Аспирант 1 года обучения

Чернов Евгений Денисович

(лаборатория оптики металлов)

Научный руководитель:

к.ф.-м.н. Лукоянов Алексей Владимирович.

Специальность:

01.03.08 «Физика конденсированного состояния».

Тема работы: «Исследование влияния электронных корреляций на электронную структуру и магнитные свойства бинарных и тройных соединений на основе марганца»

Задача текущего года: Моделирование магнитный свойств и электронной структуры халькогенидов и других соединений марганца в рамках теории функционала плотности с учетом кулоновского взаимодействия, выявление зависимости величины электронной щели от различных параметров.

Результаты, полученные в текущем году: Были изучены магнитные свойства и электронная структура кубической и гексагональной фаз халькогенидов марганца MnX (X = S, Te) в зависимости от величины параметра кулоновского взаимодействия и объема элементарной ячейки, а также изучено влияние электронных корреляций на магнитные свойства и электронную структуру полного сплава Гейслера Mn_2NiAl .

Статьи (текущий учебный год):

- 1. Электронная структура, термоэлектрические и оптические свойства сплавов Гейслера Mn₂MeAl (Me=Ti, V, Cr) / Е. И. Шредер, А. Н. Филанович, Е. Д. Чернов, А. В. Лукоянов, В. В. Марченков, Л. А. Сташкова// Физика металлов и металловедение 2023, т. 6 (Q3) (принята)
- 2. Effect of electron correlations on the electronic structure and magnetic properties of the full Heusler alloy Mn₂NiAl E. D. Chernov, A. V. Lukoyanov // Magnetochemistry (Q2) (на рассмотрении)
- 3. Metal-insulator transition in MnS / E. D. Chernov, A. V. Lukoyanov // Journal of Physics: Condensed Matter (Q2) (отправлена)

Доклады на конференциях (текущий учебный год):

Устный доклад - 4.

Стендовый доклад - 3.

Экзамен по иностранному языку (текущий учебный год):

Сдан – «Отлично»

Участие в грантах (текущий учебный год):

1. РНФ 22-42-02021

«Поиск новых топологических материалов - совместное теоретическое и экспериментальное исследование»

Руководитель: Лукоянов А.В., к. ф.-м. н.

Степень участия: исполнитель.

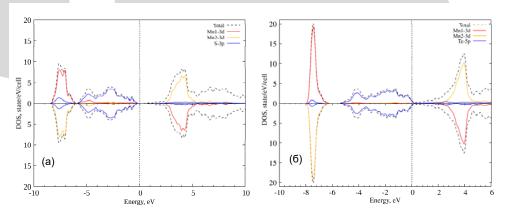
2. РНФ 22-22-20109

«Новые интерметаллические сплавы Гейслера на основе марганца для термоэлектрических применений в широком температурном интервале: экспериментальный и теоретический подход»

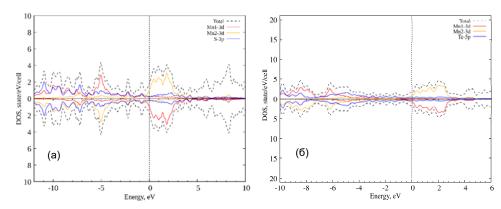
Руководитель: Шредер Е.И., к. ф.-м. н.

Степень участия: исполнитель.

3. РФФИ 20-02-00234


«Эволюция электронных, резистивных и диэлектрических свойств бинарных соединений Mn в области моттовских переходов»

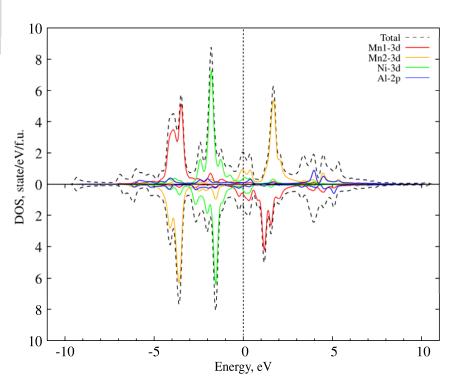
Руководитель: Лукоянов А.В., к. ф.-м. н.


Степень участия: исполнитель.

