На правах рукописи

Комлева Евгения Викторовна

Первопринципное моделирование решёточных и магнитных свойств низкоразмерных оксидов переходных металлов

1.3.8. Физика конденсированного состояния

ΑΒΤΟΡΕΦΕΡΑΤ

диссертации на соискание ученой степени кандидата физико-математических наук

Работа выполнена в Федеральном государственном бюджетном учреждении науки Институте физики металлов имени М. Н. Михеева Уральского отделения Российской академии наук (ИФМ УрО РАН).

Научный руководитель:	Стрельцов Сергей Владимирович			
	д.ф.–м.н., член-корр. РАН, г.н.с., зав. лабораторией теории			
	низкоразмерных спиновых систем ФГБУН Институт физики			
	металлов имени М. Н. Михеева Уральского отделения Рос-			
	сийской академии наук (ИФМ УрО РАН), г. Екатеринбург.			
	: Прудников Павел Владимирович			
Официальные оппоненты:	Прудников Павел Владимирович			
Официальные оппоненты:	Прудников Павел Владимирович д.ф.–м.н., профессор кафедры теоретической физики			
Официальные оппоненты:	Прудников Павел Владимирович д.ф.–м.н., профессор кафедры теоретической физики ФГБОУ ВО «Омский государственный университет им.			
Официальные оппоненты:	Прудников Павел Владимирович д.ф.–м.н., профессор кафедры теоретической физики ФГБОУ ВО «Омский государственный университет им. Ф.М. Достоевского», г. Омск.			

к.ф.–м.н., в.н.с. лаборатории квантовой химии и спектроскопии ФГБУН Института химии твёрдого тела Уральского отделения Российской академии наук (ИХТТ УрО РАН), г. Екатеринбург.

Ведущая организация: Институт физики им. Л.В. Киренского Сибирского отделения Российской академии наук (ИФ СО РАН), г. Красноярск.

Защита состоится 1 июля 2022 г. в 11 ч. 00 мин. на заседании диссертационного совета 24.1.133.01 на базе ИФМ УрО РАН по адресу: 620108, г. Екатеринбург, ул. С. Ковалевской, 18. С диссертацией можно ознакомиться в библиотеке ИФМ УрО РАН и на сайте института www.imp.uran.ru.

Автореферат разослан «_____» _____ 2022 г.

Ученый секретарь диссертационного совета,

Общая характеристика работы

Актуальность темы исследования.

В соединениях переходных металлов важную роль играет электрон-электронное взаимодействие, которое определяет физические свойства этих материалов. В определённых ситуациях это взаимодействие приводит к локализации электронов на узлах и, как следствие, диэлектрическим свойствам, которые невозможно получить для данных материалов в рамках классической зонной теории. Такие соединения переходных металлов носят название диэлектриков Мотта.

В последнее время большую популярность обретают кластерные моттовские диэлектрики. Их характерной особенностью является локализация электронов не на отдельном ионе переходного металла, а на их группе – кластере. На языке квантовой механики это означает, что волновая функция такого электрона является суперпозицией атомных состояний изолированного иона. Происходит формирование молекулярных орбиталей.

В состав таких кластеров может входить два (димер), три (тример) и большее число ионов. В данной работе рассматриваются слоистая система Li_2RuO_3 с динамическим распределением димеров атомов Ru и серия недавно синтезированных изоструктурных соединений $Ba_4NbTM_3O_{12}$ (TM = Mn, Rh, Ir), в составе которых имеются линейные тримеры переходных металлов, принадлежащих различным периодам таблицы Д.И. Менделеева. Существование таких кластеров влечёт появление в них дополнительных «внутрикластерных» степеней свободы, которые могут приводить к новым необычным физическим свойствам.

Молекулярные орбитали могут формироваться не только в структурно обособленных группах атомов, но и быть обусловлены особенностью геометрии решётки соединения. Например, молекулярные орбитали могут образовываться на практически не искажённой решётке типа «пчелиные соты», как это пока-

3

зано для рассматриваемых в данной работе рутенатов $SrRu_2O_6$ и $AgRuO_3$. На микроскопическом языке это означает, что орбитали определённой направленности сильно перекрываются, а перескоки электронов между орбиталями другой симметрии практически подавлены.

Очевидно, что локализация электронов на структурных кластерах и молекулярных орбиталях может приводить к появлению интересных магнитных свойств. В последнее время, наряду с кластерными магнетиками, большое внимание уделяется изучению соединений, имеющих треугольную решётку магнитных атомов. Подобная геометрия решётки зачастую приводит к фрустрированному основному состоянию и, в итоге, к необычным магнитным и электронным свойствам системы, как, например, в рассматриваемом в работе слоистом соединении PdCrO₂.

Степень разработанности темы исследования.

Все перечисленные выше классы материалов имеют сложное основное состояние. Это касается также и возбуждённых состояний, которые могут быть исследованы с помощью метода комбинационного рассеяния света. Он чувствителен к возбуждениям различной природы, поэтому необходим инструмент, который может однозначно определить механизм возникновения пиков в экспериментально наблюдаемых спектрах. Первопринципное исследование динамики решётки (фононов) и других элементарных возбуждений (магнонных или электронных) позволяет установить природу наблюдаемых явлений и интерпретировать получаемые спектры.

В слоистых рутенатах SrRu₂O₆, AgRuO₃ и Li₂RuO₃, исследуемых в работе, имелись сведения о наблюдаемых в спектрах комбинационного рассеяния света пиках с энергией до ~ 2500 см⁻¹ (~ 300 мэВ), однако не было их интерпретации.

Для серии недавно синтезированных кластерных магнетиков $Ba_4NbTM_3O_{12}$, где TM = Mn, Rh, Ir, отсутствовало понимание причины столь различных электронных и магнитных свойств в изоструктурных соединениях, отличающихся лишь ионом переходного металла, образующего

тример.

