ex} и коэрцитивной силы *H*_c образца Fe-Ni (5 нм)/Ni-Mn (20 нм)/Fe-Ni (40 нм).

Рисунок 14 – Температурные зависимости поля обменного смещения *H*_{ex} и коэрцитивной силы *H*_c образца Fe-Ni (40 нм)/Ni-Mn (20 нм)/Fe-Ni (5 нм).

Магнитные свойства образцов, и в особенности температурное поведение обменного смещения (см. Рисунки 13 и 14), также отражают незавершённость структурного преобразования γ -Ni-Mn в θ -NiMn. Так, образец Fe-Ni (5 нм)/Ni₃₀Mn₇₀ (20 нм)/Fe-Ni (40 нм) характеризуется большими значениями поля обменного смещения H_{ex} и коэрцитивной силы H_c , а также заметно более высоким значением температуры блокировки T_b . В случае образца Fe-Ni (5 нм)/Ni₃₀Mn₇₀ (20 нм)/Fe-Ni (40 нм) последняя составила $T_b = 540$ K, что выше значения T_b , характерной для подобных образцов в исходном состоянии (400 K – 450 K), но ниже такового для образцов, отожжённых при T = 300 °C (600 K – 650 K). Для образца же Fe-Ni (40 нм)/Ni₃₀Mn₇₀ (20 нм)/Fe-Ni (5 нм) данное значение совпадает с температурой Нееля T_N и оказывается равным 420 K. Приведённые данные хорошо коррелируют с оценкой процентного содержания упорядоченной фазы θ -NiMn в этих образцах.

Существование множества противоречивых данных об условиях отжига, необходимого для формирования антиферромагнитной фазы θ -NiMn, является не единственным мотивом для исследования структурных преобразований в плёнках Ni-Mn/Fe-Ni. В исходном состоянии сдвиг

петли гистерезиса наблюдается лишь у образцов, в которых присутствует буферный слой Fe-Ni. Несмотря на существенно различные свойства в исходном состоянии, после часового отжига при 300 °C образцы с буферным слоем и без него проявляют сопоставимые значения H_{ex} и H_c . Что ещё более поразительно, после последующего накапливающегося отжига плёнок при температурах до 375 °C, что примерно соответствует значению их температуры блокировки T_b , петли гистерезиса образцов становятся практически идентичными. Обменное смещение после такого отжига не наблюдается, а H_c заметно возрастает.

Рисунок 15 – Температурные зависимости поля обменного смещения $H_{ex}(a)$, коэрцитивной силы $H_c(\delta)$ и спонтанной намагниченности m_s , нормированной на своё значение при комнатной температуре, (*в*, *г*, *д*) плёнок Ni-Mn (20 нм)/Fe₂₀Ni₈₀ (40 нм). Состав слоя Ni-Mn и наличие буферного слоя Fe-Ni толщиной 5 нм отмечены на рисунке.

Данное наблюдение позволяет сделать предположение, что необратимое исчезновение обменного смещения в плёнках Ni-Mn при достижении ими T_b связано со структурными преобразованиями, происходящими в плёнках. В пользу данной гипотезы свидетельствует и температурное поведение гистерезисных свойств образцов. На Рисунке 15 представлены температурные зависимости H_{ex} , H_c и спонтанной намагниченности m_s , нормированной на своё значение при комнатной температуре, образцов Ni-Mn (20 нм)/Fe₂₀Ni₈₀ (40 нм). Образцы отличаются составом слоя Ni-Mn и наличием буферного слоя Fe-Ni толщиной 5 нм.

Образцы показывают различный уровень H_{ex} и H_c в зависимости от своей конфигурации, различие в характеристиках коррелирует с составом слоя Ni-Mn. При подробном рассмотрении можно заметить присутствие следующих закономерностей в температурном поведении данных характеристик. Так, пик H_c вблизи T = 520 K, наблюдаемый для образцов с антиферромагнитными

слоями Ni₉Mn₉₁ и Ni₂₉Mn₇₁, отсутствует в образцах со слоем Ni₄₈Mn₅₂, в которых эффект обменного смещения выражен существенно слабее. По-видимому, этот пик H_c связан с поликристаллической природой образцов. Данная температура приблизительно соответствует середине наклонного участка зависимости H_{ex} (T) при T > 400 K, таким образом, при данной температуре максимальное количество антиферромагнитных зёрен в силу возрастающих термических флуктуаций вносят вклад не в H_{ex} , а в H_c , уже достигнув своего значения T_b , но всё еще являясь антиферромагнитными.

