Научный руководитель – к.ф.-м.н. Кузнецова Татьяна Владимировна

Специальность 1.3.8 – Физика конденсированного состояния

Тема работы – Электронная структура и оптические свойства кристаллов многокомпонентных халькогенидов металлов со структурой халькопирита и кестерита

Задача текущего года

Исследовать структуру, рамановские спектры, локальные электрические характеристики, спектры фотолюминесценции объёмных кристаллов α-In₂Se₃ до и после облучения электронами с энергией 10 МэВ

Результаты, полученные в текущем году

1. Методом XRD определена фаза объёмных кристаллов - α -In₂Se₃, методами AFM, SEM, RS обнаружены амфороподобные образования Se-In (капли) на поверхности. 2. Обнаружено незначительное возрастание проводимости на каплях после облучения электронным флюенсом 10^{15} см⁻². 3. Обнаружено значительное уменьшение проводимости в объёмных кристаллах α -In₂Se₃ после облучения электронным флюенсом 10^{17} см⁻². 4. После облучения объёмных кристаллов α -In₂Se₃ электронным флюенсом 10^{17} см⁻² обнаружено тушение PL при температуре выше 230 К. Обнаружено увеличение энергии активации для PL полосы, связанной с BT, а также синий сдвиг полосы, связанной с глубокими дефектами.

Апробация работы

Статьи

1.А. D. Lobanov, Y. V. Korkh, E. I. Patrakov, V. S. Gaviko, M. N. Sarychev, V. Yu. Ivanov, T. V. Kuznetsova. Effect of 10-MeV electron irradiation on the electrical properties of bulk α -In₂Se₃ crystals. // Phys. Chem. Chem. Phys. (принята в печать)

2.А. D. Lobanov, M.A. Sulimov, D.I. Radzivonchik, M. N. Sarychev, V. Yu. Ivanov, T. V. Kuznetsova. Photoluminescence of bulk α -In₂Se₃ crystals before and after irradiation with 10 MeV electrons. // Journal Of Applied Physics (готовится к отправке в журнал)

Апробация работы

Тезисы докладов на всероссийских конференциях

1. **А.Д. Лобанов.** Влияние облучения электронами с энергией 10 МэВ на электронные свойства монокристаллов α-In₂Se₃ [Текст] / А.Д. Лобанов, Ю.В. Корх, Е.И. Патраков, М.Н. Сарычев, В.Ю. Иванов, Т.В. Кузнецова // ХХІІ Всероссийская школа-семинар по проблемам физики конденсированного состояния вещества (СПФКС-22) памяти М.И. Куркина, Екатеринбург, 24 ноября – 1 декабря, 2022: Тезисы докладов, г. Екатеринбург, ИФМ УрО РАН.- 260 с.

Тезисы докладов на международных конференциях

1. А.Д. Лобанов. РАДИАЦИОННЫЕ ЭФФЕКТЫ В СПЕКТРАХ ФОТОЛЮМИНЕСЦЕНЦИИ И КОМБИНАЦИОННОГО РАССЕЯНИЯ МОНОКРИСТАЛЛОВ α-In₂Se₃ [Текст]/ А.Д. Лобанов, М.А. Сулимов, Ю.В. Корх, Е.И. Патраков, Д.И. Радзивончик, В.С. Гавико, М.Н. Сарычев, В.Ю. Иванов, Т.В. Кузнецова // материалы Х Международной молодежной научной конференции. Физика. Технологии. Инновации (ФТИ-2023), Екатеринбург, 15-19 мая, 2023: Тезисы докладов, г. Екатеринбург, УРФУ.

Апробация работы

Тезисы докладов на международных конференциях

2. А.Д. Лобанов. Фотолюминесценция монокристаллов α-In₂Se₃ до и после облучения электронами с энергией 10 МэВ [Текст] / А.Д. Лобанов, М.А. Сулимов, Д.И. Радзивончик, М.Н. Сарычев, В.Ю. Иванов, В.Д. Живулько, А.В. Мудрый, М.В. Якушев, Т.В. Кузнецова // Х Международная научная конференция «АКТУАЛЬНЫЕ ПРОБЛЕМЫ ФИЗИКИ ТВЕРДОГО ТЕЛА» (APSSP-2023), Минск, 22-26 мая, 2023: Тезисы докладов, г. Минск, Беларусь, НПЦ НАН Беларуси по материаловедению.- 422 с.

