Научный руководитель – д.ф.-м.н., член-корр. РАН, Стрельцов Сергей Владимирович

Специальность 01.04.07 – физика конденсированного состояния

Тема работы — Применение расчётов на основе теории функционала плотности для исследования систем с большим числом атомов (более 100)

Задача текущего года

Оценить параметры одноионной анизотропии мономолекулярного магнетика $(PPh_4)_2[ReF_6] \cdot H_2O$ и аналогичного с ним $[Zn(viz)_4(ReF_6)];$ определить магнитный и орбитальный порядок, вычислить значения параметров обменного взаимодействия в двойном перовските Pb_2CuMoO_6 .

Результаты, полученные в текущем году

- 1. $(PPh_4)_2[ReF_6] \cdot H_2O$ и $[Zn(viz)_4(ReF_6)]$ имеют лёгкую плоскость намагничивания.
- 2. Параметры одноионной анизотропии D составляют 11,7 и 16,8 К соответственно.
- 3. По результатам проделанной работы опубликована статья.
- 4. Определены орбитальный и магнитный порядки Pb₂CuMoO₆.
- 5. Параметр обменного взаимодействия цепочек $J_1=15\,$ K, межцепочечного обменного взаимодействия под прямым углом $J_2=J_3=0.9\,$ K. Ожидаются результаты межцепочечных обменов вдоль осей.

Апробация работы

Статьи

1. <u>L.S. Taran</u>, V.Y. Elfimova, S.V. Streltsov. Magnetic Anisotropy of Singleion Magnet (PPh₄)₂[ReF₆]·2H₂O // JETP Letters. — 2023. — V. 117. — P. 606—611 (CA(core), Scopus, Springer, WoS(SCIE), РИНЦ)

Тезисы докладов на всероссийских конференциях

- 1. Л.С. Таран, В.Ю. Елфимова, С.В. Стрельцов. Изучение одноионной магнитной анизотропии в мономолекулярном магнетике (PPh₄)₂[ReF₆]·2H₂O. Тезисы докладов. XXII Всероссийская школасеминар по проблемам физики конденсированного состояния вещества (СПФКС-22) памяти М.И. Куркина, г. Екатеринбург, 2022. с. 280
- 2. Л.С. Таран, С.В. Стрельцов. Орбитальный порядок в двойном перовските Pb_2CuMoO_6 . Сборник тезисов. XX конференция сильно коррелированные электронные системы и квантовые критические явления (СКЭС-2023). ФИАН(Москва), 2023, с. 116

Экзамены

Экзамен по истории и философии науки

Сдан – «Отлично»

Участие в грантах

Проект РНФ № 20-62-46047 «Влияние спин-орбитального взаимодействия на орбитальные, спиновые и решеточные степени свободы в соединениях переходных металлов» (закончен)

Руководитель — Стрельцов С.В., доктор физико-математических наук, член-корреспондент РАН

Степень участия – исполнитель

Проект РНФ № 23-42-00069 «Синтез под высоким давлением полуметаллических ферромагнетиков с выдающимися характеристиками и связанные с ними физические механизмы»

Руководитель — Ирхин В.С., доктор физико-математических наук Степень участия — исполнитель

Проект РНФ № 23-12-00159 «Китаевские магнитные материалы» Руководитель — Стрельцов С.В., доктор физико-математических наук, член-корреспондент РАН Степень участия — исполнитель