В слоистом соединении с треугольной решёткой магнитных атомов PdCrO₂ была экспериментально установлена неожиданно низкая температура магнитного перехода ~ 37 K и большая по величине отрицательная температура Кюри-Вейсса ~ -500 K, однако не были рассмотрены факторы, способные привести к столь значительному различию этих параметров.

Результаты исследований, представленные автором в работе, позволили устранить этот ряд существовавших до сегодняшнего дня пробелов в понимании физических свойств названных материалов.

Цели и задачи диссертационной работы.

Цель работы состояла в том, чтобы с помощью первопринципных расчётов исследовать решёточные и магнитные свойства некоторых низкоразмерных оксидов переходных металлов, а именно рутенатов с решёткой типа «пчелиные соты» $SrRu_2O_6$, $AgRuO_3$ и Li_2RuO_3 , системы со структурными тримерами переходных металлов $Ba_4NbTM_3O_{12}$ (TM=Mn, Rh, Ir) и слоистого соединения с большим параметром фрустрации PdCrO₂.

Для достижения поставленной цели были решены следующие задачи:

- Провести первопринципные расчёты динамики решётки, электронных и магнитных возбуждений в SrRu₂O₆ и AgRuO₃ и объяснить механизм возникновения и особенности поведения пиков, наблюдаемых в спектрах комбинационного рассеяния света и мюонной спиновой спектроскопии.
- Провести моделирование динамики решётки соединения Li₂RuO₃ и определить фононные моды, отвечающие за эффективное перемещение димеров по решётке.
- С помощью первопринципных расчётов описать поведение d электронов в серии кластерных моттовских диэлектриков Ba₄NbTM₃O₁₂ (TM=Mn, Rh, Ir) и определить возможность применения модели молекулярных орбита-

лей в зависимости от номера периода, к которому принадлежит переходный металл в таблице Д.И. Менделеева.

4. Из первых принципов оценить параметры обменного взаимодействия в соединении PdCrO₂ и в рамках самосогласованной спин-волновой теории проанализировать применимость модели Гайзенберга для описания магнитных свойств системы.

Научная новизна.

Впервые установлена природа всех наблюдаемых в спектрах комбинационного рассеяния света возбуждений в рутенатах $SrRu_2O_6$, $AgRuO_3$ и Li_2RuO_3 . Предложено объяснение наблюдаемого пика в спектрах мюонной спиновой спектроскопии в $AgRuO_3$. Впервые выявлены колебательные моды, отвечающие особенностям структурных свойств Li_2RuO_3 . Впервые установлено, что в серии соединений $Ba_4NbTM_3O_{12}$, где TM = Mn, Rh, Ir, с увеличением номера периода, к которому принадлежит TM в таблице Д.И. Менделеева, происходит изменение от локализации электронов на одном узле к локализации на кластере из трёх ионов и формированию молекулярных орбиталей. Показано, что для описания магнитных свойств соединения PdCrO₂ необходим выход за пределы модели Гайзенберга.

Теоретическая и практическая значимость.

Анализ полученных фононных спектров, а также оценки энергии возможных электронных и магнитных возбуждений позволили идентифицировать пики в спектрах комбинационного рассеяния света в рутенатах с решёткой типа «пчелиные соты» SrRu₂O₆, AgRuO₃ и Li₂RuO₃.

Установлена применимость модели молекулярных орбиталей для серии изоструктурных соединений Ba₄NbTM₃O₁₂ в зависимости от периода, к которому принадлежит переходный металл в таблице Д.И. Менделеева. Показано, что широко используемое в химической литературе правило сравнения длин связи TM-TM в соединении и в чистом металле TM для определения формирования молекулярных орбиталей справедливо не всегда.

С помощью расчётов температуры магнитного перехода в PdCrO₂ в рамках теории среднего поля и самосогласованной спин-волновой теории продемонстрировано, что для корректного описания магнитных свойств этого соединения необходим выход за пределы модели Гайзенберга.

Методология и методы исследования. Для описания электронной структуры и магнитных свойств твёрдых тел использованы методы теории функционала плотности DFT ¹, а также приближения, позволяющие учесть сильные кулоновские корреляции в рамках статического среднего поля GGA+ U^2 . Для проведения расчётов зонной структуры использованы следующие пакеты программ: VASP, wien2k, LOBSTER, WANNIER90. Для моделирования динамики кристаллической решётки рассматриваемых соединений применялся метод «замороженных» фононов (программы PHONOPY и VASP). Для расчётов основного магнитного состояния системы использовался метод Латтинжера-Тиссы, для моделирования магнонного спектра и оценки температуры магнитного упорядочения – самосогласованная спин-волновая теория ^{3, 4}.

Положения, выносимые на защиту.

- 1. В спектре комбинационного рассеяния света $SrRu_2O_6$ имеются три типа возбуждений: (1) однофононные процессы, которым соответствуют пики в диапазоне от 0 до ~ 650 см⁻¹ (80 мэВ), (2) двухфононные процессы, которым соответствует пик на ~ 1200 см⁻¹ (150 мэВ), и (3) электронный переход через запрещенную зону, которому соответствует энергия выше 2000 см⁻¹ (250 мэВ).
- 2. Однофононные процессы в AgRuO₃ полностью описывают спектр комби-

M. I. Katsnelson // Phys. Rev. B. – 1999. – Vol. 60. – P. 1082.

¹ DFT — Density Functional Theory

 $^{^{2}}$ GGA – Generalized Gradient Approximation

³ Irkhin, V. Y. Self-consistent spin-wave theory of layered Heisenberg magnets / V. Y. Irkhin, A. A. Katanin,

 ⁴ Schmidt, B. Stabilization of Néel order in frustrated magnets with increasing magnetic field / B. Schmidt,
 M. Siahatgar, P. Thalmeier // EPJ Web of Conferences. – 2013. – Vol. 40. – P. 04001.

национного рассеяния света до 700 см⁻¹ (90 мэВ). Особенности поведения пиков в данных мюонной спиновой спектроскопии AgRuO₃ интерпретированы как результат переходов под действием температуры между ближайшими геометрически эквивалентными ловушками, обусловленными минимумами электростатического потенциала системы.