Наблюдаемый в области исчезновения обменного смещения при T > 600 К рост H_c коррелирует с наблюдаемым на температурных зависимостях m_s ростом намагниченности. Последний особенно ярко выражен в случае образцов с антиферромагнитным слоем Ni₉Mn₉₁. Так, в случае образца Ni₄₈Mn₅₂ (20 нм)/Fe₂₀Ni₈₀ (40 нм) значение m_s при T = 650 К даже превосходит таковое при комнатной температуре. Любопытно, что подобный рост присутствует даже у образцов со слоем Ni₄₈Mn₅₂. Эти факты, вероятнее всего, свидетельствуют о структурных преобразованиях, происходящих при данных температурах и, как следствие, сопровождающихся изменениями магнитных свойств образцов.

С целью установить роль структурных преобразований в формировании и декомпозиции θ -NiMn, и, как следствие, в возникновении и исчезновении обменного смещения в поликристаллических плёнках Ni-Mn/Fe-Ni с помощью рентгеновской дифрактометрии и вибрационной магнитометрии при повышенных температурах был проведён следующий *in situ* эксперимент. Неотожжённые образцы Ni₂₉Mn₇₁ (20 нм)/Fe₂₀Ni₈₀ (40 нм) с буферным слоем Fe-Ni (5 нм) и без такового помещались в вакуумную камеру или шахту соответствующей установки, в которой непрерывно, без разгерметизации происходили измерения рентгеновских дифрактограмм и петель магнитного гистерезиса. Измерения проходили в течение 60 мин при каждой из последовательно возрастающих температур – 300 °C, 325 °C, 350 °C и 375 °C. На Рисунке 16 в качестве примера приведена одна из полученных дифракторграмм и результат её разложения на составляющие.

Рисунок 16 – Разложение рентгеновской дифрактограммы образца Fe₂₀Ni₈₀ (5 нм)/Ni₂₉Mn₇₁ (20 нм)/Fe₂₀Ni₈₀ (40 нм), полученной при температуре 300 °С первой по порядку в ходе *in situ* эксперимента. Использована геометрия *θ*-2*θ*, излучение Со *K*_α.

Эксперимент *in situ*, результаты которого приведены на Рисунке 17, позволил установить следующее. Формирование упорядоченной равновесной антиферомагнитной фазы ρ -NiMn происходит путём декомпозиции промежуточной антиферромагнитной фазы γ -Ni-Mn. Последняя, в свою очередь, кристаллизуется из аморфного состояния в случае плёнок Ni-Mn/Fe-Ni, либо уже присутствует в образце в исходном состоянии, как в случае плёнок Fe-Ni/Ni-Mn/Fe-Ni.

Значительную роль в процессе преобразования γ -Ni-Mn в θ -NiMn, по-видимому, играет межслойная диффузия, приводящая к изменению структурных и магнитных свойств смежных слоёв Fe-Ni, о чём свидетельствует существенное изменение положений пиков смежных слоёв Fe-Ni (см. Рисунок 17). Кроме того, уменьшение полуширины пика (111) θ -NiMn с течением времени говорит о том, что в результате декомпозиции γ -Ni-Mn появляются зёрна θ -NiMn, чей последующий рост и проявляется как уменьшение полуширины соответствующего пика. Данные зависимости также подтверждают, что к моменту нагрева образца до T = 300 °C превращение γ -Ni-Mn в θ -NiMn уже является как минимум наполовину завершённым несмотря на то, что время нагрева образца до T = 300 °C не превышало 10 мин, а измерения начались сразу после стабилизации данной температуры.

Активная межслойная диффузия является наиболее вероятной причиной декомпозиции θ -NiMn при T = 350 °C. Предполагаемый механизм этого процесса в некоторой степени аналогичен процессу, наблюдаемому при старении кластеров θ -NiMn в матрице α -Fe [11] и заключается в следующем. В процессе отжига железо из смежных слоёв Fe-Ni диффундирует в дефекты упаковки, характерные для θ -NiMn. В дальнейшем это приводит к разупорядочению структуры двойниковых зёрен θ -NiMn и их превращению в аустенит γ -Fe-Ni-Mn. С течением времени весь объём θ -NiMn преобразуется в γ -Fe-Ni-Mn, в результате чего наблюдается необратимое исчезновение обменного смещения при достижении образцами температуры блокировки.