Выступления на конференциях

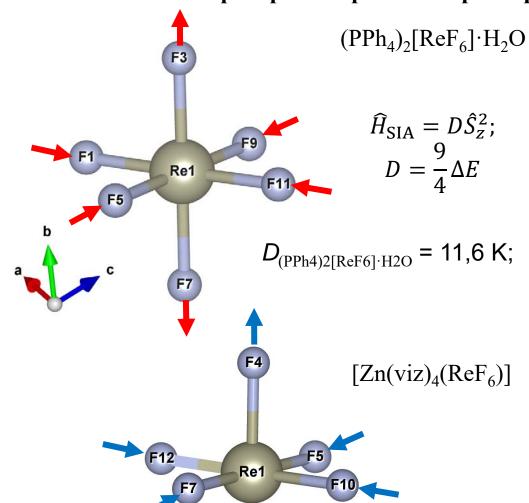
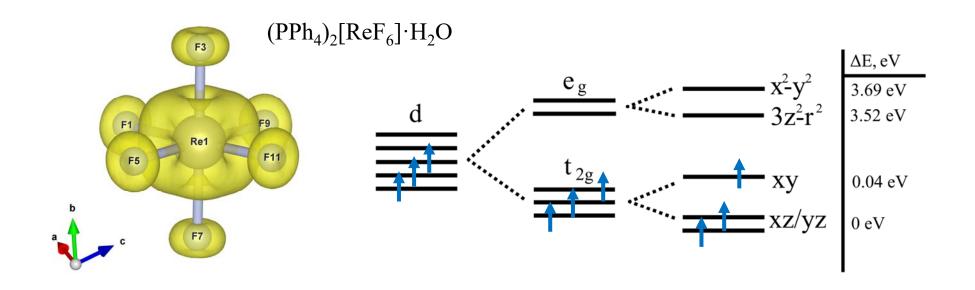
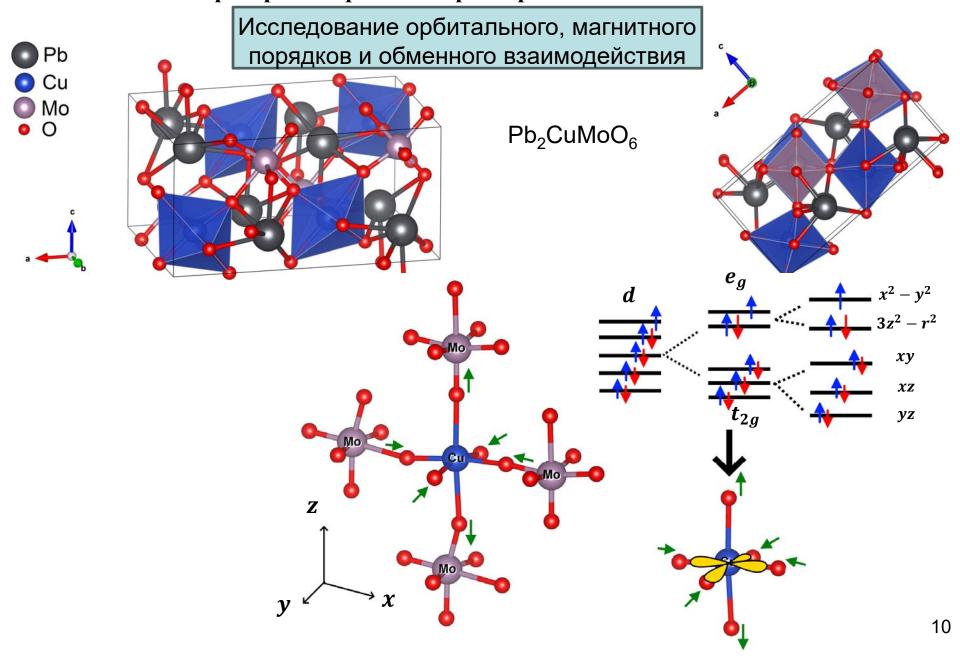

Сделано докладов устных -1 (СПФКС-22) стендовых -1 (СКЭС-2023)

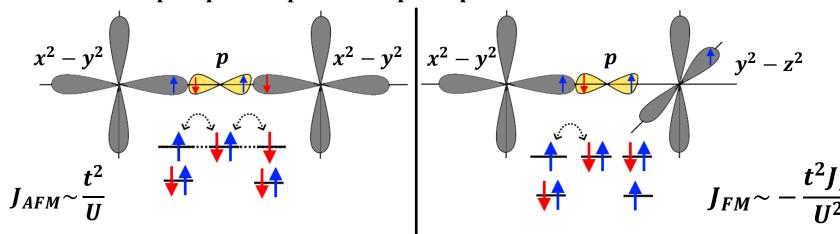
Таблица показателей (общий)