3. **А.Д. Лобанов.** Влияние облучения электронами с энергией 10 МэВ на оптические свойства монокристаллов α-In₂Se₃ [Текст] / А. Д. Лобанов, М. А. Сулимов, Д. И. Радзивончик, М. Н. Сарычев, В. Ю. Иванов, Т. В. Кузнецова // XVI международная конференция «Забабахинские Научные Чтения 2023» (ЗНЧ-2023), Снежинск, 29 мая – 2 июня, 2023: Тезисы докладов, г. Снежинск, Россия, ВНИИТФ.- 4-26 с.

Экзамены

Экзамен по иностранному языку

Сдан – «Хорошо» Экзамен по философии

Июнь 2024 года

Экзамен по специальности 1.3.8.

Июнь 2026 года

Участие в грантах

Проект РНФ № 23-72-00067 «Применение и развитие методов резонансной рентгеновской фотоэмиссионной спектроскопии для изучения локальных характеристик многокомпонентных функциональных материалов с сильным спин-орбитальным взаимодействием»

Руководитель – Кузнецова Т.В., кандидат физико-математических наук

Степень участия – исполнитель

Выступления на конференциях

Сделано докладов

устных – 3

стендовых – 1

Таблица показателей

Показатель	Баллы	Кол-во	Сумма
публикации в изданиях ВАК (вышедшие из печати)	20	0	0
публикации в изданиях ВАК (принятые в печать)	5	1	5
свидетельство о программах для ЭВМ, зарегистрированных в установленном порядке	20	0	0
патент	20	0	0
соавторство в монографии	5	0	0
оформленное ноу-хау	5	0	0
публикации в других изданиях (не тезисы)	2	0	0
тезисы доклада на международной конференции	5	3	15
тезисы доклада на российской конференции	3	1	3
участие в конференции с устным докладом	2	3	6
участие в конференции со стендовым докладом	1	1	1
сданный на «отлично» кандидатский экзамен	20	0	0
сданный на «хорошо» кандидатский экзамен	15	1	15
сданный на «удовлетворительно» кандидатский экзамен	10	0	0
участие в грантах в качестве: исполнителя	5	1	5
участие в грантах в качестве: руководителя	10	0	0
Общая сумма			50

Актуальность исследования

Материал In₂Se₃ широко применяется 1) В электронике;
2) В фотовальтаике, в частности в солнечных элементах;

3) В качестве материала

термоэлектрика

Объект исследования

In₂Se₃ встречается в виде различных фаз и структур (α , β , γ , δ , и κ). α , β -In₂Se₃ являются слоистыми Ван-дер-Вальсовыми структурами.

α-In₂Se₃ обладает уникальными свойствами:

1) α -In₂Se₃ является полупроводником с шириной запрещённой зоны 1.3-1.4 эВ.

2) α-In₂Se₃ обладает сегнетоэлектрическими свойствами.

3) α -In₂Se₃ имеет сильные поглощающие свойства в спектральном диапазоне от 800 до1500 нм.

Методы исследования

- 1) Сканирующая электронная микроскопия (SEM) и Энергодисперсионный рентгеновский (EDX) микроанализ;
- 2) Рамановская спектроскопия (RS);
- 3) Атомно-силовая микроскопия (AFM);
- 4) Фотолюминесцентная (PL) спектроскопия;
- 5) Линейный ускоритель использовался в качестве источника электронов. Энергия электронов 10 МэВ. Электронные флюенсы: 10¹⁵ см⁻², 10¹⁶ см⁻², 10¹⁷ см⁻².

