ФИЗИКА МЕТАЛЛОВ И МЕТАЛЛОВЕДЕНИЕ, 2015, том 116, № 2, с. 210–218

ПРОЧНОСТЬ И ПЛАСТИЧНОСТЬ

УДК 669.24'71:539.538

ИССЛЕДОВАНИЕ СТРУКТУРЫ ДВУХ НИКЕЛЕВЫХ ЖАРОПРОЧНЫХ СПЛАВОВ ПОСЛЕ ВЫСОКОТЕМПЕРАТУРНОЙ ДЕФОРМАЦИИ

© 2015 г. Д. И. Давыдов, Н. И. Виноградова, Н. В. Казанцева, Н. Н. Степанова

Институт физики металлов УрО РАН, 620990 Екатеринбург, ул. С. Ковалевской, 18

e-mail: snn@imp.uran.ru Поступила в редакцию 30.04.2014 г.; в окончательном варианте – 10.08.2014 г.

Проведено исследование структурного состояния турбинных лопаток из двух промышленных никелевых жаропрочных сплавов после эксплуатации по экспериментальному режиму с повышенным уровнем рабочих температур и напряжений. Оба сплава содержат 40% упрочняющей интерметаллидной фазы и имеют верхний предел рабочих температур 900°С, но различаются по устойчивости к высокотемпературной деформации.

Ключевые слова: жаропрочный никелевый сплав, высокотемпературная деформация, дефекты структуры, турбинная лопатка.

DOI: 10.7868/S0015323015020059

Никелевые жаропрочные сплавы применяются для изготовления рабочих лопаток, наиболее термонагруженных деталей стационарных газотурбинных установок (ГТУ). В данной работе рассмотрены два из них: сплавы ЭП-800 и ЧС-70В [1-4]. Основными фазами таких сплавов являются твердый раствор на основе никеля и упрочняющая фаза на основе интерметаллида Ni₃Al со сверхструктурой типа $L1_2$ (γ -фаза), кроме того присутствуют карбиды (МеС и Ме₂₃С₆), которые выделяются на границах и внутри зерен в виде включений. Оба этих сплава содержат 40% γ '-фазы и имеют верхний предел рабочих температур 900°С.

В настоящее время в энергетике активно предпринимаются попытки повышения мощности ГТУ, что достигается повышением рабочих температур и напряжений [5]. В стандартном режиме рабочие лопатки никогда не эксплуатируются на верхнем пределе рабочего интервала температур сплава, из которого они изготовлены. До предела должен оставаться запас в 50–100°С, обеспечивающий структурную стабильность сплава в случае неконтролируемого повышения температуры. При работе в стандартном режиме (800°С) время эксплуатации лопаток составляло 27000 ч. Экспериментальный режим при повышенной мощности турбины ставит материал лопаток в экстремальные условия по уровню рабочих температур и напряжений, что существенно сокращает время эксплуатации лопаток.

Целью данной работы было исследование и сравнение структурного состояния турбинных лопаток из сплавов ЭП-800 и ЧС-70В после длительной эксплуатации по экспериментальному режиму.

МАТЕРИАЛЫ И МЕТОДЫ ИССЛЕДОВАНИЯ

Исследования проводили на образцах, вырезанных из разных участков поликристаллических лопаток из двух промышленных жаропрочных никелевых сплавов после эксплуатации по экспериментальному режиму: рабочая температура была повышена от 800°С до 880°С, скорость вращения увеличена в 1.7 раза по сравнению со стандартным режимом. Наработка для всех лопаток составляла 9000 ч (12 месяцев). Состав исследованных сплавов, определенный методами аналитической химии, приведен в табл. 1. Он соответствует составу сплавов ЧС-70В и ЭП-800 по ТУ 14-1-3658-83 и ТУ 14-1-1769-76.