Рисунок 17 – Обобщённые временные зависимости параметров, характеризующих структурные свойства образца Fe₂₀Ni₈₀ (5 нм)/Ni₂₉Mn₇₁ (20 нм)/Fe₂₀Ni₈₀ (40 нм) (*а* и б), полученные в результате *in situ* эксперимента при последовательно возрастающей температуре. Вертикальными пунктирными линиями обозначены изотермические области, температура которых дана над соответствующей областью

Результаты исследований, описанные в данной главе диссертации, были опубликованы в работе [А4] списка публикаций по теме диссертации.

В пятой главе выполнен анализ температурного поведения обменного смещения в поликристаллических плёнках Ni-Mn/Fe-Ni.

Исследование температурных зависимостей поля обменного смещения H_{ex} , полученных после охлаждения образца Ni₂₉Mn₇₁ (20 нм)/Fe₂₀Ni₈₀ (40 нм) в магнитном поле разной полярности, позволило разделить вклады низкотемпературной фазы, вероятно, представляющей собой спиновое стекло, образующееся в объёме вблизи межслойного интерфейса, и антиферромагнитных зёрен в температурное поведение обменного смещения. Полученные зависимости представлены на Рисунке

18. В частности, вкладом низкотемпературной фазы обусловлено резкое снижение H_{ex} при нагреве образца до T = 125 К. Дальнейший рост H_{ex} , наблюдающийся до T = 400 К, связан с изменением свойств антиферромагнитного слоя.

Полученные распределения температур блокировок образцов позволяют сделать вывод о том, что снижение H_{ex} при температурах свыше T = 400 К связано с поликристаллической природой плёнок и наличием соответствующего распределения по размеру кристаллитов и, следовательно, вызвано достижением температуры блокировки отдельными зёрнами Ni-Mn

Рисунок 18 – Температурные зависимости поля обменного смещения H_{ex} образца Ni₂₉Mn₇₁ (20 нм)/Fe₂₀Ni₈₀ (40 нм), отожжённого при 300 С в течение 1 ч. Цифрой *1* обозначены значения H_{ex} , являющиеся средним арифметическим между значениями, полученными при охлаждении в положительном и отрицательном полях H_{FC}^+ и $H_{FC}^$ соответственно. Цифрой *2* обозначена полуразность значений H_{ex} , полученная при охлаждении в полях H_{FC}^+ и H_{FC}^- .

Определение распределения температур блокировок в плёнках АФМ/ФМ с обменным смещением проводится путём последовательных измерений петель гистерезиса образца при постоянной температуре измерений $T_{\rm m}$. Перед началом измерений отожжённые образцы выдерживались при температуре T = 440 К в магнитном поле H = 5 кЭ в течение 30 мин. В дополнение к первоначальному отжигу это позволяет установить направление обменного смещения, максимизируя количество антиферромагнитных зёрен, дающих вклад в наблюдаемый эффект. Без изменения напряжённости магнитного поля образцы были охлаждены до $T_{\rm m} = 100$ К. Следующие петли гистерезиса измерялись при $T_{\rm m} = 100$ К после выдержки при последовательно увеличивающейся температуре активации $T_{\rm act}$ в поле H = -5 кЭ в течение 30 мин. Охлаждение образцов до $T_{\rm m}$ от $T_{\rm act}$ также осуществлялось в H = -5 кЭ. На Рисунке 19 представлены петли гистерезиса образца с толщиной слоя Ni-Mn $h_{\rm Ni-Mn} = 12$ нм, выполненные в рамках измерения распределения температур блокировок. Значение $T_{\rm act}$, при котором сдвиг петли исчезает, называется медианной температурой блокировки $<T_b>$.