- 3. Колебания атомов Ru, соответствующие фононным модам симметрии A_g с частотой 198 см⁻¹ и B_g с частотой 192 см⁻¹ (обе ~ 24 мэВ), связаны с эффективным движением димеров Ru по кристаллической решётке в высокотемпературной фазе Li₂RuO₃.
- 4. В серии кластерных магнетиков Ва₄NbTM₃O₁₂ (TM=Mn, Rh, Ir) существует тенденция к формированию молекулярных орбиталей с увеличением номера периода, в котором находится переходный металл в таблице Д.И. Менделеева. В случае тримеров Mn электроны локализуются на атомоподобных 3d орбиталях, в 5d системе на основе Ir на кластере формируются молекулярные орбитали. В тримерах Rh (4d) реализуется промежуточная картина.
- 5. Для описания магнитных свойств слоистой системы PdCrO₂ с треугольной решёткой атомов Cr необходим выход за пределы модели Гайзенберга.

Степень достоверности и апробация результатов. Достоверность результатов, полученных в диссертационной работе, обеспечивается обоснованным выбором физических приближений, использованием широко апробированных методов и подходов для расчета электронных, магнитных и решёточных свойств соединений на основе переходных металлов, а также согласием с экспериментальными данными. Обоснованность результатов обеспечивается внутренней непротиворечивостью и соответствием известным научным положениям.

Основные положения диссертации докладывались автором на семинарах лаборатории теории низкоразмерных спиновых систем и лаборатории оптики

металлов ИФМ УрО РАН, а также на следующих конференциях: 16-ой школе молодых учёных европейского общества теоретической спектроскопии YTSF, г. Доностия, Испания, июнь 2019 г.; 7-ом Евразийском симпозиуме «Тренды в магнетизме» EASTMAG, г. Екатеринбург, сентябрь 2019 г.; XX Школе-конференции молодых ученых «Проблемы физики твердого тела и высоких давлений», г. Сочи, сентябрь 2021 г.; Международной конференции «Функциональные материалы» ICFM 2021, г. Алушта, Крым, октябрь 2021 г.; XXXIX Международной зимней школе физиков-теоретиков «Коуровка», г. Екатеринбург, апрель 2022 г.

Публикации. Основные результаты по теме диссертации изложены в 5 статьях в научных журналах, определенных Перечнем ВАК и индексируемых в базе данных Web of Science.

Личный вклад автора. Результаты, изложенные в работе, получены автором под руководством д.ф.-м.н., члена-корреспондента РАН Стрельцова Сергея Владимировича. Автор совместно с научным руководителем участвовал в постановке задач, выборе методов их решения, а также в анализе и интерпретации полученных результатов. Обсуждение результатов проводилось автором совместно с научным руководителем и, при необходимости, с другими соавторами.

В рамках подхода теории функционала плотности лично автором проведены расчёты электронной структуры и моделирование динамики решётки исследованных соединений. Дополнительно для отдельных соединений автором смоделирована плотность магнонных состояний (SrRu₂O₆), построен электростатический потенциал (AgRuO₃), выполнен COHP анализ ⁵ (Ba₄NbTM₃O₁₂), получены константы обменного взаимодействия, определено основное магнитное состояние и оценена температура магнитного перехода (PdCrO₂).

Структура и объем диссертации. Диссертация состоит из введения,

 $^{^5}$ COHP — Crystal Orbital Hamiltonian Population — метод построения орбитальной заселённости гамильтониана в кристалле

пяти глав и заключения. Текст диссертации, включая 30 рисунков и 6 таблиц, занимает 110 страниц. Список литературы содержит 85 наименований.

Соответствие диссертации паспорту специальности. Содержание диссертации соответствует пункту 1 «Теоретическое и экспериментальное изучение физической природы свойств металлов и их сплавов, неорганических и органических соединений, диэлектриков и, в том числе, материалов световодов как в твердом (кристаллы, поликристаллы), так и в аморфном состоянии в зависимости от их химического, изотопного состава, температуры и давления» паспорта специальности 1.3.8. Физика конденсированного состояния.

Содержание работы

Во Введении обоснована актуальность диссертационной работы, сформулированы цель и задачи и аргументирована научная новизна исследований, показана практическая значимость полученных результатов, представлены выносимые на защиту научные положения.

В первой главе приведен обзор основных методов расчёта электронных и структурных свойств изучаемых материалов. Сначала приведены основы теории функционала электронной плотности DFT. Описан переход от многоэлектронной волновой функции к одноэлектронной, а также введённые на этом этапе приближения (адиабитическое приближение Борна-Оппенгеймера). Дана краткая ретроспектива методов решения полученного уравнения. Описано введение электронной плотности как переменной, зависящей всего от трёх координат, и её функционала. Представлены формулировки двух основополагающих теорем теории функционала плотности. Показан переход к самосогласованным уравнениям Кона-Шэма для системы взаимодействующих электронов. Перечислены основные приближения для введённого на этом этапе функционала обменно-корреляционной энергии: LDA ⁶, GGA и их «+U» модификации

 $^{^{6}}$ LDA — Local Density Approximation

для коррелированных систем. Далее представлены основные методы первопринципных расчётов фононных спектров – основанные на квантово-механическом подходе (методы линейного отклика и «замороженных» фононов) и с использованием классической молекулярной динамики. Изложены их основные преимущества и недостатки.