Tuosinga nokasaresien (commi)								
Показатель	гель Баллы 1 год		од	2 год		Итого		
		Кол-во	баллы	Кол-во	Баллы	баллов		
публикации в изданиях ВАК (вышедшие из печати)	20	1	20	1	20	40		
публикации в изданиях ВАК (принятые в печать)	5	0	0	0	0	0		
свидетельство о программах для ЭВМ, зарегистрированных в установленном порядке	20	0	0	0	0	0		
патент	20	0	0	0	0	0		
соавторство в монографии	5	0	0	0	0	0		
оформленное ноу-хау	5	0	0	0	0	0		
публикации в других изданиях (не тезисы)	2	0	0	0	0	0		
тезисы доклада на международной конференции	5	0	0	0	0	0		
тезисы доклада на российской конференции	3	0	0	2	6	6		
участие в конференции с устным докладом	2	0	0	1	2	2		
участие в конференции со стендовым докладом	1	0	0	1	1	1		
сданный на «отлично» кандидатский экзамен	20	1	20	1	20	40		
сданный на «хорошо» кандидатский экзамен	15	0	0	0	0	0		
сданный на «удовлетворительно» кандидатский экзамен	10	0	0	0	0	0		
участие в грантах в качестве: исполнителя	5	0	0	3	15	15		
участие в грантах в качестве: руководителя	10	0	0	0	0	0		
Общая сумма		4	0	6	4	104		

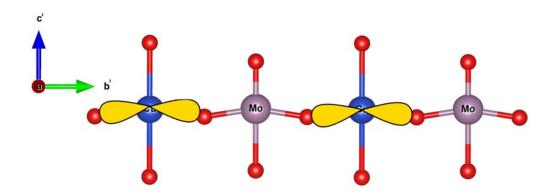
Аспирант 2 года обучения Таран Леонид Сергеевич лаборатории теории низкоразмерных спиновых систем Исследование одноионной магнитной анизотропии $(PPh_4)_2[ReF_6] \cdot H_2O$ Re1 $[Zn(viz)_4(ReF_6)]$ Re1 \mathbf{C} K.S. Pedersen et al., Angew. Chem. Int. Ed. 53, 1351, (2014)

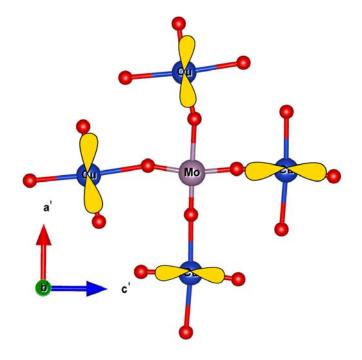

 $D_{[Zn(viz)4(ReF6)]} = 16,7 \text{ K};$

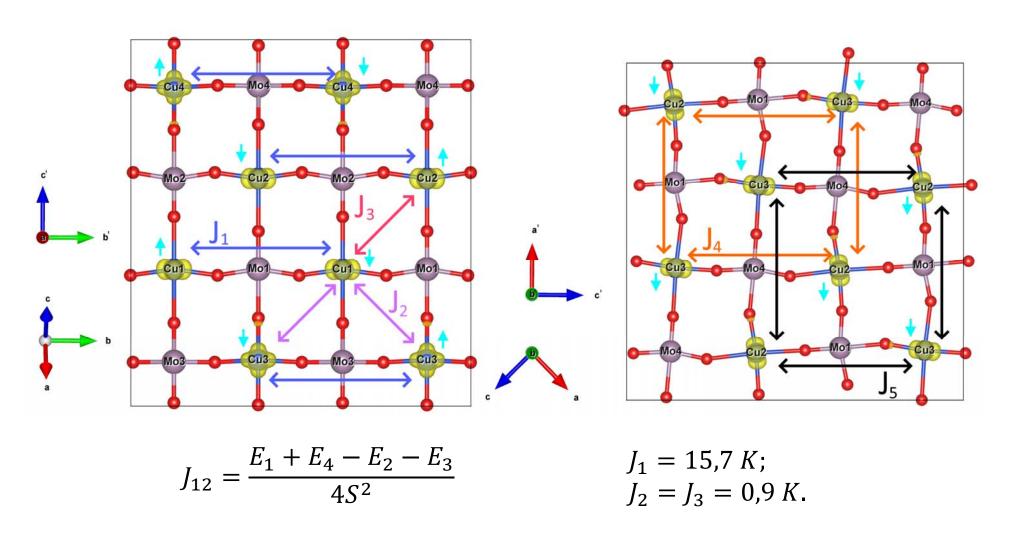



Направление	ΔE, K	m_s , μ_B	<i>m</i> _ι , μ _Β
Re1-F11	0,00	2,67	0,09
Re1-F9	4,02	2,67	0,09
Re1-F5	4,14	2,67	0,09
Re1-F1	5,26	2,67	0,09
Re1-F3	25,87	2,68	0,08
Re1-F7	26,22	2,68	0,08