Исследования структуры проведены с помощью оптического микроскопа НЕОФОТ-3, а также в отделе электронной микроскопии Испытательного центра нанотехнологий и перспективных материалов ИФМ УрО РАН с использованием просвечива-

Таблица 1. Химический состав исследованных сплавов, основа – никель (мас. %)

N⁰	сплав	Cr	W	Мо	Со	Al	Nb	С	Ti	В	Fe
Ι	ЭП-800	12.5	5.0	6.0	9.0	4.5	2.0	≤0.05	_	_	≤1
Π	ЧС-70В	14.4	5.6	3.5	10.6	3.5	0.25	0.10	4.4	0.35	≤1

Рис. 1. Полосы деформации в спинке пера лопатки из сплава I.

ющего электронного микроскопа JEM-200CX и сканирующего микроскопа PHILIPS SEM-515 с энергодисперсионным спектрометром EDAX для элементного анализа. Рентгеноструктурный анализ был выполнен с помощью рентгеновского дифрактометра ДРОН-3, излучение CuK_{α} , использован структурный рефлекс (400). Точность определения параметра решетки ±0.00005 нм.

РЕЗУЛЬТАТЫ ЭКСПЕРИМЕНТА И ИХ ОБСУЖДЕНИЕ

В ходе эксплуатации лопатки подвергаются сложным видам нагружения. Под действием центробежных сил в поверхностном слое пера лопатки создаются переменные растягивающие напряжения и возникают значительные вибрационные нагрузки [6]. Градиент температур создает температурное поле напряжений по всему профилю лопатки. В центральной части пера уровень напряжений существенно ниже. При электронно-микроскопических исследованиях в различных участках поперечного среза пера выявляются зоны с разными структурными особенностями.

Рассмотрим структурное состояние лопатки из сплава І. Во всех участках пера лопатки после эксплуатации по экспериментальному режиму наблюдается полосовая дислокационная структура в сочетании со свободными от дислокаций областями (рис. 1). В спинке (выпуклая часть пера) и в вогнутой части пера полосы скольжения более многочисленны.

В центральной части пера полосы присутствуют, но их существенно меньше. Основная часть дислокаций сосредоточена в участках твердого раствора, что подтверждается темнопольными изображениями в рефлексе γ' -фазы: частицы интерметаллида свободны от дефектов (рис. 2а). Частицы упрочняющей интерметаллидной γ' -фазы в основном сохраняют свою кубоидную морфологию и остаются когерентными с никелевым γ -твердым раствором. На светлопольных изображениях на границе $\gamma - \gamma'$ наблюдается полосчатый δ -контраст (рис. 2б). В центральной части пера кубоиды γ' -фазы более регулярные по расположению и размерам (250 нм), что говорит о меньшем уровне напряжений по сравнению со спинкой пера.

В спинке пера заметны процессы коагуляции. Размер кубоидов в этой части лопатки увеличен в среднем до 400 нм, распределение частиц ү'-фазы бимодальное (при определении размеров не учитывали дисперсные частицы ү'-фазы, выделившиеся при охлаждении лопатки от рабочей температуры до комнатной). Интерметаллидная фаза в этой части пера более активно участвует в процессе деформации. Внутри кубоидов видны дислокации, отдельные частицы подверглись фрагментации (рис. 3).

Структурной особенностью исследованного нами образца сплава I являются крупные двойники. Они наблюдаются уже при оптической металлографии (рис. 4). Заметим, что двойникование в целом не свойственно жаропрочным никелевым сплавам [1]. Двойники деформации наблюдаются, как правило, или при низкотемпературной де-

Рис. 2. Упрочняющая интерметаллидная фаза в центральной части пера лопатки из сплава I: а – темнопольное изображение в рефлексе γ'-фазы; б – светлопольное изображение.

ФИЗИКА МЕТАЛЛОВ И МЕТАЛЛОВЕДЕНИЕ том 116 № 2 2015

Рис. 3. Интерметаллидная фаза в спинке пера лопатки из сплава I, темнопольное изображение в рефлексе у'-фазы.