По медианным температурам блокировок $\langle T_b \rangle$ образцов с различной толщиной антиферромагнитного слоя Ni-Mn была произведена оценка величины константы анизотропии данного слоя $K_{\text{Ni-Mn}}^{\text{eff}}$, и, как следствие, получена зависимость данной характеристики от толщины антиферромагнитного слоя. Средний размер зерна, необходимый для проведения вычислений, был получен с использованием приближения цилиндрических зёрен, формирующихся в рамках столбчатой структуры поликристаллических образцов. Высота цилиндров была принята равной толщине слоя, их латеральный размер был оценён с помощью метода Вильямсона-Холла по дифракционной картине, полученной в геометрии скользящего падения первичного пучка.

Рисунок 19 – Петли гистерезиса образца Ni-Mn (12 нм)/Fe-Ni (40 нм), полученные в ходе измерений распределения температур блокировок при температуре измерений *T*_m = 100 K.

Полученные результаты согласно [12] позволяют оценить температурную зависимость эффективной константы анизотропии антиферромагнитного слоя Ni-Mn $K_{\text{Ni-Mn}}^{\text{eff}}$, она представлена на Рисунке 20. Оказалось, что зависимость $K_{\text{Ni-Mn}}^{\text{eff}}$ (*T*), показывает линейный рост в интервале температур от 180 K до 445 K. Данный результат может свидетельствовать о том, что наблюдаемый в интервале температур от 125 K до 400 K рост величины поля обменного смещения является следствием роста константы анизотропии антиферромагнитного слоя Ni-Mn. Помимо этого, подобная корреляция может служить верификацией современной модели обменного смещения в поликристаллических тонких плёнках. Методом интерполяции было оценено значение эффективной константы магнитной анизотропии антиферромагнитного слоя Ni-Mn при *T* = 295 K, составившее $K_{\text{Ni-Mn}}^{\text{eff}} = (6,4 \pm 0,2) \times 10^6$ эрг/см³.

Рисунок 20 – Температурная зависимость эффективной константы анизотропии антиферромагнитного слоя Ni-Mn $K_{\rm Ni-Mn}^{\rm eff}$. Оценка погрешности представлена размером точек на графике.

ЗАКЛЮЧЕНИЕ

1. Установлено, что обменное смещение в плёнках на основе Ni-Mn и Fe-Ni может быть реализовано благодаря присутствию одной из двух антиферромагнитных фаз: неупорядоченной

фазы *ү*-Ni-Mn или упорядоченной фазы *θ*-NiMn. Температуры блокировки для данных фаз равны ~450 К и ~650 К соответственно.

2. Определены закономерности образования антиферромагнитных фаз в двухслойных (Ni-Mn/Fe-Ni) и трёхслойных (Fe-Ni/Ni-Mn/Fe-Ni) плёночных структурах. Формирование фазы γ-Ni-Mn обусловлено эпитаксиальным характером роста данного слоя на буферном слое Fe-Ni, обладающем ГЦК-структурой со схожим значением параметра решётки и текстурой (111). Формирование фазы θ-NiMn происходит под воздействием отжига при температурах свыше 250 °C. В плёнках без буферного слоя Fe-Ni данная фаза возникает из рентгеноаморфного состояния путём декомпозиции промежуточной фазы γ-Ni-Mn, возникающей в процессе структурных преобразований. В плёнках, где присутствует буферный слой Fe-Ni, фаза θ-NiMn формируется путём декомпозиции неравновесной фазы γ-Ni-Mn, присутствующей в плёнках в исходном состоянии.

3. Показано, что критически важным условием эффективных структурных преобразований в слое Ni-Mn является наличие по крайне мере одного сопряжённого слоя пермаллоя. В отсутствие таковых формирование фазы *θ*-NiMn требует значительно более продолжительного отжига.

4. Определены закономерности изменения поля обменного смещения при варьировании толщины закрепляющего слоя на основе фазы *θ*-NiMn и введении прослоек различных материалов. В частности, показана возможность минимизации температурной чувствительности поля обменного смещения, которая достигается за счёт толщинного регулирования размера кристаллитов антиферромагнетика, приводящего к сбалансированности энергий магнитной анизотропии зёрен и тепловых флуктуаций их магнитных моментов.