Направление	ΔE, K	m_s , μ_B	<i>m_ι,</i> μ _Β
Re1-F5	0,00	2,67	0,1
Re1-F7	0,00	2,67	0,1
Re1-F10	0,00	2,67	0,1
Re1-F12	0,00	2,67	0,1
Re1-F1	37,80	2,68	0,08
Re1-F4	37,81	2,68	0,08

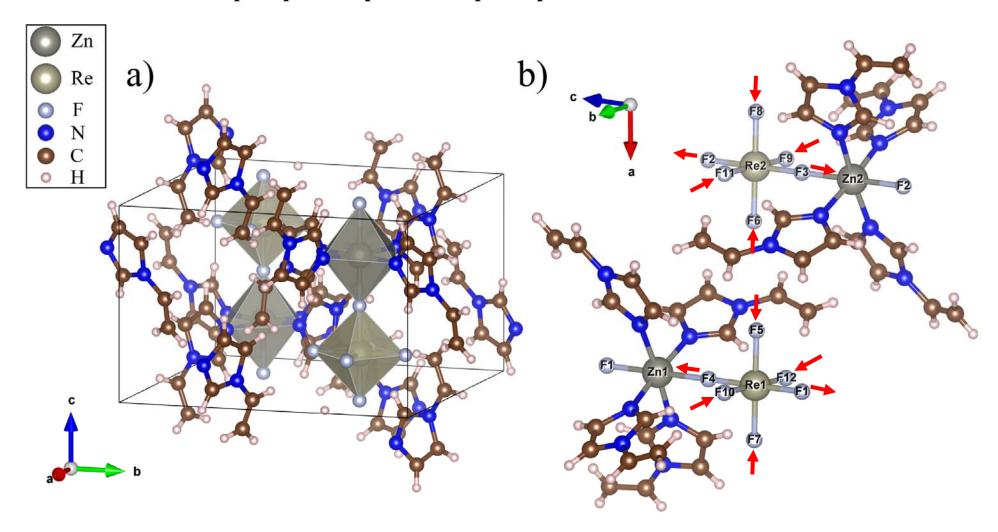

Taran, L.S., Elfimova, V.Y. & Streltsov, S.V. Jetp Lett. 117, 606-611 (2023)





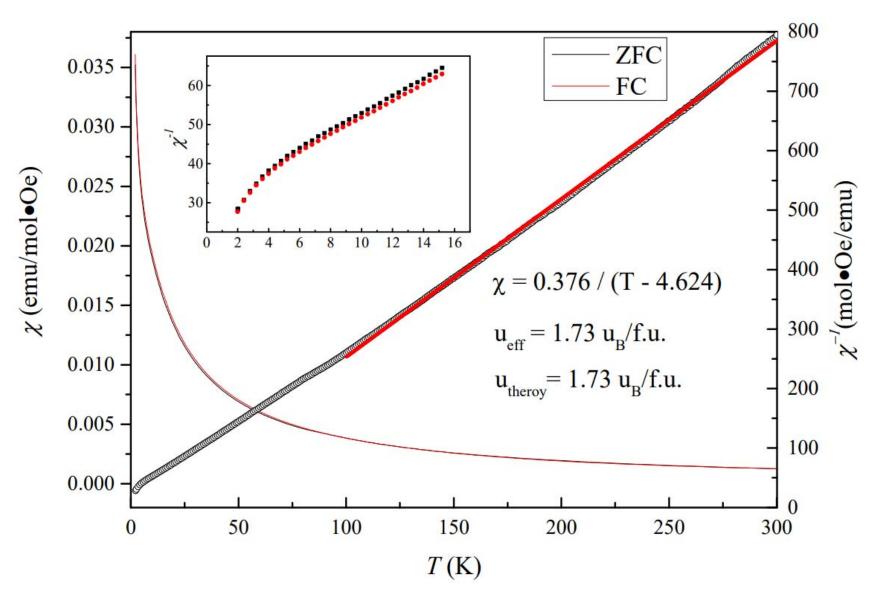
Сильное АФМ взаимодействие Слабое ФМ взаимодействие