формации, или при высокоэнергетических воздействиях (деформация взрывом, аварийное разрушение лопатки во время работы турбины при ударе осколками соседней лопатки) [7]. Двойники отжига для данных сплавов также не характерны. Образование двойников отжига является способом релаксации напряжений при нагружении в высокотемпературной области, и в нашем случае произошло, скорее всего, вследствие кратковременного превышения рабочей температуры лопатки в ходе ее эксплуатации при забросе температуры из камеры сгорания в проточную часть.

В спинке и в вогнутой части пера наблюдаются единичные микродвойники (рис. 5). Они также являются двойниками отжига. Наблюдается типичная для ГЦК-кристаллов система двойникования по плоскостям типа {111} в направлении (112). Следует заметить, что релаксация после высокотемпературного нагружения таким путем происходит только в зонах максимальных напряжений. Это, хорошо видно, например, в модельных экспериментах [8]: при высокотемпературных испытаниях на растяжение монокристаллических образцов и Ni₃Al, и жаропрочных сплавов. Нас интересовал характер релаксации напряжений. Высокая температура испытаний (до 1250°С) открывала для материала различные пути релаксации. При этом наблюдались отдельные микродвойники, но только в шейке образца вблизи поверхности разрушения.

В структуре вогнутой части пера наблюдаются дефекты упаковки, которые проходят насквозь через частицы интерметаллида и области твердого раствора. Этот факт подтверждается тем, что такие дефекты видны на темнопольных изображениях как в структурных, так и в сверхструктурных рефлексах. Изредка можно видеть их пересечение (рис. 6). Анализ электронно-микроскопических изображений по методике, описанной в [8], позволяет определить их как дефекты упаков-

Рис. 4. Крупные двойники в пере лопатки из сплава I, оптическое изображение.

ки вычитания. На рис. 66 можно видеть дефект упаковки внутри частицы ү'-фазы.

Длительное нагружение лопатки в экспериментальном режиме приводит к изменениям в карбидной фазе сплава І. Исходно она была представлена карбидами типа MeC (NbC). Из-за низкого содержания углерода в сплаве такие карбиды находились преимущественно на границах зерен. В теле зерна их было существенно меньше. По мере наработки происходит карбидная реакция с выделением на границе зерна карбидов на основе хрома типа Me₂₃C₆ (рис. 7а). На рис. 7б–7г можно видеть, как карбид Ме₂₃С₆ образуется на поверхности карбида NbC. Последовательность карбидных реакций для данного сплава хорошо известна [1]: $MeC \rightarrow Me_{23}C_6 \rightarrow Me_6C$. Карбидные реакции в жаропрочных сплавах обсуждались неоднократно, в том числе и нами [7]. В данном случае представляет интерес то, что эксплуатация в течение 9000 ч не приводит к образованию конечного продукта реакций: карбида Ме₆С. Это положительно сказывается на механических свойствах материала лопатки. Карбид Ме₆С, как правило, имеет игольчатую морфологию, и его появление могло бы существенно снизить устойчивость сплава к образованию трещин.

У исследуемой лопатки из сплава I отдельные усталостные трещины хорошо видны у кромки пера и на торцевой поверхности замка (рис. 8а). Эти места являются типичными. Известно [6, 9], что усталостные трещины образуются у входной кромки пера в основном под действием знакопеременных напряжений при вибрации и на торцевой поверхности замка, жестко закрепленного на диске турбины. Трещины имеют длину до 10 мм с раскрытием практически по всей длине на 0.2–0.4 мм. Структурное состояние материала вблизи усталостной трещины имеет свои особенности. В зоне между двумя трещинами при электронно-микроскопических ис-

Рис. 5. Микродвойник вблизи трещины в пере лопатки из сплава I:

а – светлопольное изображение; б, в – электронограмма и схема ее расшифровки; указаны матричные рефлексы, сверхструктурные рефлексы γ'-фазы обозначены как **×**, двойниковые рефлексы обозначены как ∆. Ось зоны [110].