5. Обнаружено, что температурные зависимости поля обменного смещения $H_{ex}(T)$, которые реализуются в плёнках, содержащих фазы γ -Ni-Mn и θ -NiMn, качественно различны. В первом случае это поле монотонно уменьшается при увеличении температуры, что является естественным следствием возрастающей роли тепловых флуктуаций магнитных моментов кристаллитов. Во втором – оно в определённом температурном интервале (от 125 K до 400 K) демонстрирует рост, что является нетипичным для сред с обменным смещением на основе антиферромагнетиков. Показано, что наиболее вероятной причиной обнаруженной температурной особенности $H_{ex}(T)$ является соответствующее температурное изменение константы магнитной анизотропии фазы θ -NiMn.

6. Установлено, что эффект обменного смещения, реализованный на основе фазы *θ*-NiMn, при достижении температур свыше 600 К претерпевает нарастающие необратимые изменения. Путём совместного анализа структурных и магнитных свойств плёнок показано, что эти изменения связаны с декомпозицией равновесной антиферромагнитной фазы *θ*-NiMn, происходящей в том числе за счёт межслойной диффузии компонентов. Таким образом, температура блокировки, формально определённая для такого рода плёночных структур, фактически соответствует температуре необратимого исчезновения эффекта обменного смещения.

СПИСОК ЛИТЕРАТУРЫ

1. Magnetoresistive sensor development roadmap (non-recording applications) [Text] / C. Zheng, K. Zhu, S. C. De Freitas [et al.] // IEEE Transactions on Magnetics. – 2019. – Vol. 55, №. 4. – P. 1-30.

2. Recent developments of magnetoresistive sensors for industrial applications [Text] / L. Jogschies, D. Klaas, R. Kruppe [et al.] // Sensors. – 2015. – Vol. 15, №. 11. – P. 28665-28689.

3. Blachowicz, T. Exchange bias in thin films—An update [Text] / T. Blachowicz, A. Ehrmann // Coatings. – 2021. – Vol. 11, №. 2. – P. 122.

4. Radu, F. Exchange bias effect of ferro-/antiferromagnetic heterostructures // Magnetic Heterostructures / F. Radu, H. Zabel – Berlin: Springer-Verlag, 2008. – Chap. 3. – P. 97-184.

5. Improved exchange coupling between ferromagnetic Ni-Fe and antiferromagnetic Ni-Mn-based films [Text] / T. Lin, D. Mauri, N. Staud [et al.] // Applied Physics Letters. – 1994. – Vol. 65, №. 9. – P. 1183-1185.

6. Wienecke, A. Relationship between thermal stability and layer-stack/structure of NiMn-based GMR systems [Text] / A. Wienecke, L. Rissing // IEEE Transactions on Magnetics. – 2015. – Vol. 51, № 1. – P. 1-4.

7. NiMn/FeNi exchange biasing systems–magnetic and structural characteristics after short annealing close to the phase transition point of the AFM layer [Text] / S. Groudeva-Zotova, D. Elefant, R. Kaltofen [et al.] // Journal of Magnetism and Magnetic Materials. – 2004. – Vol. 278, №. 3. – P. 379-391.

8. Mao, S. NiMn-pinned spin valves with high pinning field made by ion beam sputtering [Text] / S. Mao, S. Gangopadhyay, N. Amin, E. Murdock // Applied Physics Letters. – 1996. – Vol. 69, №. 23. – P. 3593-3595.

9. Communication from the Commission to the European Parliament, the Council, the European Economic and Social Committee and the Committee of the Regions. Critical Raw Materials Resilience: Charting a Path towards greater Security and Sustainability [Electronic resource] // An official website to the European Union. – 2020, 3 Sept. – URL: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX:52020DC0474 (дата обращения: 30.09.2021).

10. The 2017 magnetism roadmap [Text] / D. Sander, S. O. Valenzuela, D. Makarov [et al.] // Journal of Physics D: Applied Physics. – 2017. – Vol. 50, №. 36. – P. 363001.

11. Heo, Y. U. Transformation of ordered face-centered tetragonal θ-MnNi phase to face-centered cubic austenite during isothermal aging of an Fe–Mn–Ni alloy [Text] / Y. U. Heo, M. Kim, H. C. Lee // Acta Materialia. – 2008. – Vol. 56, №. 6. – P. 1306-1314.

12. O'Grady, K. A new paradigm for exchange bias in polycrystalline thin films [Text] / K. O'Grady, L. E. Fernandez-Outon, G. Vallejo-Fernandez // Journal of Magnetism and Magnetic Materials. – 2010. – Vol. 322, №. 8. – P. 883-899.