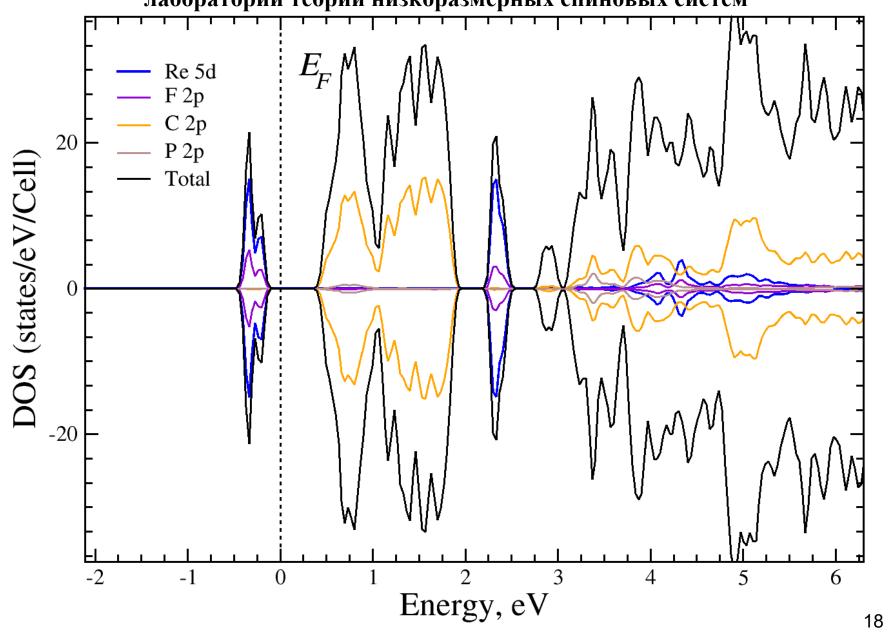
Сильное обменное взаимодействие в цепочках по оси b'


Ожидается получение J_4 и J_5 .

H. J. Xiang, E. J. Kan, Su-Huai Wei, M.-H. Whangbo, and X. G. Gong Phys. Rev. B 84, 224429 12

Заключение


- 1. С помощью первопринципных расчётов определена лёгкая плоскость намагничивания в $(PPh_4)_2[ReF_6]\cdot 2H_2O$ и $[Zn(viz)_4(ReF_6)];$
- 2. Вычислены параметры $D_{\text{(PPh_4)}_2[\text{ReF}_6] \cdot 2\text{H}_2\text{O}} = 11,7 \text{ K},$ $D_{\text{[Zn(viz)}4(\text{ReF}_6)]} = 16,8 \text{ K};$
- 3. Результаты опубликованы в журнале *Jetp Letters* **117**, 606–611 (2023);
- 4. Определены магнитный и орбитальный порядки в Pb₂CuMoO₆;
- 5. Вычислены параметры обменного взаимодействия $J_1 = 15,7$ K, $J_2 = J_3 = 0,9$ K для Pb_2CuMoO_6 ;
- 6. По результатам работы готовится статья.


БЛАГОДАРЮ ЗА ВНИМАНИЕ! ГОТОВ ОТВЕТИТЬ НА ВАШИ ВОПРОСЫ

Метод 4 конфигураций

- $E_{\text{спин}} = J_{12}S_1 \cdot S_2 + S_1 \cdot K_1 + S_2 \cdot K_2 + E_{\text{др}}$
- $K_1 = \sum_{i \neq 1,2} J_{1i} S_i$, $K_2 = \sum_{i \neq 1,2} J_{2i} S_i$, и $E_{\text{др}} = \sum_{i,j \neq 1,2} J_{ij} S_i S_j$
- 1) $S_1^z = S$, $S_2^z = S$; 2) $S_1^z = S$, $S_2^z = -S$;
- 3) $S_1^z = -S$, $S_2^z = S$; 4) $S_1^z = -S$, $S_2^z = -S$;
- $E_1 = E_0 + E_{\text{др}} + J_{12}S_2 + K_1S + K_2S$,
- $E_2 = E_0 + E_{\text{др}} J_{12}S_2 + K_1S K_2S$,
- $E_3 = E_0 + E_{Ap} J_{12}S_2 K_1S + K_2S$,
- $E_4 = E_0 + E_{\text{Ap}} + J_{12}S_2 K_1S K_2S$.