Рис. 6. Дефекты упаковки в вогнутой части пера лопатки из сплава I, светлопольные изображения: а – пересекающиеся дефекты; б – дефекты внутри отдельной частицы ү'-фазы.

ФИЗИКА МЕТАЛЛОВ И МЕТАЛЛОВЕДЕНИЕ том 116 № 2 2015

Рис. 7. Карбиды в вогнутой части пера лопатки из сплава I:

а – светлопольное изображение карбидов на границе зерна; б – темнопольное изображение в рефлексе [402] карбида Me₂₃C₆ – отмечен на рис. 5г знаком Δ; в, г – электронограмма и схема ее расшифровки, указаны матричные рефлексы, сверхструктурные рефлексы γ'-фазы обозначены как **≭**. Ось зоны [112].

следованиях наблюдаются множественные тонкие микродвойники. Помимо появления на микроэлектронограммах двойниковых отражений, их позволяет идентифицировать изменение контраста двойника на дополнительный при переходе к темнопольному изображению (рис. 86–8г).

Остановимся на рассмотрении структурного состояния сплава II: оно в основных своих чертах совпадает со структурой сплава I. Хотя имеются и различия.

Как и в сплаве I, после эксплуатации по экспериментальному режиму в сплаве II наблюдаются полосы деформации, особенно в спинке лопатки, там, где напряжения максимальны (рис. 9а). Нагружение при повышенной температуре приводит к укрупнению частиц упрочняющей интерметаллидной фазы. Самые большие кубоиды ү'-фазы наблюдаются вблизи спинки пера. В центральной части пера частицы интерметаллида практически сохраняют свой исходный размер. В замке лопатки, подвергающемуся в основном тепловому воздействию, происходит коагуляция частиц ү'-фазы, каких-либо дефектов внутри ее частиц не выявлено (рис. 9б). Длительное нагружение лопатки в экспериментальном режиме приводит к изменениям в карбидной фазе сплава: по мере эксплуатации карбиды типа MeC (в данном сплаве TiC) замещаются карбидами хрома типа Me₂₃C₆.

По данным [10], сплав II устойчив к распространению трещины в интервале температур 20-800°С. При температурах выше 850°С, особенно под действием растягивающих и изгибающих механических нагрузок, в этом сплаве развивается пористость, приводящая к разупрочнению материала и формированию микротрещин. В нашем случае, в согласии с [10], металлографический анализ участков пера выявил наличие многочисленных микропор, которые видны уже в оптический микроскоп (рис. 10а). Известно, что карбиды хрома Me₂₃C₆ содержат также тугоплавкие элементы, такие как W и Mo. В этом случае выделение карбидов по границе зерна может уменьшать концентрацию тугоплавких элементов в примыкающем к границе слое твердого раствора и ослаблять приграничные области зерна [7]. Это может быть причиной образования микротрещин на грани-

ИССЛЕДОВАНИЕ СТРУКТУРЫ

Рис. 8. Структура вблизи усталостных трещин на торце замковой части лопатки из сплава I: а – усталостные трещины, оптическая фотография; б – электронограмма с участка, содержащего микродвойники, двойниковый рефлекс отмечен стрелкой; в, г – светлопольное и темнопольное изображения, соответственно.

Рис. 9. Структура пера лопатки из сплава II после эксплуатации по экспериментальному режиму: a – полосы скольжения в спинке пера лопатки; б – замковая часть лопатки, темнопольное изображение в рефлексе γ'-фазы.

цах зерен, появление которых происходит внутри пера лопатки в области спинки (рис. 10б).