СПИСОК ПУБЛИКАЦИЙ ПО ТЕМЕ ДИССЕРТАЦИИ

Публикации в рецензируемых изданиях, включённых в перечень ВАК и индексируемых в базах данных Web of Science и Scopus:

A1. Crystal structure and exchange bias of Ni-Mn-based films [Text] / V. O. Vas'kovskiy, M. E. Moskalev, V. N. Lepalovskij, A. V. Svalov, A. Larrañaga, K. G. Balymov, N. A. Kulesh // Journal of Alloys and Compounds. – 2019. – Vol. 777. – P. 264-270.

А2. Влияние буферного слоя пермаллоя на структурное состояние и гистерезисные свойства многослойных пленок FeNi/NiMn/FeNi [Текст] / М. Е. Москалев, В. Н. Лепаловский, Л. И. Наумова, В. О. Васьковский // Известия Российской Академии Наук. Серия физическая. – 2019. – Т. 83, №. 7. – С. 953-955.

A3. Tuning of Exchange-Biased Ni-Mn/Fe-Ni Films With High Blocking Temperatures [Text] / M. E. Moskalev, E. V. Kudyukov, V. O. Vas'kovskiy, V. N. Lepalovskij // IEEE Magnetics Letters. – 2019. – Vol. 10. – P. 1-5.

A4. Structural investigation of magnetron sputtered Ta/Ni_xMn_{100-x}/Ta thin films [Text] / M. E. Moskalev, V. N. Lepalovskij, A. A. Yushkov, V. Y. Kolosov, V. O. Vas'kovskiy // AIP Conference Proceedings. – 2018. – Vol. 2015, No. 1. – P. 020062.

Публикации в сборниках тезисов и материалах российских и зарубежных международных конференций:

B1. Moskalev, M. E. Effect of annealing on exchange bias in Ni_xMn_{100-x}/Fe₂₀Ni₈₀ films [Text] / M. E. Moskalev, V. N. Lepolovskij // 54th International Students Scientific Conference ISSC-2016 : Proceedings. – Novosibirsk, Russia, 2016. – P. 7.

В2. Реализация обменного смещения в тонких пленках Ni_xMn_{100-x}/Fe₂₀Ni₈₀ [Текст] / М. Е. Москалев [и др.] // Двадцать вторая Всероссийская научная конференция студентов-физиков и молодых ученых ВНКСФ-22 : материалы Всеросс. конф. – Ростов-на-Дону, 2016. – С. 253-254.

B3. Moskalev, M. E. Annealing dependence of exchange bias in $Ni_xMn_{100-x}/Fe_{20}Ni_{80}$ thin films [Text] / M. E. Moskalev, V. N. Lepalovskij, V. O. Vas'kovskiy //, III Международная молодежная научная конференция «Физика. Технологии. Инновации» ФТИ-2016 : тез. докл. междунар. конф. – Екатеринбург, 2016 – C.49-50.

B4. Features of exchange coupling in Ni-Mn/Fe₂₀Ni₈₀ films [Text] / V. Lepalovskij [et al.] // VI Euro-Asian Symposium «Trends in MAGnetism» EASTMAG-2016: Book of Abstracts. – Krasnoyarsk, Russia, 2016. – P. 490.

В5. Москалев, М. Е. Обменное смещение в многослойных пленках на основе Ni-Mn [Teкст]/ М. Е. Москалев, В. Н. Лепаловский, В. О. Васьковский // XVII Всероссийская школа-семинар по проблемам физики конденсированного состояния вещества СПФКС-17 : тез. докл. междунар. конф. – Екатеринбург, 2016. – С. 70.

В6. Структурные и магнитные свойства пленок Ni-Mn/FeNi [Текст] / М. Е. Москалев [и др.] // Двадцать третья Всероссийская научная конференция студентов-физиков и молодых ученых ВНКСФ-23 : материалы Всеросс. конф. – Екатеринбург, 2017. – С. 242-244.

B7. Effect of annealing on hysteresis properties and crystalline structure of $Ni_xMn_{100-x}/Fe_{20}Ni_{80}$ thin films [Text] / M. E. Moskalev [et al.] // Moscow International Symposium on Magnetism MISM-2017 : Book of Abstracts. – Moscow, Russia, 2017. – P. 148.