Показатель	Баллы	Кол-во	Сумма
публикации в изданиях ВАК (вышедшие из печати)	20	0	0
публикации в изданиях ВАК (принятые в печать)	5	1	5
свидетельство о программах для ЭВМ, зарегистрированных в установленном порядке	20	0	0
патент	20	0	0
соавторство в монографии	5	0	0
оформленное ноу-хау	5	0	0
публикации в других изданиях (не тезисы)	2	0	0
тезисы доклада на международной конференции	5	3	15
тезисы доклада на российской конференции	3	5	15
участие в конференции с устным докладом	2	4	8
участие в конференции со стендовым докладом	1	3	3
сданный на «отлично» кандидатский экзамен	20	1	20
сданный на «хорошо» кандидатский экзамен	15	0	0
сданный на «удовлетворительно» кандидатский экзамен	10	0	0
участие в грантах в качестве: исполнителя	5	3	15
участие в грантах в качестве: руководителя	10	0	0
Общая сумма			81

Исследование халькогенидов марганца MnS и MnTe

Рис. 1 График электронной плотности соединений (а) MnS (б) MnTe в кубической фазе при U = 6.9 эВ. Уровень Ферми соответствует нулевой энергии и обозначен вертикальной пунктирной линией.


Рис. 2 График электронной плотности соединений (а) MnS (б) MnTe в кубической фазе при уменьшении объема ячейки на 50 %.

В результате проведенных исследований было выяснено, что с ростом значения параметра кулоновского взаимодействия значение магнитных моментов марганца в MnS (MnTe) увеличивается, достигая значения 4.59 (4.81) $\mu_{\rm B}$. При моделировании приложенного давления происходит переход из диэлектрического в металлическое состояние, а значение магнитных моментов падает в согласии с экспериментальными данными, воспроизводя магнитный переход из высокоспинового в низкоспиновое состояние.

Результаты представлены:

- 1. Всероссийская научная конференция с международным участием "IV Байкальский материаловедческий форум", 1-7 июля 2022 г., г. Улан-Удэ.
- 2. Международная конференция "Strongly Correlated Matter: from Quantum Criticality to Flat Bands", August 22 September 2, 2022, Trieste, Italy, Online.
- 3. Международная конференция "3rd International Electronic Conference on Applied Sciences" 1-15 15 December 2022, Online
- 4. Молодежная конференция по физике полупроводников «Зимняя школа 2023, г. Зеленогорск, 2 6 марта 2023 г.
- 5. Всероссийская научная конференция студентов-физиков (ВНКСФ-27), г. Екатеринбург, Россия, 3-6 Апреля 2023 г.
- 6. XX Конференция "Сильно коррелированные электронные системы и квантовые критические явления", г. Москва, Россия, 25 мая, 2023 г
- 7. Journal of Physics: Condensed Matter (Q2) (отправлена)

Исследование сплава Гейслера Mn₂NiAl

Рис. 3 Плотности электронных состояний Mn_2NiAl , рассчитанные в рамках метода DFT+U для оптимизированной кристаллической структуры.

Таблица 1. Значения магнитных моментов ионов и полного момента Mn_2NiAl . Все значения приведены в магнетонах Бора.

	Mn1	Mn2	Ni	Al	Полный момент
GGA	-3.24	3.60	0.18	0.00	0.59
GGA+U(1.0)	-3.78	3.97	0.07	0.00	0.32
GGA+U(3.0)	-4.12	4.23	0.01	0.00	0.19
GGA+U(6.0)	-4.43	4.46	-0.04	0.00	0.02
HSE	-4.08	4.14	0.04	0.00	0.14

Экспериментальное значение полного магнитного момента: $0.2 \, \mu_{B}$.

В результате проведенных исследований было показано, что учет электронных корреляций является важным при расчетах магнитных свойств Mn_2NiAl , так как позволяет получить полный магнитный момент в согласии с экспериментальным значением. Во всех проведенных расчетах Mn_2NiAl сохраняет металлическое состояние в согласии с экспериментальными данными по оптической спектроскопии.

Результаты представлены:

- 1. Magnetochemistry (Q2) (на рассмотрении, 2 круг рецензирования)
- 2. X Международная молодежная научная конференция "Физика. Технологии. Инновации (ФТИ-2023)", г. Екатеринбург, Россия, 15-19 мая 2023 г.