Вторая глава посвящена моделированию динамики решётки и магнитных возбуждений в слоистых рутенатах SrRu₂O₆ и AgRuO₃. Оба соединения имеют кристаллическую решётку типа «пчелиные соты». Если предположить, что доминирующими являются перескоки электронов между двумя *d*-орбиталями соседних атомов Ru через *p*-орбитали кислорода и одноузельное кулоновское взаимодействие не слишком большое, то на такой решётке происходит формирование квазимолекулярных орбиталей. Экспериментально такой сценарий подтверждается значительным подавлением магнитного момента на узле Ru $(m_s = 1.3 - 1.4 \mu_B$ для SrRu₂O₆ и $m_s = 1.9 \mu_B$ для AgRuO₃) по сравнению с ожидаемым магнитным моментом для иона с электронной конфигурацией $4d^3$ $(m_s = 3\mu_B)$. Применимость модели молекулярных орбиталей уже была доказана для $SrRu_2O_6$ в работе⁷, что в совокупности с изоструктурностью рассматриваемых соединений даёт основания предполагать формирование молекулярных орбиталей в AgRuO₃. Интерес к данным рутенатам обусловлен существованием дополнительных пиков в экспериментальных спектрах комбинационного рассеяния света (в $SrRu_2O_6$) и температурно зависимыми особенностями в спектрах мюонной спиновой спектроскопии (AgRuO₃), которые требуют объяснения.

Автором проведено первопринципное моделирование динамики решётки $SrRu_2O_6$ и AgRuO₃. Сопоставление рассчитанных частот колебаний атомов с экспериментальными пиками позволило расшифровать спектры комбинационного рассеяния света в низкочастотной области (до ~ 700 см⁻¹ или ~ 90 мэВ) и установить однофононную природу этих возбуждений.

 $^{^7}$ Streltsov, S. Localized itinerant electrons and unique magnetic properties of $\rm SrRu_2O_6$ / S. Streltsov, I. I. Mazin, K. Foyevtsova // Phys. Rev. B. – 2015. – Vol. 92. – P. 134408.

Помимо пиков в указанной низкочастотной области в спектрах $SrRu_2O_6$ наблюдаются высокочастотные возбуждения с энергиями ~ 1200 см⁻¹ (~ 150 мэВ) и ~ 2050 см⁻¹ (~ 250 мэВ). Исходя из присутствия в результатах расчёта достаточно большого числа колебаний в диапазоне частот 500–650 см⁻¹, энергию двухфононных процессов можно оценить удвоением этого интервала энергий, что достаточно точно соответствует экспериментальному пику на ~ 1200 см⁻¹.

Возможной причиной экспериментального пика на ~ 2050 см⁻¹ может являться двухмагнонное рассеяние. Результаты расчёта плотности магнонных состояний в рамках самосогласованной спин-волновой теории представлены на Рисунке 1. В ней наблюдаются пик на 8.5J и плечо с энергией 9J. Оценки параметра обменного взаимодействия $J \sim 500{-}600$ К из работы ⁸ дают величину энергии двухмагнонного рассеяния 17 $J \sim 6000{-}7000$ см⁻¹. Таким образом, двухмагнонное рассеяние не может послужить причиной дополнительного пика с частотой ~ 2050 см⁻¹.

Рисунок 1 — Рассчитанная магнонная плотность состояний в SrRu₂O₆. На вставке показан выбор базиса и направления декартовых осей в прямом пространстве.

Убедительной представляется интерпретация возбуждения с частотой ~ 2050 см⁻¹ как результата электронного перехода через запрещённую зону.

 $^{^8}$ High antiferromagnetic transition temperature of the honeycomb compound $\rm SrRu_2O_6$ / W. Tian, C. Svoboda, M. Ochi, M. Matsuda, H. B. Cao, J.-G. Cheng, B. C. Sales, D. G. Mandrus, R. Arita, N. Trivedi, J.-Q. Yan // Phys. Rev. B. – 2015. – Vol. 92. – P. 100404.

Для модели молекулярных орбиталей энергия такого перехода в SrRu₂O₆ должна быть порядка 0.4 эВ. Влияние электронных корреляций на зонную структуру ковалентных диэлектриков выражается в сужении и сближении зон ⁹. При среднем квазичастичном весе $z \sim 0.2$ (см.¹⁰) можно ожидать уменьшение щели в $\sim 1.5 - 2$ раза до ~ 0.2 –0.3 эВ (~ 1600 -2400 см⁻¹). Это свидетельствует как в пользу электронной природы пика, наблюдаемого на ~ 2050 см⁻¹, так и косвенно подтверждает формирование молекулярных орбиталей в SrRu₂O₆.

В спектрах мюонной спиновой спектроскопии (Рисунок 2(a)) в AgRuO₃ при низких температурах чётко видны два пика на ~ 17 МГц и 23 МГц, которые практически исчезают при температуре выше 120 К. Данный эффект может быть связан с существованием двух классов мюонных ловушек. Расчёт электростатического потенциала AgRuO₃ и построение изоэнергетической поверхности, соответствующей его минимуму, действительно даёт две области, соответствующих позициям Вайкоффа 6a и 6b (Рисунок 2(6)). Если рассматривать только решётку, состоящую из атомов Ru, то в обеих позициях дипольное магнитное поле в точности компенсируется. С учётом кислородного окружения ловушка равновероятно смещается к одному из шести близлежащих эквивалентных лигандов, локализуясь на расстоянии ~ 1.2 Å от него в области с теперь уже ненулевым диполным магнитным моментом. С ростом температуры мюоны могут перескакивать между шестью ловушками, локализованными вблизи одного минимума электростатического потенциала. Таким образом, пики в низкотемпературной области (до 120 К) в спектрах мюонной спиновой спектроскопии AgRuO₃ интерпретированы как присутствие двух типов ловушек, обусловленных минимумом электростатического потенциала структуры. С повышением температуры активируются переходы мюона между геометрически эквивалентными ловушками вблизи каждого минимума, и при определённом её значении

⁹ Correlations in a band insulator / M. Sentef, J. Kunes, Ph. Werner, A. P. Kampf // Phys. Rev. B. – 2009.
– Vol. 80. – P. 155116.

 $^{^{10}}$ Localized-itinerant dichotomy and unconventional magnetism in SrRu₂O₆ / S. Okamoto, M. Ochi, R. Arita, J. Yan, N. Trivedi // Scientific Reports. – 2017. – Vol. 7, No 1. – P. 11742.

локальное магнитное поле, усреднённое по шести узлам, компенсируется по симметрии, что соответствует исчезновению наблюдаемых пиков.