Отдельные усталостные трещины визуально наблюдали на поверхности пера и на торце замковой части лопатки из сплава II. Трещины имеют

длину от 3 до 15 мм с раскрытием по всей длине на 0.4—1 мм. Наши результаты согласуются с данными [11], где было отмечено, что при приближении температуры испытаний к 900°С длительная прочность сплава II значительно снижается. Высокий

ФИЗИКА МЕТАЛЛОВ И МЕТАЛЛОВЕДЕНИЕ том 116 № 2 2015

Рис. 10. Оптическая микрофотография участка пера лопатки из сплава II, стрелками показаны отдельные поры внутри зерна.

уровень рабочих напряжений в этом интервале температур способствует развитию трещин.

В спинке лопатки образца II деформация протекает не только в у-матрице, но и в упрочняющей у'-фазе. Об этом свидетельствуют фрагментация частиц ү'-фазы, проявляющаяся как неравномерное свечение на темнопольных изображениях, и многочисленные дислокации внутри частиц (рис. 11). Еще одной особенностью структуры пера лопатки из сплава II является присутствие в нем многочисленных дефектов упаковки, в отличие от образцов сплава I, где дефекты упаковки единичны. Они хорошо видны при больших увеличениях внутри полосы деформации в спинке пера (рис. 12а). Каждый из дефектов проходит и через области твердого раствора, и через частицы интерметаллида. Об этом говорит тот факт, что один и тот же дефект виден на темнопольных изображениях как в структурном, так и в сверхструктурном рефлексах (рис. 126–12г). То, что два дефекта наблюдаются на темнопольном изображении одновременно, говорит об их пересе-

Рис. 11. Темнопольное изображение частиц у'-фазы в спинке пера лопатки из сплава II.

чении, поскольку, по условиям возникновения контраста, они лежат в одной плоскости.

Такое структурное состояние связано с экспериментальным форсированным режимом эксплуатации, при стандартных режимах внутри частиц интерметаллидной γ' -фазы (Ni₃Al) устойчивых комплексов дефектов не образуется [4, 7]. Именно это обстоятельство обеспечивает выполнение интерметаллидом роли упрочняющей фазы. Образование устойчивых комплексов дефектов внутри частиц интерметаллидной фазы является показателем ее разупрочнения и свидетельствует о деградации структуры сплава.

На поперечном срезе пера лопатки мы исследовали методом рентгеновского микроанализа возможные изменения локального химического состава сплава II в ходе эксплуатации. На срезе были выделены несколько областей: вблизи спинки, в центральной части и вблизи вогнутой части пера. Анализ поводился в каждой из областей в 12—16 точках. Далее было проведено усреднение полученных данных для каждой области (табл. 2). Сравнение данных, приведенных в табл. 1 и 2, показывает, что состав сплава после эксплуатации в вогнутой и в центральной части пера (зона 1 и 2), определенный с помощью рентгеновского микроанализа, соответствует составу, определенному нами с помощью химического анализа (и марочному составу сплава).

Заметим, что после эксплуатации по экспериментальному режиму на поверхности лопатки в спинке пера появляется локальный участок с измененным химическим составом. При стандартных режимах высокое содержание хрома в составе сплава II должно было обеспечить его устойчивость к воздействию агрессивной среды за счет образования на внешней поверхности лопатки окисла Cr_2O_3 . В нашем случае окисный слой на спинке пера обеднен хромом; при этом повышена концентрация элементов, входящих в состав сплава в качестве легирующих элементов: кобальта и титана; а также железа, которое является примесью, и углерода, в основном

Рис. 12. Дефекты упаковки в спинке пера лопатки из сплава II: а – светлопольное изображение, общий план; б – светлопольное изображение, в, г – темнопольные изображения в структурном и сверхструктурном рефлексе (γ'-фаза).

привнесенного во время эксплуатации из внешней газовой среды. Поскольку изменение химического состава поверхностного слоя происходит именно в области максимальных рабочих напряжений, можно говорить о наличии диффузии под напряжением.