Результаты сканирующей электронной микроскопии (SEM) и EDX микроанализа

SE: изображения электронно-микроскопические поверхностей кристаллов α-In2Se3 с разрешением 24000× A) до облучения и B) после облучения электронами с флюенсом 10¹⁷ см⁻², С) с разрешением 50000× до облучения и D) после облучения электронами с флюенсом 10¹⁷ см⁻².

Образования размером 200-500 нм были обнаружены на поверхности объёмных кристаллов α-In₂Se₃. Данные образования названы каплями ("droplets").

Элемент	Вне "droplets", at.%	Ha "droplets", at.%			
	Точка 1	Точка 2	Точка 3	Точка 4	
In	39.8	39.5	36.1	32.9	
Se	60.2	60.5	63.9	67.1	

BSE: изображения электронно-микроскопические поверхностей кристаллов α-In2Se3 с разрешением 24000× A) до облучения и B) после облучения электронами с флюенсом 10¹⁷ см⁻².

Результаты атомно-силовой микроскопии (AFM)

Топология и карты токов α-In₂Se₃ до (A,B) и после (C,D) облучения электронным флюенсом 10¹⁷ см⁻². Размеры сканирования 5х5 мкм. Напряжение смещения 9 В.

 Зависимость
 контактного

 сопротивления
 от
 электронного

 флюенса вне и на "droplets".

Результаты рамановской спектроскопии (RS)

Рамановские карты кристалла α -In₂Se₃ до (слева) и после облучения электронами с энергией 10 МэВ с флюенсом 10¹⁷ см⁻² (справа) по интенсивности пика InSe₂. Размеры сканов 40х40 мкм.

Рамановские спектры объёмных кристаллов α -In₂Se₃, полученные при возбуждении лазером с длиной волны 532 нм до облучения и после облучения электронами с энергией 10 МэВ с флюенсом 10^{17} cm⁻².

Фотолюминесцентная спектроскопия

Установка для измерения

Диапазон температур: 7-340 К. Диапазон мощности возбуждения: 0,01 - 17,24 мВт. Спектральный диапазон: 0,7 - 1,65 мкм.

Зонная схема полупроводника

1 – рекомбинация зона - зона, 2 – рекомбинация свободных экситонов, 3 – рекомбинация рекомбинация экситонов, 4 – связанных свободных носителей заряда на связанных состояниях зона-примесь (примесь-зона) (FB, BT). 5 межпримесная излучательная рекомбинация (DAP), 6 – внутрицентровой излучательный переход, 7 –внутризонные излучательные переходы

Результаты фотолюминесцентной спектроскопии (PL)

Спектры фотолюминесценции объёмных кристаллов α-In₂Se₃ в температурном диапазоне от 7 до 340 К.

Эффект облучения электронами на PL спектры

Спектры фотолюминесценции объёмных кристаллов α -In₂Se₃ при температурах от 7 до 340 К в логарифмическом масштабе до облучения электронами.

Спектры фотолюминесценции объёмных кристаллов α -In₂Se₃ при температурах от 7 до 340 К в логарифмическом масштабе после облучения электронным флюенсом 10^{17} см⁻².

Пики A1, A2 вероятно связаны с рекомбинациями экситонов, полоса A связана с рекомбинацией BT ("хвосты", акцепторы вблизи края валентной зоны, размытого из-за электростатического потенциала), полоса B связана с глубокими дефектами, полоса C связана с рекомбинацией FB (свободных носителей).

Эффект облучения электронами на PL спектры

Температурные зависимости нормированной интегральной интенсивности $I_{PL}(T)$ полосы A до и после облучения электронным флюенсом 10^{17} см⁻²

Подгонка кривой Аррениуса зависимости $\ln (I_{PL}(T))$ полосы А a) до облучения; b) после облучения электронным флюенсом 10^{17} см⁻²

Температурные зависимости нормированной интегральной интенсивности $I_{PL}(T)$ полосы В до и после облучения электронным флюенсом 10^{17} см⁻²