В8. Особенности обменного смещения в многослойных пленках Fe₂₀Ni₈₀/Ni₃₀Mn₇₀/Fe₂₀Ni₈₀ [Teкст] / М. Е. Москалев [и др.] // XVIII Всероссийская школа-семинар по проблемам физики конденсированного состояния вещества СПФКС-18: тез. докл. междунар. конф. – Екатеринбург, 2017. – С. 55.

В9. Исследование структурного состояния пленок Ta/NixMn100-x/Ta, полученных магнетронным распылением [Текст] / М. Е. Москалев [и др.] // V Международная молодежная научная конференция, посвященная памяти Почетного профессора УрФУ В.С. Кортова: «Физика. Технологии. Инновации» ФТИ-2018 : тез. докл. междунар. конф. – Екатеринбург, 2018. – С. 138-139.

В10. Влияние буферного слоя пермаллоя на структурное состояние и гистерезисные свойства многослойных плёнок FeNi/NiMn/FeNi [Teкст] / М. Е. Москалев [и др.] // ХХIII Международная конференция «Новое в магнетизме и магнитных материалах» НМММ ХХIII : тез. докл. междунар. конф. – М., 2018. – С. 591.

B11. Temperature effect in exchange bias in films with a NiMn pinning layer [Text] / M. E. Moskalev [et al.] // 8th Baikal International Conference «Magnetic Materials. New Technologies» BICMM-2018 : Book of Abstracts. – Иркутск, 2018. – С. 122.

B12. Exchange bias due to different antiferromagnetic phases of NiMn in NiMn/FeNi thin films [Text] / M. E. Moskalev [et al.] // 9th Joint European Magnetic Symposia JEMS-2018 : Book of Abstracts. – Mainz, Germany, 2018. – P. 84.

B13. Partial Structural Transformation of NiMn in Exchange Biased $Fe_{20}Ni_{80}/Ni_{30}Mn_{70}/Fe_{20}Ni_{80}$ Thin Films [Text] / M. E. Moskalev [et al.] // VI Международной молодежной научной конференции: «Физика. Технологии. Инновации» ФТИ-2019 : тез. докл. междунар. конф. – Екатеринбург, 2019. – C. 150-151.

B14. Tuning of exchange-biased Ni-Mn/Fe-Ni films with high blocking temperature [Text] / M. E. Moskalev [et al.] // Magnetic Frontiers-2019. Magnetic Sensors : Book of Abstracts. – Lisbon, Portugal, 2019. – P. 124-125.

B15. Thickness-dependent training effect in exchange-biased NiMn/FeNi thin films [Text] / M. E. Moskalev [et al.] // VII Euro-Asian Symposium «Trends in MAGnetism» EASTMAG–2019 : Book of Abstracts. – Ekaterinburg, Russia, 2019. – P. 299-300.

В16. Микромагнитное моделирование эффекта обменного смещения в поликристаллических тонких пленках [Текст] / М. Е. Москалев [и др.] // VII Международная конференция «Физика. Технологии. Инновации» ФТИ-2020 : тез. докл. междунар. конф. – Екатеринбург, 2020. – С. 261-263.

B17. Emergence and Disappearance of Exchange Bias in Ni-Mn/Fe-Ni Thin Films Due to Structural Transformations [Text] / M. E. Moskalev [et al.] // 65th Annual Conference on Magnetism and Magnetic Materials MMM-2020 Virtual Conference : Book of Abstracts. – Palm Beach, USA, 2020. – P. 87.

B18. Estimating the Anisotropy Constant in an Antiferromagnet Through Exchange Bias in Polycrystalline Ni-Mn/Fe-Ni Films [Text] / M. E. Moskalev [et al.] // IEEE International Magnetics Virtual Conference INTERMAG-2021: Book of Abstracts. – Lyon, France, 2021. – P. 1151.

В19. Распределение температур блокировок в поликристаллических пленках Ni-Mn/Fe-Ni [Teкст] / М. Е. Москалев [и др.] // Конференция по использованию рассеяния нейтронов в исследовании конденсированных сред РНИКС-2021 : тез. докл. междунар. конф. – Екатеринбург, 2021. – С. 133.