Данные рентгеноструктурного анализа хорошо согласуются с данными измерений химического состава в различных зонах пера. Анализ параметра решетки γ/γ' -фазы показал, что в вогнутой части пера $a = 0.36060 \pm 0.00005$ нм, в центральной части a = 0.36070 нм, в спинке пера a = 0.36040 нм. Подобное изменение параметров решетки может свидетельствовать как о различных уровнях напряжений в этих частях, так и об изменениях химического состава γ/γ' -фаз.

Известно [12], что при упругом изгибе кристалла, представляющего собой твердый раствор замещения, на ионы примеси действует сила, пропорциональная разности объемов примесного атома и атома решетки. В этом случае атомы,

Элемент	Зона 1 вогнутая часть пера	Зона 2 центральная часть	Зона 3 спинка пера вблизи окисла	Зона 4 окисел на поверхности в области спинки
Al	3.5	3.5	4.0	1.8
Мо	3.5	3.2	3.7	2.7
Ni	57.1	56.7	52.0	21.0
Ti	4.4	4.3	3.7	14.4
Cr	14.7	14.3	11.6	5.2
Fe	0.8	0.7	0.9	5.7
Co	10.6	10.3	8.8	15.5
W	5.6	5.2	5.4	1.6
С	0.2	0.3	1.0	1.6

Таблица 2. Химический состав в различных зонах по сечению пера лопатки из сплава II по данным рентгеновского микроанализа (мас. %)

Железо является примесью (допустимое содержание до 1%). Суммарный состав химических элементов в зонах 3 и 4 меньше 100%, поскольку в таблице не приведено содержание кислорода (в составе окислов).

которые имеют больший ионный радиус (Ti, Fe, Со), перемещаются в кристалле в область растяжения, а атомы с меньшим радиусом (Cr, Ni) – в область сжатия. Согласно этим представлениям, следует ожидать значительное повышение концентрации титана, железа и кобальта в поверхностном слое (зона 4), что в действительности и наблюдается (см. табл. 2). Чем выше уровень действующих напряжений, тем больше диффузионная подвижность атомов. В исследуемой лопатке максимальные растягивающие напряжения достигаются в поверхностном слое пера. При этом стоит учитывать, что жаропрочные никелевые сплавы специально легируют такими элементами как Cr, W, Mo, чтобы способствовать торможению диффузионных процессов в твердом у-растворе, а также процессов диффузионного обмена между твердым раствором и интерметаллидной γ'-фазой (Ni_3Al) . Атомы никеля, которые входят не только в твердый раствор, но и в состав ү'-фазы, будут иметь самую низкую диффузионную подвижность [1]. Следует подчеркнуть, что все изменения химического состава локальны, касаются только небольшого участка поверхности в области спинки пера. Во внутренней части пера лопатки из сплава II существенного диффузионного перераспределения химических элементов не обнаружено за исключением узкой зоны, непосредственно примыкающей к окисленному слою в спинке пера (зона 3 в табл. 2).

Химический состав, определенный по той же методике в различных сечениях пера лопатки из сплава I, соответствует составу сплава. Можно говорить об отсутствии диффузионных потоков в материале пера лопатки в процессе ее эксплуатации.

Работа выполнена по бюджетной теме ИФМ УрО РАН "Кристалл" № 01201463333 с частичной поддержкой проекта Уральского отделения РАН № 12-У-2-1017. Авторы благодарят сотрудников Института физико-технических проблем Севера СО РАН (г. Якутск) С.П. Яковлеву, Г.Г. Винокурова и Д.С. Черных за предоставленные образцы.

ЗАКЛЮЧЕНИЕ

Проведен анализ структурного состояния турбинных лопаток из жаропрочных никелевых сплавов ЭП-800 и ЧС-70В после эксплуатации на газотурбинной установке по экспериментальному режиму.