максимума полосы В до и после облучения электронным флюенсом 10¹⁷ см⁻²

Результаты

- 1) Методами SEM, AFM, RS на поверхности объёмных кристаллов α -In₂Se₃ обнаружены образования (капли или "droplets") размером 200-500 нм. Многие капли обладают повышенным содержанием селена, капли обладают сильными отражающими свойствами по отношению к электронам с энергиями от 5 до 25 кэВ. Рамановские спектры капли обладают пиком при 147 см⁻¹, характерного для аморфного InSe₂.
- 2) Методом АFM обнаружено, что после облучения электронным флюенсом 10¹⁵ см⁻² улучшаются проводящие свойства на каплях. После облучения электронным флюенсом 10¹⁷ см⁻² значительно ухудшаются проводящие свойства как на каплях, так и вне капель.
- Рамановские спектры до и после электронного облучения демонстрируют, что облучение деформирует кристаллическую структуру α-In₂Se₃. и вероятно после облучения кристаллы представляют собой промежуточное состояние от α-In₂Se₃ к β-In₂Se₃.
- 4) В спектрах PL обнаружены три основных полосы А при 1,33 эВ (T = 7 K); В при 1,01 эВ (T = 7 K); С при 1,31 эВ (T = 260 K), которые соответствуют ВТ, глубоким дефектам, FB рекомбинациям. А также пики A1, A2, которые вероятно соответствуют экситонным рекомбинациям. После облучение отсутствует полоса C, что говорит об образовании центров безызлучательной рекомбинации, синий сдвиг полосы В, что вероятно говорит об образовании новых глубоких дефектов, увеличение энергии активации для ВТ рекомбинации от 34 до 39 мэВ.

Актуальность полученных результатов

В целом можно оценить материал α -In₂Se₃ как радиационностойкий материал. Основные изменения свойств α -In₂Se₃ наблюдаются после облучения достаточно большим электронным флюенсом 10^{17} см⁻² и проявляются в основном в ухудшении проводящих свойств α -In₂Se₃. Полученные результаты позволяют рассчитывать время работы устройств на основе α -In₂Se₃ при условиях воздействия электронного облучения.

Данные исследования важно учитывать при производстве солнечных элементов на основе α -In₂Se₃ (применяется в полимерных солнечных элементах (PSC) в качестве слоя переноса дырок (HTL)), при производстве фотодиодов α -In₂Se₃. Фотодиоды широко применяются в детекторах ионизирующего излучения, в технологии Лидар и оптических межспутниковых каналах. Все указанные выше устройства работают в условиях облучения ионизирующим излучением, в частности электронного облучения, что негативно сказывается на производительности и работоспособности данных устройств.

Спасибо за внимание!

Результаты фотолюминесцентной спектроскопии (PL)

Результаты фотолюминесцентной спектроскопии (PL)

а) Температурная зависимость нормированной интегральной интенсивности $I_{PL}(T)$ полосы A; b) Подгонка Ln ($I_{PL}(1/T)$) полосы A.

Кривая Аррениуса:

$$I_{PL}(T) = \frac{I_0}{\left[1 + A_1 T^{\frac{3}{2}} + A_2 T^{\frac{3}{2}} \exp\left(-\frac{E_a}{k_B T}\right)\right]}$$

 $E_a = 34.3 \pm 0.6$ мэВ– энергия активации процесса; A_1, A_2 – параметры скорости процесса.

 $E_a \approx \gamma \Rightarrow$ band-tail (BT) рекомбинация

Подгоночная кривая для полосы А:

$$I(hv) = A_0 \left(1 / \left(1 + \exp\left[-\frac{hv - E_1}{W_1} \right] \right) \right) \times \left(1 - 1 / \left(1 + \exp\left[-\frac{hv - E_2}{W_2} \right] \right) \right)$$

Где $W_1 = \gamma = 34.2 \pm 0.9$ мэВ - средняя энергетическая глубина флуктуаций потенциальной энергии валентной зоны.

Подгоночная кривая спектра ФЛ полосы В: $I(hv) = \sqrt{\frac{4\ln 2}{\pi}} \frac{B_0}{W_{FWHM}} \exp\left(\frac{-4\ln 2}{W_{FWHM}^2} (hv - E_c)^2\right)$