Рисунок 2 — (a) Экспериментальный спектр мюонной спиновой спектроскопии в диапазоне до 200 К для AgRuO₃. (б) Рассчитанный электростатический потенциал для AgRuO₃ в основном магнитном состоянии. Разные цвета атомов Ru соответствуют различными направлением магнитных моментов на узле. Жёлтым цветом показаны минимумы потенциала. Каждая область содержит в себе шесть эквивалентных мюонных ловушек.

Расчёт электронной и магнитной структуры AgRuO₃ позволил оценить величину обменного взаимодействия между ближайшими ионами Ru в одном слое: J = 8 мэВ, и между соседними слоями: $J_c = 0.2$ мэВ, а также величину параметра одноионной анизотропии D = 1 мэВ. Обменное взаимодействие между Ru как в одной плоскости, так и из соседних слоёв в AgRuO₃ оказались примерно в 5 раз слабее, чем в изоструктурном SrRu₂O₆ (см. ⁶). Оценка параметров перескока между t_{2g} орбиталями Ru разной симметрии через *p*-орбитали ближайших лигандов проектированием на соответствующие функции Ваннье даёт $t^{d-p-d} = 0.28$ эВ. Параметр t^{d-d} , соответствующий прямым перескокам электронов между *d*-орбиталями, имеет тот же порядок: $t^{d-d} = -0.27$ эВ. Отношение модулей параметров непрямого (через *p*-орбиталь кислорода) и прямого перескоков в AgRuO₃ получается близким к 1; для SrRu₂O₆ такое же отношение равно 2 (см. ⁷). Это свидетельствует о менее выраженных молекулярных орбиталях в AgRuO₃.

Результаты второй главы опубликованы в работах [1, 2].

В третьей главе представлены результаты исследования динамики ре-

шётки Li₂RuO₃. Как и рутенаты, рассмотренные во второй главе, Li₂RuO₃ при высоких температурах (выше $T_c \sim 540 - 560$ K) имеет практически идеальную решётку типа «пчелиные соты». Особенностью соединения является значительное сокращение длины некоторых связей Ru-Ru в низкотемпературной фазе (с ~ 3.0 Å до ~ 2.6 Å), что соответствует появлению димеров из атомов Ru. Димеризованное состояние определяется особенностями орбитальной физики в соединении, в частности, появлением молекулярных орбиталей, стабилизирующих спин-синглетное состояние в димере ¹¹. В высокотемпературной фазе расстояние между ионами Ru в димере увеличивается, однако всё равно эта связь остаётся короче других. Экспериментально говорят о реализации так называемого состояния жидкости валентных связей – VBL ¹². Тем не менее, природа такого поведения исследована не была.

Автором было проведено первопринципное моделирование динамики решётки низкотемпературной фазы Li₂RuO₃. Это позволило расшифровать спектр комбинационного рассеяния света ¹³.

Очевидно, что ангармонизм будет в равной степени влиять на моды с близкой частотой. В частности, за счёт этого эффекта с ростом температуры уширение спектральных линий, соответствующих фононным модам симметрии A_g с частотой 198 см⁻¹ и B_g с частотой 192 см⁻¹ (обе ~ 24 мэВ), должно быть одинаковым. Однако экспериментально полученные зависимости ширины пиков соответствующих мод от температуры, приведенные на Рисунке 3(а), демонстрируют различное поведение. Зависимость ширины линии A_g моды от Tзначительно отклоняется от описываемого за счёт ангармонизма уширения уже при комнатной температуре, в то время как поведение ширины B_g моды соот-

¹¹ Jackeli, G. Classical dimers and dimerized superstructure in an orbitally degenerate honeycomb antiferromagnet / G. Jackeli, D. I. Khomskii // Phys. Rev. Lett. – 2008. – Vol. 100. – P. 147203.

 $^{^{12}}$ VBL – Valence Bond Liquid

 $^{^{13}}$ Ponosov, Y. S. Phonon anomalies near the magnetostructural transition in Li₂RuO₃: Raman spectroscopy and density functional theory studies / Y. S. Ponosov, E. V. Komleva, S. V. Streltsov // Phys. Rev. B. – 2019. – Vol. 100. – P. 134310.

Рисунок 3 — (а) Температурная зависимость частоты и ширины спектральной линии 198 см⁻¹ с A_g симметрией и ширины спектральной линии 192 см⁻¹ B_g симметрии в низкотемпературной фазе; чёрным показано ожидаемое уширение линий согласно ангармонизму, (б-в) смещение атомов Ru в согласно рассмотренным фононным модам.

ветствует гораздо большему интервалу температур. Рассчитанные атомные смещения, соответствующие выделенным колебаниям, представлены на Рисунке 3 (б-в). Обе моды (A_g и B_g) соответствуют преимущественно смещениям атомов Ru. В случае A_g колебания димеры атомов рутения из соседних цепочек, идущих вдоль направления оси a, колеблются в противоположных направлениях. Угол между димерами атомов Ru из соседних цепочек меняется, в то время как сохраняется параллельность димеров внутри отдельной цепочки. При B_g колебаниях сохраняется также угол между димерами из соседних цепочек. Отсюда следует, что A_g мода более чувствительна к динамическому беспорядку, что и определяет её аномальное высокотемпературное уширение. В экспериментальных работах говорится о признаках сохранения более коротких связей Ru-Ru и их перемещения по решётке при температуре выше T_c . Вероятно, именно выше перечисленные моды ответственны за эффективное перемещение димеров атомов Ru (перемещение более коротких связей Ru-Ru вследствие атомных колебаний), а следовательно, очень важны для формирования VBL состояния.

Результаты третьей главы опубликованы в работе [3].