Исследованные сплавы обладают достаточным запасом прочности, и их применение для рабочих лопаток обеспечивает устойчивую работу турбины по экспериментальному режиму в течение 9000 ч.

В обоих сплавах в процессе эксплуатации в структуре формируются полосы деформации. Происходит коагуляция частиц ү'-фазы в зонах максимальных напряжений (спинка пера). Развиваются карбидные реакции с образованием вместо исходного MeC карбида на основе хрома Me₂₃C₆, на поверхности лопатки появляются отдельные усталостные трещины. При этом сплав ЭП-800 более устойчив к повышенному уровню рабочих температур и напряжений, для этого сплава время эксплуатации, по-видимому, может превышать 9000 ч.

Увеличению времени эксплуатации для сплава ЧС-70В препятствует ряд факторов, каждый из которых приводит к необратимым изменениям структуры и способствует разрушению. Накопление дефектов внутри частиц интерметаллидной фазы, проявление диффузии легирующих элементов под напряжением, развитие пористости, — все это снижает устойчивость к развитию усталостных трещин и в дальнейшем ведет к разрушению.

СПИСОК ЛИТЕРАТУРЫ

- 1. *Масленков С.Б.* Жаропрочные стали и сплавы. Справочное издание. М.: Металлургия, 1983. 192 с.
- 2. Скуднов В.А., Тарасенко Ю.П., Бердник О.Б. Выбор оптимальной рабочей температуры никелевых сплавов ЧС70-ВИ и ЧС88У-ВИ с позиции синергетики // Технология металлов. 2008. № 12. С. 16–20.
- 3. Лесников В.П., Кузнецов В.П. Коррозионностойкий сплав ЧС70У-ВИ и защитные покрытия для лопаток ТВД стационарных и судовых ГТД // Газотурбинные технологии. 2007. № 4 (55). С. 26–27.
- Тарасенко Ю.П., Бердник О.Б. Структурно-фазовое состояние и механические свойства материала ЭП800-ВД лопатки ротора турбины после длительной эксплуатации и восстановительной термообработки // Вестник научно-технического развития. 2011. № 7(47). С. 17–22.
- 5. *Резинских В.Ф., Гринь Е.А.* Надежность и безопасность ТЭС России на современном этапе: проблемы и перспективные задачи // Теплоэнергетика. 2010. № 1. С. 9–13.
- Канайкин В., Матвиенко А. Повреждение и разрушение лопаток газоперекачивающих агрегатов. Екатеринбург: Банк культурной информации, 2000. 179 с.
- Степанова Н.Н., Виноградова Н.И., Казанцева Н.В., Романов Е.П., Пирогов А.Н. Двойникование и фазовые превращения в жаропрочном сплаве ЭП-800 после динамического нагружения // МиТОМ. 2008. № 9. С. 28–32.
- Казанцева Н.В., Виноградова Н.И., Степанова Н.Н. Электронно-микроскопическое исследование планарных дефектов в монокристалле Ni₃Al после высокотемпературной деформации 1200–1250°С // Деформация и разрушение материалов. 2010. № 9. С. 1–6.
- 9. Клыпина А.М., Трушечкин В.П., Чистякова Л.Д., Казанский Д.А. Опыт эксплуатации штампованных рабочих лопаток I ступени газовой турбины ГТЭ-45 из никелевого сплава ЭП800 // Теплоэнергетика. 2008. № 2. С. 33–39.
- Тарасенко Ю.П., Бердник О.Б., Царева И.Н., Кривина Л.А. Разрушение рабочих лопаток турбины вследствие высокотемпературной усталости // Известия вузов. 2008. № 4. С. 132–138.
- Монастырская Е.В., Морозова Г.И., Власов Ю.Б. Структура, фазовый состав и свойства коррозионностойкого сплава ЧС88У. МиТОМ. 2006. № 8. С. 39–44.
- Киттель Ч. Введение в физику твердого тела. М.: Наука. 1978. 791 с.