В четвёртой главе обсуждается возможность формирования молекулярных орбиталей в кластерных моттовских системах с увеличением номера периода, в котором находится переходный металл в таблице Д.И. Менделеева, на примере серии изоструктурных соединений Ba₄NbTM₃O₁₂, где TM=Mn, Rh, Ir. В кристаллической структуре данных соединений имеются линейные тримеры переходного металла TM. Длины связи между ионами TM в тримере меньше расстояния TM-TM в чистом металле TM. Согласно широко применяемому в химической литературе правилу, это может являться критерием формирования молекулярных орбиталей.

Анализ результатов немагнитного GGA расчёта показал, что молекулярные орбитали формируются во всех трёх соединениях. Об этом свидетельствует наличие в графиках СОНР пиков, соответствующих связывающим (-СОНР > 0), несвязывающим (-СОНР = 0), и разрыхляющим (-СОНР < 0) состояниям (Рисунок 4(а), голубой). Оценка параметров перескока электронов между a_{1g} и между e_g^{π} орбиталями, приведённая в Таблице 1, демонстрирует рост соответствующих величин с увеличением главного квантового числа рассматриваемой *d*-оболочки металла.

Параметр одноузельного кулоновского отталкивания U характеризует энергетический барьер между состояниями электрона на разных центрах, то есть локализацию электронов на отдельном ионе, а величина расщепления между связывающими и разрыхляющими состояниями показывает выигрыш по энергии при локализации на кластере (молекулярной орбитали). Оценка расщепления между связывающими и разрыхляющими состояниями проведена согласно формуле $\delta_{b-ab} = 2\sqrt{2}t_{\sigma}$ из работы ¹⁴. Для Ir формирование молекулярных орбиталей наиболее благоприятно, так как величина расщепления $\delta_{b-ab}^{Ir} = 1.7$ эВ больше величины одноузельного кулоновского отталкивания $U^{Ir} \sim 1.5$ эВ. Для марганцевой системы наоборот, расщепление между связывающей и разрыхляющей a_{1g} орбиталями $\delta_{b-ab}^{Mn} = 1.1$ эВ значительно меньше параметра $U^{Mn} \sim 4.5$ эВ, что делает формирование молекулярных орбиталей

 $^{^{14}}$ Streltsov S. V. Unconventional magnetism as a consequence of the charge disproportionation and the molecular orbital formation in Ba₄Ru₃O₁₀ / S. V. Streltsov, D. I. Khomskii // Phys. Rev. B. – 2012. – Vol. 86. – P. 064429.

Таблица 1 — Длины связи ТМ-ТМ в чистом металле (d^{Me}) и в рассматриваемых соединениях (d^{trimer}) серии Ba₄NbTM₃O₁₂ (в Å), а также рассчитанные параметры перескока между a_{1g} орбиталями $(t_{\sigma}), e_{q}^{\pi}$ орбиталями $(t_{\pi}),$ (в эВ).

TM	d^{Me}	d^{trimer}	t_{σ}	t_{π}
Mn	2.734	2.469	-0.39	0.16
Rh	2.630	2.545	-0.45	0.35
Ir	2.714	2.547	-0.65	0.44

в этой системе невыгодным. В соединении на основе Rh реализуется промежуточная картина – $\delta_{b-ab}^{Rh} = 1.3$ эB, $U^{Rh} \sim 2.5$ эB.

Учёт одноузельных кулоновских корреляций в приближении GGA+U подавляет молекулярные орбитали в Ba₄NbMn₃O₁₂. Об этом свидетельствует отсутствие соответствующих пиков в области [-3, 2] эВ на графике СОНР для GGA+U расчёта (Рисунок 4(а)). Это подтверждает выводы, сделанные ранее из сравнения U^{Mn} и δ_{b-ab}^{Mn} . Спин-орбитальным взаимодействием в данном случае можно пренебречь, так как оно мало для 3d состояний Mn (см. ¹⁵).

В системах на основе Rh и Ir учёт корреляционных эффектов не влияет на возможность формирования молекулярных орбиталей. Это так же подтверждается соответствующими графиками COHP на Рисунке 4(a) для GGA+U расчёта. Для корректного описания изоляторного поведения Ba₄NbRh₃O₁₂ необходимо дополнительно учесть корреляционные эффекты на ионах Nb ($U^{Nb} = 2$ эB). Для 4d и 5d систем необходим учёт спин-орбитального взаимодействия. В случае тримеров Ir уровень Ферми оказывается в запрещенной зоне. Согласно модельным расчётам, приведённым на Рисунке 4(б), формирование щели связано с тем, что учёт спин-орбитального взаимодействия при определённом соотношении параметров системы может вызывать увеличение расщепления между разрыхляющими a_{1g} и e_g^{π} состояниями, между которыми и открывается щель.

¹⁵ Streltsov S. V. Orbital physics in transition metal compounds: new trends / S. V. Streltsov, D. I. Khomskii // Phys.-Usp. – 2017. – Vol. 60. – P. 1121.

То, что Ba₄NbIr₃O₁₂ является диэлектриком, согласуется с экспериментом.

Рисунок 4 — (a) СОНР (с противоположным знаком) для тримеров в соединениях Ва₄NbTM₃O₁₂ в немагнитном GGA расчёте (голубой) и в спин-поляризованном GGA+U случае (розовый и чёрный) для a_{1g} орбиталей. (б) Зависимость расщепления между разрыхляющими a_{1g} и e_g^{π} состояниями от параметра спин-орбитального взаимодействия в единицах параметра перескока (t_{π}). Получена в модельном одноэлектронном расчёте с параметрами, соответствующими Ba₄NbIr₃O₁₂. 0 соответствует отсутствию спин-орбитального взаимодействия.

Проведённые расчёты также объясняют магнитные свойства систем. В Ва₄NbMn₃O₁₂ электроны, как было выяснено, локализованы на узлах. Наиболее выгодным по энергии является состояние, в котором магнитные моменты соседних ионов Mn в тримере направлены противоположно, $m_m = -2.9\mu_B$ для иона в центре тримера и $m_o = 3.3\mu_B$ для внешних атомов. Полный магнитный момент на элементарную ячейку в расчёте равен $3.9\mu_B$, что соответствует $S^{tot} = 2$ на тример и согласуется с экспериментальными данными, $\mu_{eff}^{exp} = 4.89\mu_B$ на тример¹⁶. Более того, магнитная восприимчивость, полученная методом Монте-Карло для классической модели Гайзенберга $H = \sum_{i>j} J_{ij} \vec{S}_i \vec{S}_j$, хорошо описывает экспериментальное поведение с $J_{ab} = -18$ К и $J_c = 7$ К между тримерами Mn, лежащими в одной плоскости и соседних плоскостях соответственно. Для Ва₄NbIr₃O₁₂ рассчитанное основное состояние оказывается с очень малым магнитным моментом – порядка 0.04 μ_B на тример. В Ва₄NbRh₃O₁₂ магнитные моменты ионов Rh в тримере упорядочиваются параллельно. Величина эффек-

 $^{^{16}}$ Nguyen, L. T. Trimers of MnO₆ octahedra and ferrimagnetism of Ba₄NbMn₃O₁₂ / L. T. Nguyen, T. Kong, R. J. Cava // Materials Research Express. – 2019. – Vol. 6, No 5. – P. 056108.

тивного момента 1.9 μ_B на тример, что соответствует $S^{tot} = 1$ и согласуется с экспериментальным $\mu_{eff}^{exp} = 1.48 \ \mu_B$ на тример¹⁷. Причиной разного магнитного поведения систем на основе Rh и Ir является различное соотношение расщепления между разрыхляющими a_{1g} и e_g^{π} орбиталями $\delta^{Ir} = 0.5$ эB, $\delta^{Rh} = 0.3$ эB и величины параметра Хунда $J_H^{Ir} = 0.3 - 0.5$ эB и $J_H^{Rh} = 0.5 - 0.7$ эB. В то время, как для тримера Ir выгодно немагнитное состояние, для системы с Rh выигрыш по энергии за счёт максимального спина на тример больше.

Результаты четвёртой главы опубликованы в работе [4].

Пятая глава посвящена исследованию магнитных свойств слоистой системы с треугольной решёткой PdCrO₂ и анализу применимости модели Гайзенберга к их описанию. Интерес к подобным соединениям (также PdCoO₂ и PdRhO₂) обусловлен их чрезвычайно высокой проводимостью, которая даже выше, чем у чистого Pd при комнатной температуре¹⁸. Экспериментально полученные температуры Нееля, $T_N \sim 37$ K, и Кюри-Вейсса, $\theta^{CW} \sim -500$ K, отличаются на порядок, что говорит о сильной фрустрации.

На первом этапе, из первых принципов были рассчитаны параметры изотропного обменного взаимодействия для магнитных ионов Cr вплоть до 3-го соседа в плоскости (J_1, J_2, J_3) и 2-ого между плоскостями (J_1^c, J_2^c) . Значения, полученные для классической модели Гайзенберга вида $H = \sum_{i>j} J_{ij} \vec{S}_i \vec{S}_j$ для различных величин одноузельного кулоновского отталкивания U, представлены в Таблице 2. Значение θ^{CW} , наиболее близкое к экспериментальному, получается при U = 3.2 эВ. Важно подчеркнуть, что взаимодействие с 3-им соседом в плоскости и межплоскостные взаимодействия не малы, а того же порядка, что и взаимодействие со 2-м соседом в плоскости.

С помощью метода Латтинджера-Тиссы и рассчитанных значений обменных параметров был найден \vec{Q} -вектор, соответствующий основному маг-

 $^{^{17}}$ Nguyen, L. T. Trimer-based spin liquid candidate Ba₄NbIr₃O₁₂ / L. T. Nguyen, R. J. Cava // Phys. Rev. Materials. – 2019. – Vol. 3. – P. 014412.

¹⁸ Daou, R. Unconventional aspects of electronic transport in delafossite oxides / R. Daou, R. Frésard, V. Eyert, S. Hébert, A. Maignan // Sci. Technol. Adv. Mater. – 2017 – Vol. 18 – P. 924.

Таблица 2 — Рассчитанные в GGA+U параметры изотропного обменного взаимодействия (в мэВ) для различных значений кулоновского отталкивания U (J_H=0.7 эВ). В последней строке приведена оценка температуры Кюри-Вейсса (в K).

J_{ij}	<i>U</i> =3 эВ	<i>U</i> =3.2 эВ	<i>U</i> =3.5 эВ	<i>U</i> =4 эВ
J_1	5.55	5.15	4.61	3.81
J_2	0.20	0.17	0.13	0.09
J_3	0.27	0.24	0.21	0.16
J_1^c	-0.11	-0.14	-0.19	-0.23
J_2^c	0.27	0.24	0.20	0.14
θ_{CW}	-539	-493	-431	-246

нитному состоянию системы. С учётом взаимодействия между плоскостями $\vec{Q} = (2\pi/3a + \delta_x, 2\pi\sqrt{3}/3a + \delta_y, \pi/3c)$, где $\delta_x = 0.078/a$ и $\delta_y = 0.352/a$ определяют отклонение магнитного момента от идеальной 120°-ой структуры (aи c – параметр треугольной решётки магнитных атомов и расстояние между соседними плоскостями соответственно). Полученный вектор соответствует состоянию, в котором углы между магнитными моментами соседних ионов Cr в одном треугольнике на решётке составляют 110°, 125° и 125°.

Следующим шагом была оценка температуры магнитного упорядочения. В рамках теории среднего поля $T_N = -\frac{S(S+1)}{3}J_{\vec{q}=\vec{Q}} \sim 250$ K, где $J_{\vec{q}=\vec{Q}} - \Phi$ урье-образ гамильтониана системы при $\vec{q} = \vec{Q}$. Такая оценка в 7 раз превышает экспериментальное значение $T_N = 37$ K. Более аккуратный расчёт T_N в рамках самосогласованной спин-волновой теории даёт значение температуры магнитного перехода для U = 3.2 эВ равное $T_N = 105$ K, что в 3 раза превосходит экспериментальное. Такая переоценка T_N является аргументом в пользу отказа от модели локализованных спинов для описания магнитных свойств PdCrO₂.

Оценка из первых принципов параметра одноионной анизотропии, также способной уменьшить температуру магнитного перехода, даёт $D \sim 0.04$ мэВ, что значительно меньше межплоскостных обменных взаимодействий вплоть до

второго соседа. Это свидетельствует о её очень слабом влиянии на температуру Нееля.

Таким образом, ни фрустрация в системе, ни существенное обменное взаимодействие между ионами из соседних слоёв решётки, ни магнитная анизотропия не могут объяснить низкую температуру Нееля в PdCrO₂.

Результаты пятой главы опубликованы в работе [5].

В Заключении обсуждаются новизна, научная и практическая значимость работы, а также приведены основные результаты и выводы.

ОСНОВНЫЕ РЕЗУЛЬТАТЫ И ВЫВОДЫ

- На основе первопринципного моделирования динамики решётки расшифрован экспериментальный спектр комбинационного рассеяния света SrRu₂O₆. Пики в диапазоне от 0 до ~ 650 см⁻¹ (80 мэВ) соответствуют однофононным процессам, пик на ~ 1200 см⁻¹ (150 мэВ) – двухфононным.
 Возбуждение с энергией выше 2000 см⁻¹ (250 мэВ) не является следствием двухмагнонного рассеяния, а относится к электронному переходу через запрещённую зону.
- По результатам расчётов динамики решётки расшифрован экспериментальный спектр комбинационного рассеяния света AgRuO₃. Оценены параметры изотропного обменного взаимодействия для атомов Ru и продемонстрирована большая квазидвумерность магнитной структуры, чем в изоструктурном SrRu₂O₆. Пики в спектрах мюонной спиновой спектроскопии AgRuO₃ при низких температурах связаны с существованием двух классов мюонных ловушек, обусловленных минимумами электростатического потенциала системы. Исчезновение пиков выше 120 К интерпретируется как результат термической активации переходов между геометрически эквивалентными ловушками вблизи каждого минимума, приводящих к почти полной компенсации по симметрии усредненного локального магнитного поля.

- Для соединения Li₂RuO₃ смоделирована динамика решётки и расшифрован экспериментальный спектр комбинационного рассеяния света. Показано, что колебания атомов Ru, соответствующие фононным модам симметрии A_g с частотой 198 см⁻¹ и B_g с частотой 192 см⁻¹ (обе ~ 24 мэВ), связаны с эффективным перемещением димеров Ru по кристаллической решётке в высокотемпературной фазе.
- При исследовании электронной структуры, для серии кластерных магнетиков Ba₄NbTM₃O₁₂ (TM = Mn, Rh, Ir) установлена тенденция к формированию молекулярных орбиталей с увеличением номера периода, в котором располагается переходный металл в таблице Д.И. Менделеева. В случае тримеров Mn электроны локализуются на атомоподобных 3d орбиталях, причём магнитные моменты на соседних узлах связаны антиферромагнитно. В 5d системе на основе Iг электроны локализуются на кластере, то есть формируются молекулярные орбитали. Реализуется немагнитное основное состояние. В 4d тримерах Rh реализуется промежуточная картина – необходимо учитывать как формирование молекулярных орбиталей, так и корреляционные эффекты. Основное состояние в тримере ферромагнитное.
- В слоистой системе с треугольной решёткой магнитных атомов PdCrO₂ рассчитаны параметры изотропного обменного взаимодействия в классической модели Гайзенберга. Ненулевые параметры межплоскостного обменного взаимодействия приводят к отклонению основного магнитного состояния от идеальной 120° структуры. Оцененная в рамках теории среднего поля температура Кюри-Вейсса совпадает с экспериментальной, а рассчитанная в формализме самосогласованной спин-волновой теории температура Нееля на порядок выше экспериментальной. Это демонстрирует необходимость выхода за пределы модели Гайзенберга для описания магнитных свойств слоистого соединения PdCrO₂.

Публикации автора по теме диссертации:

- Raman spectroscopy of the low-dimensional antiferromagnet SrRu₂O₆ with large Neel temperature / Yu. S. Ponosov, <u>E. V. Komleva</u>, D. A. Zamyatin, R. I. Walton, S. V. Streltsov // Physical Review B. – 2019. – V. 99. – P. 085103 (1–7).
- Magnetic and electronic ordering phenomena in the Ru₂O₆-layer honeycomb lattice compound AgRuO₃ / W. Schnelle, B. E. Prasad, C. Felser, M. Jansen, <u>E. V. Komleva</u>, S. V. Streltsov, I. I. Mazin, Dm. Khalyavin, P. Manuel, S. Pal, D. V. S. Muthu, A. K. Sood, E. S. Klyushina, B. Lake, J.-Ch. Orain, H. Luetkens // Physical Review B. - 2021. - V. 103. - P. 214413 (1-13).
- Ponosov, Y. S. Phonon anomalies near the magnetostructural transition in Li₂RuO₃: Raman spectroscopy and density functional theory studies / Y. S. Ponosov, <u>E. V. Komleva</u>, S. V. Streltsov // Physical Review B. – 2019. – V. 100. – P. 134310 (1–7).
- Komleva, E. V. Three-site transition-metal clusters: Going from localized electrons to molecular orbitals / <u>E. V. Komleva</u>, D. I. Khomskii, S. V. Streltsov // Physical Review B. - 2020. - V. 102. - P. 174448 (1-7).
- Unconventional magnetism and electronic state in the frustrated layered system PdCrO₂ / <u>E. V. Komleva</u>, V. Yu. Irkhin, I. V. Solovyev, M. I. Katsnelson, S. V. Streltsov // Physical Review B. - 2020. - V. 102. - P. 174438 (1-8).

Отпечатано на ризографе ИФМ УрО РАН тир. 100 зак. №12 Объем 24 печ. л. Формат 60х84 1/16 620108, г. Екатеринбург, ул. С. Ковалевской, 18